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Abstract
The expensive brain hypothesis predicts that the lowest stable level of energy input sets the upper limit to a species’ brain size. This
prediction receives comparative support from the effects of experienced seasonality (including hibernation) and diet quality on mam-
malianbrain size.Here,we test another prediction,whichconcerns the temporal stability of energy inputs.Allomaternal care inmammals
can be provided by breedingmales or other helpers (usually earlier offspring).Male care should be stable and reliable since otherwise no
breedingwouldoccur.Carebyothers, in contrast, should fluctuate, as the availabilityof helpers oftenvaries.Onewould therefore predict,
other things being equal, that the presence ofmale care in addition tomaternal care should show positive correlated evolutionwith brain
size,whereas carebyotherswouldnot.However, because females can readily respond through litter size adjustments tovariable amounts
of energy inputs, helper inputsmay be used to increase fertility. A detailed comparative analysis of a large sample ofmammals (N= 478
species) showed thatmalehelp is correlatedwith theevolutionof larger brains,whereas alloparental help is correlatedwithhigher fertility,
but only in species where male care is also present (as in cooperative breeders). Humans evolved an unusual form of multi-family
cooperative breeding, which involves stable and reliable care by both fathers and alloparents. This combination helps to explain why
humans differ from the other apes in having both an extremely large brain and a relatively high reproductive output.

Significance statement
Allomaternal care provides breeding females with energy, directly or indirectly, and so would be expected to affect fertility and/or brain
size.Which path evolution actually took remains controversial, partly because previous studies did not separate between care provided
by the breeding male (paternal care) and care by non-breeding helpers (alloparental care). We distinguish between them because we
expect that selection only favours increased brain size if the increase in energy available to the female is predictable and constant. Using
a sample of 478 mammals, we show that paternal care, which is both reliable and stable, shows correlated evolution with brain size,
whereas alloparental care, which fluctuates with varying availability of helpers, is correlated with higher fertility. Thus, constraints on

brain size, imposed by its high-energy costs, may predict brain
size better than the fitness benefits of improved cognitive abilities
per se.

Keywords Allomaternal care . Paternal care . Cooperative
breeding . Brain size . Fertility . Reproduction

Introduction

Brain size for a given body size varies appreciably among
mammalian species (e.g. Striedter 2005) and relates to intel-
lectual or cognitive performance (Deaner et al. 2007; Reader
et al. 2011). These enhanced cognitive abilities engender gen-
eral behavioural flexibility (Fernandes et al. 2014; Borrego
and Gaines 2016; Burkart et al. 2016), and therefore provide
numerous benefits in both the social (e.g. Byrne and Whiten
1988; Barrett and Henzi 2005; Emery et al. 2007; Dunbar and
Shultz 2017) and ecological domain (e.g. Parker and Gibson
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1977; Sol 2009; van Woerden et al. 2012; Benson-Amram
et al. 2016; Heldstab et al. 2016b; Navarrete et al. 2016;
DeCasien et al. 2017; Powell et al. 2017). However, the ben-
efit of enhanced cognitive abilities is counterbalanced by the
energetic demands of larger and hence metabolically more
expensive brains. Brain tissue is among the most metabolical-
ly expensive tissues in the body to maintain and grow
(Holliday 1986; Rolfe and Brown 1997; Niven and Laughlin
2008; Bauernfeind et al. 2014; Kuzawa et al. 2014) and ben-
efits from a supply of energy at all times (Mink et al. 1981;
Lukas and Campbell 2000). Thus, one would predict that spe-
cies can only evolve relatively larger brains than their ances-
tors if they can constantly sustain the high energetic costs of
brain development and maintenance, and if these costs do not
outweigh the fitness benefits of superior cognitive abilities.

The expensive brain hypothesis (Isler and van Schaik
2009a) postulates that the increased costs of an evolutionary
brain enlargement can be paid for by two complementary
mechanisms, for which comparative studies of mammals,
birds, amphibians and fish have provided extensive support
(Clutton-Brock and Harvey 1980; Fish and Lockwood 2003;
Isler and van Schaik 2006b, 2009a, 2009b; van Woerden et al.
2010, 2012, 2014; Barton and Capellini 2011; Navarrete et al.
2011; Kotrschal et al. 2013; Weisbecker et al. 2015; Heldstab
et al. 2016a, 2018b; Luo et al. 2017; Genoud et al. 2018; Yu
et al. 2018). The first, trade-off pathway is a redirection of
energy allocated to other body functions such as locomotion
(Isler and van Schaik 2006b; Navarrete et al. 2011; Heldstab
et al. 2016a), rate of development (Isler and van Schaik 2009a;
Barton and Capellini 2011; Yu et al. 2018) and fertility (Isler
and van Schaik 2009a, 2009b; Kotrschal et al. 2013). The
second pathway of providing the increased energy needs of
larger brains consists of a stable net increase in energy input.
This has been supported in mammals in general (particularly
so in Eutheria, but not in Metatheria) where the basal meta-
bolic rate (BMR), a proxy of the net energy input, is positively
correlated with brain size (Isler and van Schaik 2006a;
Genoud et al. 2018). The increased energy input could be
achieved by improved diet quality (Clutton-Brock and
Harvey 1980; Fish and Lockwood 2003), or by avoiding pe-
riods of starvation in both mammals (vanWoerden et al. 2010,
2012, 2014; Weisbecker et al. 2015) and frogs (Luo et al.
2017). Hibernators, whose intake varies most dramatically
(e.g. Lovegrove et al. 2014), are also found to have smaller
brains (Veitschegger 2017; Heldstab et al. 2018b).

The broad support for the expensive brain hypothesis sug-
gests that organisms have a brain as large as they can sustain
energetically. The expensive brain hypothesis should therefore
also predict effects of energy inputs during brain growth due
to allomaternal care by the breeding male (paternal care) or
non-breeding helpers (alloparental care). Brains benefit from
high and stable energetic input especially during the growth
and differentiation phase (Holliday 1986; Bauernfeind et al.

2014; Kuzawa et al. 2014) because developing brains cannot
be starved temporarily without permanent cognitive damage
(Lukas and Campbell 2000). This energetic constraint on
brain development is expected to be relieved by energy sub-
sidies to breeding females and immatures, allowing the evo-
lution of bigger brains in species with allomaternal care, in-
cluding humans (Burkart et al. 2009; Hrdy 2009; van Schaik
and Burkart 2011; Isler and van Schaik 2012). However, em-
pirical evidence for this prediction is mixed. A large compar-
ative study across more than 400 mammals found support for
this hypothesis. Isler and van Schaik (2012) found a positive
correlation between brain size and the amount of allomaternal
care. Likewise, cooperatively breeding mammals and most
altricial birds do not show the steep decline in rmax (maximum
rate of population increase) with brain size found among in-
dependent breeders, suggesting that allomaternal care enables
species to increase their brain size without compromising their
demographic viability (Isler and van Schaik 2009b). In con-
trast, two other studies, one in the parvorder Corvida (Iwaniuk
and Arnold 2004) and one in cichlid fishes (Reddon et al.
2016) found no relationship between brain size and coopera-
tive breeding.

Some of the ambiguity in results of previous studies may
have arisen because most studies did not or only partially
separate care according to the identity of the carer, although
benefits and costs, and therefore the reliability of allomaternal
care may differ between the male breeder and alloparents. For
instance, Isler and van Schaik (2009b, 2012) did not distin-
guish between the contribution by fathers or non-parents to
offspring care and hence the positive correlation between
brain size and allomaternal care could be driven by paternal
care, by alloparental care or both. Similarly, in the cichlid fish
study, Reddon et al. (2016) compared cooperatively and inde-
pendently breeding species but the independently breeding
species comprised species with biparental and uniparental care
(usually maternal care). And finally, Iwaniuk and Arnold
(2004) solely tested for a difference in brain size between
independently and cooperatively breeding species but did
not test for a difference in encephalisation between species
with uniparental and species with biparental care. We there-
fore reassess the relationship between brain size and
allomaternal care by separating the effect of allomaternal care
provided by males (paternal care) from that provided by other
group members (alloparental care).

The goal of this paper is to re-evaluate the effects of energy
inputs on brain size in light of the expensive brain hypothesis.
As mentioned above, organisms cannot opportunistically re-
spond with brain enlargement to highly fluctuating increases
in energy supply. Thus, selection should only favour increased
brain size if the increase in energy available to the female is
predictable and constant. We therefore predict the following
pattern. In species with male care (in addition to the care of the
breeding female) or cooperative breeding (in which the
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breeding male also always participates in caring), the care
provided by the breeding male is reliably present, being a
stable trait of such species. Indeed, even if the male reduces
his contribution in response to the activity of helpers (Price
1992; Rothe et al. 1993; Santos et al. 1997; Bales et al. 2000),
there is nonetheless a stable amount of extra energy available
to the breeding female. Thus, the expensive brain hypothesis
predicts that natural selection will favour females responding
to the reliable presence of male care by producing larger-
brained offspring.

In contrast, the care provided by helpers is much more
variable depending on various factors such as the age of the
parents, group composition (number of helpers available) and
variation in environmental conditions. Thus, new breeding
pairs usually have no helpers or only young inexperienced
helpers who tend to provide less help than experienced older
caregivers (Tardif et al. 1992; Heinsohn and Cockburn 1994;
Woxvold et al. 2006; Rymer and Pillay 2014). Moreover,
whereas the help provided by the breeding male is unaffected
by his body condition or food abundance, other non-breeding
group members generally adjust their helping efforts in rela-
tion to their body condition and according to food availability
(Harrington et al. 1983; Creel and Creel 2002; Nichols et al.
2012;Marshall et al. 2016). Finally, subordinates can also start
to breed themselves, in which case their help to the dominant
female could end abruptly or be minimal to begin with
(Clutton-Brock et al. 2002; Young et al. 2005; Brouwer
et al. 2011; Zöttl et al. 2013). In sum, energy inputs due to
alloparental help should be less reliable and therefore less
likely to allow for a selective change in the energy allocation
to the growing brain during development. Instead, we suggest
that these more fluctuating energy inputs are allocated to re-
production. It is well known that females respond to increased
food availability with increased fertility (Tyler 1987; Wauters
and Lens 1995; van Noordwijk and van Schaik 1999; Heesen
et al. 2013; Arlet et al. 2015). The positive effect of the amount
of alloparental care on fertility is well established in birds
(Russell and Rowley 1988; Mumme 1992; Komdeur 1994;
Klauke et al. 2013; Dixit et al. 2017) and mammals

(Moehlman 1979; Fairbanks 1990; Solomon 1991; Koenig
1995; Garber and Leigh 1997; Mitani and Watts 1997; Ross
and MacLarnon 2000; Russell et al. 2003).

In this paper, we therefore test this modified prediction of
the expensive brain hypothesis (Fig. 1): if the level of steady
energy inputs relates to a species’ brain size, the presence and
amount of paternal care by the breeding male (in addition to
maternal care), being reliable and steady, should be correlated
with increased brain size, whereas the presence and amount of
allomaternal care by non-breeding helpers (alloparental care)
should not be and rather be correlated with increased fertility.
We test these predictions in a large sample of 478 mammalian
species using a new approach that clearly distinguishes care
provided by the breeding male (paternal care) from care by
non-breeding helpers (alloparental care).

Material and methods

Brain size, body mass and fertility

Data on brain size and body mass were mainly retrieved from
Isler and van Schaik (2012) and supplemented with data from
published compilations (Isler et al. 2008; Isler and van Schaik
2009b; Heldstab et al. 2016a; Matějů et al. 2016). Where
available, we used female values to reduce error due to sexual
dimorphism. Annual fertility of an average female was de-
fined as the product of the number of offspring per litter times
the number of litters per year as in Isler and van Schaik
(2009a). Data on the number of offspring per litter and litters
per year were taken from Myers et al. (2006); Jones et al.
(2009); Rowe and Myers (2011); Santos et al. (2015); and
West and Capellini (2016), building on the large datasets com-
piled by Isler and van Schaik (2009a, 2012).

Allomaternal care behaviours

To quantify the continuous amount of allomaternal care, we
complemented the database of Isler and van Schaik (2012)
and Heldstab et al. (2017) which includes the frequency of
occurrence of the following care behaviours: provisioning
(separating provisioning aimed at offspring from provisioning
aimed at the mother), carrying, protection, and a variable that
comprises other energetically influential care behaviours such
as huddling, communal nesting and pup retrieval. As scores
for provisioning the mother were restricted to the order
Carnivora in the dataset of Isler and van Schaik (2012), we
added additional data on this behaviour from West and
Capellini (2016) for other orders. Communal nursing
(allonursing) was excluded in this study because lactating
mothers have not been shown to derive any energetic benefits
from it (Baldovino and Di Bitetti 2008; MacLeod et al. 2015;
Heldstab et al. 2017). To distinguish the effects of

allomaternal
energy inputs

stable
(male)

fluctuating
(helpers)

fertility

brain

paternal care

alloparental care

Fig. 1 Predicted pattern of correlated evolution between different sources
of allomaternal care and brain size or fertility. We expect paternal care,
which is predictable in amount and time, to be associated with large
relative brain size, but alloparental care, which is less predictable, to be
related to higher fertility rates

Behav Ecol Sociobiol (2019) 73: 71 Page 3 of 13 71



allomaternal care provided by males (paternal care) from that
provided by other group members (alloparental care), we
summed up the frequency of occurrence of all allomaternal
care behaviours separately for the father and other group
members, as in Heldstab et al. (2017).

To investigate whether the results reported in this study are
robust with respect to different coding schemes of
allomaternal care, we additionally conducted all analyses by
using a binary classification of paternal and alloparental care
with 1 indicating the presence and 0 the absence of the trait.
We scored the presence of paternal care or alloparental care if
the frequency of occurrence of care was higher than 5%. We
additionally only scored the presence of paternal care if it
comprised more than just defence of territory or protection
against predators or infanticide. Such paternal care is probably
not energetically significant, and such species are not gener-
ally categorised as having male care in studies employing a
binary coding scheme (e.g. Woodroffe and Vincent 1994;
Lukas and Clutton-Brock 2013; West and Capellini 2016).

In total, data on allomaternal care behaviours and brain size
and/or fertility were available for 478 mammals across all
major orders. Bats and cetaceans were excluded from our
study because reliable data on allomaternal care of both ceta-
ceans and bats are notoriously difficult to obtain. The full
dataset is available in the Supplementary Material (ESM 1).
Figure 2 shows the distribution of the various care categories
in the dataset.

Covariates

Living in social groups (gregariousness), diet quality,
diurnality and substrate use have been shown to correlate with
brain size in mammals (e.g. Harvey et al. 1980; Gittleman
1986; Bernard and Nurton 1993; Pérez-Barbería and Gordon
2005; Kirk 2006; Dunbar and Shultz 2007; DeCasien et al.
2017; Powell et al. 2017). Although it is less clear how these
variables should be related to allomaternal care or fertility, our
large sample size allowed us to include these potentially con-
founding variables into our analyses. Data for these covariates
were collated from the literature (data were from Russell
1974; Gittleman 1989; Myers et al. 2006; Jones et al. 2009;
van Woerden et al. 2010; Rowe and Myers 2011; Kuznetsova

et al. 2013; Lukas and Clutton-Brock 2013; Wilman et al.
2014; Heldstab et al. 2016a; DeCasien et al. 2017).
Gregariousness was classified as follows: solitary (or mother
with infants) (0); usually solitary, but occasionally seen in
pairs or groups, or facultative group denning (0.5); pairs (with
infants) (1); usually in pairs, but gregarious at times or in part
of the geographic range (1.5) and permanently gregarious (the
group comprises more adults than just the parents) (2). To
control for diet quality, species were divided into five catego-
ries based on their main diet: aquatic faunivore or piscivore
(1), frugivore/folivore or granivore (2), frugivore/faunivore or
omnivore (3), herbivore or folivore (4) and carnivore,
faunivore or insectivore (5). A binary coding was used for
activity period, with (1) for nocturnal, cathemeral or crepus-
cular species and (2) for diurnal species. For substrate use,
each species was assigned to one of four substrate use catego-
ries: aquatic or semi-aquatic (1), fossorial or semi-fossorial
(2), terrestrial or semi-arboreal (3) and arboreal (4).

Statistical analyses

All statistical analyses were done in JMP™ 13.0 (SAS
Institute Inc. 1989–2016) and in R3.4.1 (R Core Team
2017). Fertility, brain size and body mass values were loge
transformed before analysis to reduce the skew of their distri-
bution. Because the phylogenetic signal lambda (λ) was al-
ways close to 1, the use of methods to control for phylogenetic
non-independence was required (Pagel 1999). We therefore
built phylogenetic generalised least-squares regressions
(PGLS) models (Freckleton et al. 2002) using the ‘caper’
package (Orme 2013) in R. The phylogeny was based on an
updated version (Fritz et al. 2009) of the mammalian supertree
(Bininda-Emonds et al. 2007) and is given in Fig. S1
(Supplementary Material ESM 2). We used PGLS models
with either brain size or fertility as dependent variables, and
paternal or alloparental care, female body mass and all possi-
ble confounding variables (gregariousness, diet quality,
diurnality and substrate use) as independent variables.

We also tested for an additive effect of care by including
paternal care, alloparental care and combined care (paternal and
alloparental care) as independent variables into the same model.
In most species that exhibit alloparental care, paternal care is also

78.3%

+ allomaternal carematernal care only

paternal care

+

alloparental

care

alloparental

care only

paternal

care only

3.5%6.3% 11.9%

Fig. 2 Distribution of the various
care categories in the dataset
(N = 478 species)
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observed (see Fig. 2), potentially resulting in collinearity prob-
lems in this particular statistical analysis. To assess potential
multicollinearity between paternal, alloparental and combined
care in the additive model, we generated variance inflation fac-
tors (VIF) (Quinn andKeough 2002; Dormann et al. 2013) using
non-phylogenetic generalised linear models and the function
‘vif’ (‘car’ package: (Fox andWeisberg 2011)) in R. VIFs quan-
tify how much the variance of an estimated model parameter is
increased because of multicollinearity between predictors. The
VIF for alloparental care and combined care was higher than 4,
which indicates a problematic amount of covariance among pre-
dictors (Rogerson 2001; Hair et al. 2006). To solve this, we
categorised species into having either paternal care only (no
alloparental care), alloparental care only (no paternal care) or
combined care (paternal and alloparental care). After this, the
VIFs of all independent variables were less than 2, which indi-
cates an acceptable amount of covariance among predictors
(Supplementary Material ESM 3, Table S1). To choose the best
fitting from a set of models, we used AIC values (Akaike
Information Criterion Akaike 1974).

We additionally also performed multi-model averaging as in
Heldstab et al. (2017, 2018a) with brain size or fertility as depen-
dent variables, and paternal care only, alloparental care only,
combined care, female body mass and all possible confounding
variables (gregariousness, diet quality, diurnality and substrate
use) as independent variables to test whether our results are ro-
bust with respect to different statistical approaches.

We performed information-theoreticmodel selection based on
AICc across all possible models built with the independent var-
iables mentioned above. As the AICc did not clearly distinguish
the most highly ranked models, we accounted for uncertainty by
using multi-model averaging (Grueber et al. 2011) in the candi-
date model set, which included all models with ΔAICc < 3.
ΔAICc is the difference in AICc between the focal model and
the AICc of the best-fitting model in the candidate model set.
Estimates of each parameter were averaged across the candidate
models, with means weighted by the Akaike weight of a given
model. The relative importance of a predictor was obtained by

summing the Akaike’s weights of the models in the candidate
model set including the focal predictor (Symonds and Moussalli
2011). The method to perform model averaging with the PGLS
function in the ‘caper’ package (Orme 2013) is described by
Garamszegi and Mundry (2014) and the corresponding material
is available at http://www.mpcm-evolution.org.

A phylogenetically informed comparative approach to analyse
the combined mammalian dataset as described above was pre-
ferred over analysing different clades or orders separately. First,
the larger sample size of a combined dataset allows to test models
with several covariates. Second, in a phylogenetic analysis with
lambda close to 1, grade shifts between clades are represented in
the values of one node, and thus are neither neglected nor exert
overdue influence. Third, care behaviours are evolutionary rela-
tively stable within clades, while ecological influences on brain
size evolution likely show more variation in the tip nodes of the
phylogenetic tree. We therefore expect that patterns are much
weaker within clades or may even be obscured completely.

Results

The results confirmed our two main predictions. In a compre-
hensive sample of more than 400 mammals, paternal care, the
more reliable sort of allomaternal care, shows positive correlated
evolution with relative brain size (Table 1, Fig. 3a). Alloparental
care had an additive effect on brain size, but only if it was
associated with reliable paternal care (combined care)
(Table 1). Furthermore, paternal care always had a stronger ef-
fect on brain size than alloparental or combined care (Table 1).
In contrast, alloparental care, which is more variable in amount
and time, showed a significant or nearly significant positive
relationship with fertility (Table 2, Fig. 3b). This positive corre-
lation between fertility and alloparental care is mainly driven by
the positive effect of alloparental care on fertility in species with
combined care (paternal and alloparental care); indeed, species
with alloparental care only did not show increased fertility
(Table 2). Increases in brain size or fertility rate seem to be

Table 1 Allomaternal care and brain size: continuous classification of
allomaternal care. Phylogenetic generalised least squares models with log
(brain size) as the dependent variable and paternal care, alloparental care,

combined care and log (body mass) as independent variables (N = 476).
The best-fitting model is highlighted in italics

Model Lambda Adj. r2 Predictor variables Estimate Std. error p value AIC

Paternal care 0.979 0.906 Paternal care 0.046 0.022 0.034 − 133.922
Log (mean body mass) 0.608 0.009 < 0.001

Alloparental care 0.978 0.906 Alloparental care 0.055 0.030 0.061 − 129.740
Log (mean body mass) 0.606 0.009 < 0.001

Additive care 0.980 0.907 Combined care 0.029 0.011 0.007 − 133.566
Paternal care only 0.052 0.022 0.018

Alloparental care only 0.031 0.064 0.630

Log (mean body mass) 0.607 0.009 < 0.001

The p values of all models were < 0.001
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largely independent selective responses as paternal care was
correlated with brain size but not fertility, and alloparental care
only had an additive effect on brain size when paternal care was
already present (Tables 1 and 2). Our results are robust with
respect to different coding schemes of allomaternal care (binary
or continuous) (SupplementaryMaterial ESM 3, Tables S2, S3).
We also found no difference in the results when we controlled
for various possible confounding variables (gregariousness, diet,
diurnality and substrate use) (Supplementary Material ESM 3,
Tables S4-S7), suggesting that these findings are not spurious
by-products of other correlations. Our results are also strikingly
similar for different statistical approaches (simple model selec-
tion vs multi-model averaging) (Supplementary Material
ESM 3, Tables S8-S15).

Discussion

Reproduction is energetically very expensive, especially in taxa
with fast life histories (e.g. Zenuto et al. 2002; McNab 2006;
Speakman 2008). The expensive brain hypothesis therefore
postulates that one major pathway toward the evolution of

relatively larger brains is reduced allocation to reproduction
(Isler and van Schaik 2009a). One way for females to achieve
such a reduction in reproductive costs is by distributing these
costs over other individuals such as the breeding male or non-
breeding group members. However, studies investigating the
relationship between brain size and allomaternal care have so
far produced inconclusive results. We suspected that this hap-
pened because they did not separate between care provided by
the breeding male (paternal care) and care by non-breeding
helpers (alloparental care). By separating these two care types,
we found that allomaternal help by the breeding male was
correlated with the presence of larger brains, but not with fer-
tility. Allomaternal help by others was correlated with the pres-
ence of higher fertility and only correlated with larger brains in
species with combined care (where breeding males also help).
Allomaternal help by others in the absence of male care had no
influence on either fertility or brain size.

Allomaternal care and brain size

In accordance with the expensive brain hypothesis, we found
that an additional influx of energy in the form of predictable
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Fig. 3 Relative brain size is positively correlated with the amount of
paternal care (a). Fertility (corrected for body mass) shows a positive
relationship with alloparental care (b). Details of phylogenetic models
are shown in Tables 1 and 2. Species values are listed in the

Supplementary Material (ESM 1). For a graphical representation of the
same correlations but with suborder mean values, see Fig. S2
(Supplementary Material ESM 4)

Table 2 Allomaternal care and fertility: continuous classification of
allomaternal care. Phylogenetic generalised least squares models with
log (fertility) as the dependent variable and paternal care, alloparental

care, combined care and log (body mass) as independent variables (N =
443). The best-fitting model is highlighted in italics

Model Lambda Adj. r2 Predictor variables Estimate Std. error p value AIC

Paternal care 0.943 0.163 Paternal care − 0.001 0.049 0.994 572.636
Log (mean body mass) − 0.184 0.020 < 0.001

Alloparental care 0.940 0.184 Alloparental care 0.134 0.043 0.002 563.102
Log (mean body mass) − 0.185 0.019 < 0.001

Additive care 0.942 0.177 Combined care 0.048 0.025 0.052 567.929
Paternal care only − 0.039 0.059 0.512

Alloparental care only 0.194 0.152 0.202

Log (mean body mass) − 0.186 0.020 < 0.001

The p values of all models were < 0.001
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paternal care toward the mother and the offspring is associated
with an evolutionary increase in brain size, whereas care pro-
vided by non-breeding group members, which is more vari-
able in amount and time, only had an influence on brain size if
reliable paternal care was also present. Indeed, abundant stud-
ies show that the identity of the caretaker, be it the breeding
male or other helpers, influences the predictability of care
received by the breeding female and her offspring. For in-
stance, in banded mongoose (Mungos mungo) (Nichols et al.
2012; Marshall et al. 2016), adult males (potential fathers)
maintained or even increased their investment in care as food
supply decreased, whereas non-breeding group members
helped less when food was scarce. Similarly, in wolves
(Canis lupus) and African wild dogs (Lycaon pictus), prey
availability affected the ability or willingness of non-
breeding pack members to care for the pups whereas the help
of the breeding male remained mostly constant (Malcolm and
Marten 1982; Harrington et al. 1983). In regions where prey
was scarce, wolf pairs produced more surviving pups than did
larger packs with additional potential helpers (Harrington
et al. 1983), showing that additional potential helpers can even
hinder pup survival. Indeed, in wolves and wild dogs, helpers
are sometimes fed at the den by other individuals or raid
caches near the den, thus intercepting food potentially avail-
able for the pups (Haber 1977; Malcolm and Marten 1982;
Murie 2011). Furthermore, young helpers in wild dogs, such
as yearlings, failed to regurgitate during periods of food scar-
city and thus stopped helping (Malcolm and Marten 1982;
Creel and Creel 2002). Together, these studies suggest that
the amount of alloparental help and the probability of its ex-
pression depend on prevailing environmental conditions
influencing food availability (see also Macdonald and
Moehlman 1982).

Besides ecological conditions, the ability of subordinate
helpers to reproduce independently is also expected to influ-
ence an individual’s investment in alloparental care. In coop-
eratively breeding meerkats (Suricata suricatta) (Clutton-
Brock et al. 2002), cichlid fish (Neolamprologus pulcher)
(Zöttl et al. 2013) and paper wasps (Polistes dominulus)
(Tibbetts 2007), dominant individuals stay around and help
to raise offspring, whereas subordinates reduce investment in
helping behaviours such as babysitting, pup feeding, digging,
cooperative foraging or predator defence shortly before dis-
persing. This resembles patterns found in some other social
vertebrates such as prairie voles (Microtus ochrogaster)
(Lonstein and De Vries 2000, 2001), Californian mice
(Peromyscus californicus) (Gubernick and Laskin 1994) and
Damaraland mole-rats (Fukomys damarensis) (Zöttl et al.
2018), which reduce the amount of alloparental care with in-
creasing chances of independent reproduction. Thus,
alloparental help is unpredictable and variable in amount and
timing as helpers in various species adjust their caring effort
depending on both food availability and future reproduction.

Our result that the presence and frequency of paternal care (in
addition to maternal care) were muchmore strongly correlated
with brain size than alloparental care (in addition to maternal
care) supports the idea that selection favours larger brains
whenever females experience a predictable and constant in-
crease in energy.

An additional reason why alloparental care was less impor-
tant for brain size in our study might also be that the quality of
paternal and alloparental care differs. In a huge variety of
mammal and bird species, breeding males contribute more to
offspring care than alloparents. Examples include African
wild dogs (Lycaon pictus) (Malcolm and Marten 1982), band-
ed mongooses (Mungos mungo) (Gilchrist and Russell 2007),
striped mice (Rhabdomys pumilio) (Schubert et al. 2009),
golden lion tamarins (Leontopithecus rosalia) (Siani 2009),
chestnut-crowned babblers (Pomatostomus ruficeps)
(Browning et al. 2006), long-tailed tits (Aegithalos caudatus)
(MacColl and Hatchwell 2003), white-fronted bee-eaters
(Merops bullockoides) (Emlen and Wrege 1991), apostlebirds
(Struthidea cinerea) (Woxvold et al. 2006) and laughing
kookaburras (Dacelo novaeguineae) (Legge 2000) (but see
as counterexamples Bennett and Faulkes 2000; Clutton-
Brock et al. 2004). This is likely the case because alloparents,
in contrast to breeding males, are often young and
unexperienced (Lancaster 1971; Hrdy 1976; Roberts et al.
1998) and did not improve infant survival (Harrington et al.
1983; Jaquish et al. 1997). In agreement with our study, all
these results suggest that paternal care is more important for
females than the help of others. Finally, a recent comparative
study (Heldstab et al. 2017) showed that reproducing females
in species with any sort of allomaternal care can afford to
reduce reliance on fat reserves, but also that care provided
by the breeding male was more important than the help of
other non-breeding group members.

The results of our study are also consistent with those of
earlier comparative studies. Studies in birds and non-primate
taxa found that brain size is associated with an increase in
paternal care (West 2014) or biparental care and pair-
bonding (Shultz and Dunbar 2007, 2010). The authors of
these studies argue that pair-bonding species are more
encephalised due to the higher degree of coordination and
cooperation that is necessary to maintain stable pair-bonded
relationships. Here, we provide an additional or alternative
explanation for larger brains in monogamous species: predict-
ably available paternal care, which is particularly common
among species with socially monogamous mating systems
(Lukas and Clutton-Brock 2013), allows for a constant extra
energy input during brain growth, making the evolution of
larger brains possible.

As discussed by Isler and van Schaik (2012), our explana-
tion does not require a special explanation for primates, as the
extra energy may be used to increase fertility instead of en-
larging brain size (see below). Obviously, it is possible to
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coordinate close pair bonds and cooperative care even with
relatively small brains. Finally, our results also explain why
the study of corvids (Iwaniuk and Arnold 2004) and cichlid
fishes (Reddon et al. 2016) failed to find any effect on brain
size: they compared species with male care with those with
male care and care by helpers.

In conclusion, our results are consistent with the expensive
brain hypothesis, and therefore strongly suggest that brains
tend to be as large as the species can afford it energetically.
Thus, constraints on brain size, imposed by its energetic costs,
may predict brain size better than the fitness benefits of im-
proved cognitive abilities per se.

Allomaternal care and fertility

If allomaternal care is variable and unsteady in amount and
timing and therefore does not allow a constant high energy
supply for brain growth, we expect that selection will favour
mothers who invest the consequent load reduction into the
production of a higher number of offspring, rather than in
larger-brained offspring. As expected, we found that
alloparental care resulted in higher fertility rates, but only in
species with combined care. Previous studies in mammals
support this finding, showing that females of cooperative
breeders commonly have larger litters and shorter interbirth
intervals than non-cooperative social species (Garber and
Leigh 1997; Mitani and Watts 1997; Moehlman and Hofer
1997; Ross and MacLarnon 2000; Lukas and Clutton-Brock
2012; West and Capellini 2016).

We found that species with alloparental care where breed-
ing males do not help (alloparental care only) show no in-
crease in fertility. One explanation for this finding is that in
these species, alloparental care is less systematic than in spe-
cies with combined care, such as cooperative breeders. For
instance, the frequencies of occurrence of alloparental care
behaviours in species where males provide no care are rela-
tively low. For instance, we see only 1% alloparental carrying
in black-and-white ruffed lemurs (Varecia variegata), 8.4% in
Venezuelan red howlers (Alouatta seniculus), 10.3% in patas
monkeys (Erythrocebus patas), 5% alloparental provisioning
in red slender lorises (Loris tardigradus), spectral tarsiers
(Tarsius tarsier) or 10% babysitting in ring-tailed lemurs
(Lemur catta). Furthermore, some attempts to provide
alloparental help have been shown to be detrimental to
mothers and infants (Hrdy 1976; Silk 1980; Malcolm and
Marten 1982; Sommer 1989; Maestripieri 1994). In our
dataset, this was also found in various species with
alloparental care only, namely guerezas (Colobus guereza)
(Wooldridge 1969), Lowe’s monkeys (Cercopithecus lowei)
(Bourlière 1970), vervet monkeys (Chlorocebus aethiops)
(Gartlan 1969) and patas monkeys (Erythrocebus patas)
(Zucker and Kaplan 1981).

In our study, paternal care (in addition to maternal care)
showed no correlation with fertility. There is some controver-
sy in the literature as to whether paternal care is related to
increased fertility in mammals. The comparative studies that
find higher fertility (larger litters: (Lukas and Clutton-Brock
2013) or reduced birth intervals (West and Capellini 2016))
did not distinguish between male care only and male care plus
alloparental care (cooperative breeding), making it impossible
to disentangle their separate effects. Stockley and Hobson
(2016) made this distinction, and separately analysed species
with paternal care only (without cooperative breeding).
However, they used a very conservative definition of cooper-
ative breeding which led, among many others, to the classifi-
cation of some callitrichids, e.g. Saguinus labiatus and
Cebuella pygmaea, as non-cooperative breeders. In this sam-
ple, and only for provisioning but not for other helping behav-
iours, they found higher fertility in species with paternal care
only. In conclusion, in our study, we found that fertility was
increased in species with alloparental care but mainly due to
species with combined care showing higher fertility rates.
However, future studies should examine in more detail wheth-
er the positive effect of paternal care on fertility found in
previous studies is solely driven by species with combined
care.

Allomaternal care and human evolution

Humans have the largest relative brain size across the whole
animal kingdom (Jerison 1973; Striedter 2005). The costs of
sustaining such a large brain are extremely high as humans
spend about 20–25% of their resting metabolism on the brain
(neonates even up to 60%) (Mink et al. 1981). Among hunter-
gatherers, we also see intensive paternal care, mainly in the
form of provisioning (male contribution to subsistence)
(Hewlett 1993; Marlowe 1999, 2000; Quinlan 2007; Dyble
et al. 2016).

Humans also stand out among apes by having a relatively
high reproductive output. The main underlying difference is
our system of cooperative care for infants and mothers (Hrdy
2005; Burkart et al. 2009; Burkart and van Schaik 2010).
Allomaternal care among human foragers is provided by both
reproductive men and non-reproductive group members of
both sexes and of kin and non-kin, comprising help in the
form of food provisioning, carrying, protecting and babysit-
ting the infants (Hawkes et al. 1998; Hill and Hurtado 2009;
Hrdy 2009; Dyble et al. 2016; Jaeggi et al. 2016). Humans
therefore resemble other mammalian species with combined
care (where the male and other non-breeding group members
help) in this respect by having higher reproductive rates com-
pared to other species, including other apes, with bi-parental
care or maternal care only. However, in contrast to other mam-
mals, where the amount of alloparental care is highly variable
depending on various factors such as the age of the parents,
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group composition and variation in environmental conditions,
alloparental care provided by humans is very stable and reli-
able, at least among foragers. Universal notions of fairness,
equity and social punishment, e.g. through excluding uncoop-
erative individuals from future help, sustain cooperation
among foragers, including alloparental care (e.g. Hill et al.
1993; Gurven 2004). As a result, mothers are even provided
with more food than they actually need to cover the maximum
additional costs of gestation or lactation (Kaplan et al. 2000;
Butte and King 2005; Sellen 2007). We therefore suggest that
the unusual stability of energy input due to alloparental care
allowed humans not only to increase their reproductive output
but also to evolve even larger brains than other mammalian
species with combined care resulting in the rapid and unpar-
alleled brain expansion during hominin evolution (cf. Burkart
et al. 2009; Burkart and van Schaik 2010; van Schaik and
Burkart 2010).
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