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Abstract

Collective personalities refer to temporally consistent behavioral differences between distinct social groups. This phe-
nomenon is a ubiquitous and key feature of social groups in nature, as virtually every study conducted to date has
documented repeatable between-group differences in collective behavior, and has revealed ongoing selection on these
traits in both the laboratory and field environments. Five years ago, foundational reviews by Bengston and Jandt pioneered
this topic and delimited the present knowledge on collective personality. Here, we update these reviews by summarizing
the recent works conducted in the field’s most prominent model systems: social spiders and eusocial insects. After
presenting how these recent works helped scientists to better understand the determinants of collective personality, we
used a trait-by-trait format to compare and contrast the results and thematic trends obtained in these taxa on 10 major
aspects of collective personality: division of labor, foraging, exploration, boldness, defensive behavior, aggressiveness,
decision-making, cognition, learning, and nest construction. We then discuss why similarities and dissimilarities in these
results open the door to applying numerous theories developed in evolutionary behavioral ecology for individual traits
(e.g., life history theory, game theory, optimal foraging theory) at the colony level, and close by providing examples of
unexamined questions in this field that are ripe for new inquiries. We conclude that collective personality, as a framework,
has the potential to improve our general understanding of how selection acts on intraspecific variation in collective
phenotypes that are of key importance across arthropod societies and beyond.
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Introduction

If you have ever had the misfortune of being swarmed by bees
or wasps, or have witnessed ants or termites angrily emerge
from underground tunnels in response to your disturbance,
then you have observed a type of collective behavior. If you
repeatedly antagonize many colonies, you might notice that
colonies often differ consistently in how they respond to your
meddling. That is, different colonies exhibit distinct
“personalities.” While societal traits like aggressiveness may
be the most readily observable and conspicuous, there are
many other ways that colonies can differ behaviorally that is
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relevant to their functioning and survival. Individual societies
may for instance differ in how broadly they explore and for-
age, how well they attend to their young, how strictly they
divide their labor among tasks, or how they build or excavate
complex 3-dimensional nest structures, and so on.

Here, we survey the most recent research on collective
personality in social arthropods and provide a roadmap of
promising paths this field could take. A few years ago, Jandt
etal. (2013) and Bengston and Jandt (2014) produced exhaus-
tive reviews of the literature on this topic, which have since
inspired more than 100 descendant papers. Although model
taxa for these investigations have included some vertebrates
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(e.g., birds, fish), the majority of studies have used social
arthropods for their investigations. Here, we aim to comment
on the field’s exponential progress since the last reviews, and
compare and contrast the findings gleaned from the field’s
most prominent model systems: social spiders and eusocial
insects. After presenting how these recent works improved
our understanding of the determinants of collective personal-
ity, we use a trait-by-trait format to compare and contrast the
results and thematic trends obtained in these species on 10
major aspects of collective personality: division of labor, for-
aging, exploration, boldness, defensive behavior, aggressive-
ness, decision-making, cognition, learning, and nest construc-
tion. We end by offering a variety of new hypotheses regard-
ing how collective personality may interact with other fields of
behavior and ecology, including colony life history and per-
formance, and population and community ecology.

The determinants of collective personality
What is collective personality?

Personality is a property of a population or group, and is usually
defined as the presence of temporally consistent behavioral dif-
ferences between individuals (Sih et al. 2004, 2012). The aggre-
gate is said to have personality, while each individual comprising
the aggregate falls somewhere on a spectrum with respect to a
particular behavioral trait. Often, individuals are said to possess a
particular “behavioral type” or BT, or sometimes “personality
type” (e.g., docile vs. aggressive individuals) when the distribu-
tion is less continuous and more categorical/bimodal.
Furthermore, the term “individual” can apply both to individual
organisms as well as cohesive social groups (Jandt et al. 2013).
This is particularly relevant in eusocial species, where colonies
can be viewed as extended phenotypes of the queen, and the
queen + workers as a type of “superorganism” (Holldobler and
Wilson 2009). Yet, the concept of inter-group differences in col-
lective behavior can apply to other social groups as well. Thus,
“collective personality” refers to the presence of temporally con-
sistent behavioral differences exhibited between distinct social
groups (Jandt et al. 2013; Bengston and Jandt 2014; Jandt and
Gordon 2016).

How does collective personality arise?

While it may be sufficient in many instances to simply note that
behavioral variation exists among groups, and measure its eco-
logical effects, understanding the mechanisms giving rise to
between-group personality is necessary to make predictions
about the flexibility and heritability of group traits, and how they
might respond to selection. For instance, collective behaviors are
a product of both environmental and genetic factors, and know-
ing the relative contribution of these on collective behavior is
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central to understanding the evolution of collective personality,
as well as determining how researchers frame their findings and
design future experiments. Explanations for the origins of collec-
tive personality fall into three, non-mutually exclusive categories
of influence: genetics, physiology, and environment.

Genetics Variation in the genetic composition of a group, as well
as in gene expression within group members, can be important
determinants of collective personality. The queens of eusocial
insects can be inseminated by one or multiple males
(Strassmann 2001; Kronauer et al. 2004), and mate number
varies widely both within and among species (Cole 1983;
Strassmann 2001). The more males a queen mates with, the more
genetically diverse her workers will be, which is expected to
result in the expression of a variety of behavioral temperaments
in workers. This is supported, for instance, in honeybees, where
genetic variation explains worker learning ability (Chandra et al.
2000), foraging propensity and preference (Page and Robinson
1991; Page et al. 1998), and defensive behavior (Breed et al.
2004), as well as division of labor (Robinson 1989; Page and
Robinson 1991; Page et al. 1998). However, species whose
queens mate only once still give rise to behaviorally diverse
societies (Dornhaus et al. 2008; Jandt and Dornhaus 2009;
Jandt et al. 2009), indicating that genetic variation both within
and between queens contribute to the emergence of individual-
and colony-level personality. Interestingly, individual and collec-
tive personality variation can also arise in genetically curbed
social taxa, such as social spiders (Pruitt and Riechert 2011a;
Holbrook et al. 2014; Wright et al. 2014, 2015). There, collective
personality can arise due to differences in gene expression be-
tween colony members (Ben-Shahar et al. 2002; Ingram et al.
2005; Zayed and Robinson 2012; Rittschof 2017), which is in-
fluenced by a multitude of factors such as individual or colony
experience (Niemela et al. 2012; Rittschof 2017), nutrition (Toth
and Robinson 2005; Wheeler et al. 2006; Ament et al. 2008;
Ament et al. 2010), social environment (Huang and Robinson
1996; Beshers et al. 2001), or age (Sullivan et al. 2000; Beshers
et al. 2001; Robinson and Ben-Shahar 2002). Discrete colony-
level social polymorphisms in behavior can also be under strong
genetic control, such as in the fire ant Solenopsis invicta, where
worker tolerance of polygyny as well as nest initiation behavior
rests on a single locus polymorphism (Keller and Ross 1998;
Ross and Keller 2002; Wang et al. 2013). Although variation
in collective personality emerges even in the absence of strong
genetic determination (discussed below), genetic underpinnings
are usually required for there to be an effective response to se-
lection on collective traits. Notably, the transmission of colony-
level phenotypes down lineages has rarely been demonstrated
(Pruitt and Goodnight 2014; Pruitt et al. 2017a), even circum-
stantially (Gordon 2013).

Physiology As individuals age, many physiological changes
occur that lead to changes in their behavior and thus likely
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affect the personality of their group. In honeybees and most
eusocial insects, colonies organize work via age-related divi-
sion of labor known as temporal polyethism (Seeley 1982).
New workers tend to remain inside the colony as nurses, and
take on more complex and risky foraging duties outside the
colony as they age. Because changes in the patterns of brain
gene expression co-occur during this transition (Whitfield
et al. 2003), variation in age demographics between colonies
can contribute to the expression of distinct colony-level phe-
notypes. In some insect societies, however, such as the ant
Pheidole dentata, worker age does not determine which tasks
are performed, but rather determine how expansive an indi-
vidual’s behavioral repertoire becomes (Seid and Traniello
2006). This phenomenon is known as repertoire expansion.

Additionally, many behavioral differences in eusocial insects
arise due to individuals producing different levels of hormones.
For example, juvenile hormone (JH) has been linked with ag-
gressiveness (Pearce et al. 2001; Tibbetts and Huang 2010),
dominance behavior (Barth et al. 1975; Tibbetts and Huang
2010), behavioral development (Fahrbach and Robinson 1996;
Sullivan et al. 2000), division of labor (Schulz et al. 2002), and
reproductive behavior (Barth et al. 1975; Riddiford 2012). Other
factors that can influence physiology and, subsequently, behav-
ior, include diet, nutrition, and fat content (corpulence)
(Blanchard et al. 2000). These state-dependent behaviors of in-
dividuals can also influence group behavior, such as when group
foraging patterns are influenced by the hunger or nutritional state
of individuals (Krause et al. 1992; Krause 1993), and variation in
any of the abovementioned physiological traits can conceivably
shape the way a colony will behave.

Environment Collective behaviors are often determined by exter-
nal (i.e., environmental) factors rather than internal (i.e., genetic
and physiological) factors (Bengston and Jandt 2014), which can
be biotic or abiotic in nature. For instance, the location of a colony
can determine how much light it receives, and the internal temper-
ature, humidity, maximum size, and geometry of nest architecture.
Many of these elements have been shown to directly influence
colony-level behavior (Traniello et al. 1984; Gordon 1996;
Gordon et al. 2011, 2013; Wray and Seeley 2011; Dornhaus
et al. 2012; Pinter-Wollman et al. 2012; Modlmesier et al. 2014a;
Pinter-Wollman 2015; Segev et al. 2017). Additionally, weather
(Pinter-Wollman et al. 2012), resource abundance (Downs and
Ratnieks 2000; Bengston et al. 2014; Pruitt and Goodnight
2014), and environmental variation across their range can also
influence the collective behavior of groups (Pankiw 2003;
Bengston and Dornhaus 2014; Bengston et al. 2014; Segev et al.
2017). Biotic factors, such as social environment, the presence or
absence of predators, distance to neighboring colonies, the pres-
ence of “keystone” individuals and adults or queens, or previous
group experience can also shape functional differences in group
behavior (Suryanarayanan and Jeanne 2008; Pamminger et al.
2011; Suryanarayanan et al. 2011; Kleeberg et al. 2014,

Laskowski and Pruitt 2014; Modlmeier et al. 2014d; Pruitt and
Keiser 2014; Modlmeier et al. 2015; Wright et al. 2016a, 2017,
Norman et al. 2017; Keiser et al. 2018).

How is within-colony and between-colony variation
in collective personality maintained?

One perennial question is how functional variation in individ-
ual or collective behavior is maintained. After all, if there are
fitness costs and benefits associated with behaving a certain
way, we might expect selection to act as a homogenizing force
on within-colony behavioral variation and among-colony dif-
ferences in collective personality. However, the ubiquity of
personalities within animal societies and across groups sug-
gests this notion is false. Here, we discuss four processes that
could explain how variation in collective personality is main-
tained both within and between colonies.

Frequency-dependent selection The hawk/dove model is a
classic model in the game theory that describes how the costs
and benefits associated with one behavioral strategy can be in-
versely related to an alternate strategy in a population (Smith
1979). Thus, the costs and benefits of a behavior can be
frequency-dependent and result in fluctuations in the genetic
and behavioral makeup of a population (Nonacs and Kapheim
2007, 2008). The same can occur within social groups, where
different behavioral types enjoy a selective advantage relative to
others, until a point is reached where the pendulum of selection
begins to swing the other way. This type of selection prevents
any one individual-level behavioral type from becoming univer-
sal, and thus promotes within-group behavioral diversity. We
propose that these classic trade-off models developed in the con-
text of solitary species could play a role in maintaining between-
group variation in collective personality as well, via frequency or
density-dependent selection on colony behavior. For instance,
aggressive colonies may be favored in populations of strictly
docile colonies, but suffer unreasonable costs that drive their
performance beneath that of docile colonies when aggressive
societies become common. The costs of aggressive-aggressive
conflict at the colony level, a la the hawk-dove game, are plau-
sibly quite high and could be fairly estimated.

Social heterosis An individual’s behavior cannot be two things at
the same time; they cannot be simultaneously bold and shy, or
aggressive and docile. Unlike a single individual, a group can
harbor as many genetic and behavioral variants as there are indi-
viduals, which allows for any mutual benefits of this diversity to be
shared by all group members, and even the group as a single unit.
The benefit of within-group behavioral diversity is commonly
referred to as “social heterosis.” In the social spider Anelosimus
studiosus, for instance, different colony compositions are selected
in different habitats based on resource abundance (Pruitt and
Goodnight2014), and colonies of mixed compositions outperform
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monotypic compositions (Pruitt 2013). Just like individuals within
a colony, we propose that group performance may be contingent
on the phenotypic neighborhood in which colonies reside, and that
the classic theory on social heterosis at the individual level could be
applied to the level of the group. For example, one might propose
that colonies surrounded by neighbors of unlike behavioral ten-
dencies may compete less for prey resources, may occupy different
kinds of nests, or may subtly partition their activities temporally in
amanner that reduces conflict. We even propose that neighboring
colonies may, over time, begin to behave more dissimilarly to
enjoy such benefits—a la character displacement but at the level
of collective traits.

Behavioral reaction norms Individuals vary in their average
behavior across contexts and in their behavioral plasticity.
Previously, these two aspects of an individual—personality and
plasticity—had been treated as separate entities. However, these
two factors are now seen as tightly intermingled. A behavioral
reaction norm approach describes how an animal varies in a
certain behavior, say aggressiveness, over some environmental
gradient, such as temperature, population density, or predation
risk (Dingemanse et al. 2010). The degree of plasticity exhibited
in contrasting environments is largely due to the relative contri-
bution of either genetics or environment to an observed behavior.
Variation in individuals’ behavioral reaction norms can beget
contrasting levels of within-population variation in individual-
level personality across environments, and can be linked with
individual performance. At the colony level, it is almost certainly
true that entire societies will likewise vary in their collective
behavioral reaction norms. In groups, however, the magnitude
of behavioral reaction norms exhibited may vary based on the
relative contribution of genetics and environment to an observed
behavior or, alternatively, the amount of behavioral variation
within a colony. The ability to experimentally manipulate colony
compositions in a split colony design makes many social species
well-suited to address such questions. However, the magnitude
of these differences and their functional consequences remain
unknown.

Temporal trade-offs Behaviors that promote success in one
situation are often suboptimal in different circumstances.
When this occurs, natural selection can pull in opposite direc-
tions depending on the time of year, the situation, or life stage
of the organism, and this can help maintain variation in be-
havior (Wolf et al. 2007), or modify the behavioral composi-
tion over time as group size increases, decreases, or remains
static while members die and are replaced. We propose that
trade-off theory developed in the context of maintaining
within-population variation due to conflicting selection pres-
sures across situations could play an important role in the
maintenance of collective personality and genetic variation
between groups as well (e.g., (Lichtenstein et al. 2015; Pruitt
et al. 2017b)). Whether trade-offs associated with collective
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behavioral types are common is mostly unknown, but the
possibility is difficult to ignore.

Insights from eusocial insect and arachnid
societies

Eusocial insects are perhaps the most well studied of all animal
societies, owing to their diversity, abundance, widespread distri-
bution, and, most importantly, the high degrees of social com-
plexity exhibited by these taxa. While we do not discount the
importance and insight that could be gleaned from a thorough
comparison of the collective personalities of eusocial insects
alone, we have here chosen to compare them specifically to
social arachnids, which are cooperative breeders. This was not
an arbitrary decision. Behind eusocial insects, most research on
collective personalities have been performed in social arachnids
due to their local abundances, variation in degrees of sociality,
and because sociality in arachnids has evolved independently
numerous times (Agnarsson et al. 2006). Additionally, social
spiders are easily manipulated in both the lab and field, and are
similar in size to many eusocial insects in both brain and body.
Therefore, a comparison between eusocial insects and social
arachnids allows for a more comprehensive comparison than
with many other groups. Over the last several decades, important
progresses have been achieved in our understanding of 10 as-
pects of collective personality that are division of labor, foraging,
exploration, boldness, defensive behavior, aggressiveness, deci-
sion-making, cognition, learning, and nest construction.
Interestingly, much of this understanding comes from studies
on eusocial insects and social spiders. In the following sections,
we will use a comprehensive survey of the recent literature on
these 10 aspects of collective personality in eusocial insects and
social spiders, to present the current state of knowledge surround-
ing these forms of collective personalities and to discuss their
similarities and their differences, as well as to call attention to
major remaining gaps in our knowledge

Division of labor

Perhaps the most well-studied influence of individual-level per-
sonality on collective outcomes is personality-linked division of
labor. Division of labor (DOL) describes a process where different
individuals specialize in different tasks, thus presumably increas-
ing overall group productivity and efficiency. For eusocial insects,
this phenomenon is often studied in the context of caste ratios or
continuous morphological variation among workers (Holldobler
and Wilson 1990). Age-related DOL such as temporal polyethism
or repertoire expansion has also been given its due attention
(Seeley 1982; Seid and Traniello 2006). In other cases, differences
in colony DOL seem to emerge without intrinsic differences
among workers—for instance via self-reinforcement (Theraulaz
et al. 1998b), age demography (Seeley 1982; Robinson et al.
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1994), social dominance (Vanhonk and Hogeweg 1981), location
in the colony or “foraging for work” (FEW) (Franks and Tofts
1994), social inhibition (Huang and Robinson 1992, 1996), or
social network-based mechanisms (Gordon 1986, 1989;
Pasquaretta and Jeanson 2018). Recently, however, DOL in asso-
ciation with individuals’ personality types, rather than their mor-
phology or age, has captured the attention of behavioral ecologists.
This trend is notable because most eusocial insect species lack
discrete morphological castes beyond reproductives and workers.
In the absence of distinct morphological differences, personality
variation provides another cryptic axis of functional diversity that
can help predict who will tend to perform which tasks, as well as
their aptitudes for those tasks, and their propensity to switch tasks.
We argue that DOL can and should be considered a collective
personality trait, since different groups can exhibit temporally sta-
ble differences in their degree of division of labor due to differences
in response thresholds (Robinson 1992), individual-level person-
ality ratios (Holbrook et al. 2014; Wright et al. 2014), and poten-
tially their nest structure.

Eusocial insects

For many insect societies, collective personalities are argued to
be the result of individual variation in fixed response thresholds
that shape which individuals tend to perform which tasks inside
of a society. In honeybees, for instance, variation in sucrose
responsiveness between individuals dictates colony-level nectar
foraging behavior (Pankiw and Page 1999, 2003; Pankiw et al.
2001). Similar individual response thresholds, but for phero-
mones produced by larvae, influence recruitment to pollen
(protein) foraging (Pankiw et al. 1998). Interestingly, individuals
can vary in their response thresholds to a number of phenomena,
such as task-related social interactions with larvae and other
workers (Gordon 1996), so that individual differences in how
workers respond to these interactions can produce marked differ-
ences in the collective behavioral tendencies of whole colonies.
In contrast to classical studies on individuals’ fixed response
thresholds, which are a sensory-based approach, studies on ani-
mal personality tend to focus on individuals’ latency to partici-
pate in one task or the frequency with which they engage in it
(Wright et al. 2014). We propose that individuals’ performance in
personality assays could be functionally linked to their response
thresholds or the responsiveness of individuals’ thresholds to
experience. If true, this would provide a link between
individual-level personality and sensory biases, and help to
mechanistically explain the large number of studies linking the
personality composition of groups with division of labor. In eu-
social insects, it should be noted that DOL has not yet been
shown to correlate with variation among colonies in within-
colony personality diversity per se (Dornhaus 2008). However,
several studies have documented relationships between within-
colony genetic diversity and colony success (Mattila and Seeley
2007), and this relationship is often argued to be mediated

through genotypic differences in behavioral tendencies (e.g., su-
crose response) (Pankiw and Page 2000; Smith et al. 2008),
which are a kind of personality variation.

Given that most eusocial insect societies, especially honey-
bees, organize labor by age, it is likely that inter-colony person-
ality variation could be heavily influenced by the relative age
distribution of workers between colonies, and that fluctuations
in birth and death rates over time could result in fluctuations in
colony-level personality. Similarly, species that exhibit age-
related repertoire expansion, as opposed to temporal polyethism,
may exhibit more stable collective personalities over time, given
the increased behavioral plasticity of their older workers.

Social arachnids

In arachnids, studies of personality-based DOL have been con-
ducted in three genera: tangle web spiders in the genus
Anelosimus, arid-dwelling spiders from the genus Stegodyphus,
and the New Guinean social spider Achaearanea wau (Lubin
1995). In An. studiosus, individuals within a colony exhibit one
of two behavioral types, docile or aggressive (Pruitt et al. 2008),
and this distinction predicts individuals’ participation and profi-
ciency at various tasks (Holbrook et al. 2014; Wright et al. 2014).
Docile individuals assume brood care duties, while aggressive
spiders engage in colony defense (Wright et al. 2014). The degree
of DOL in this species is high (Holbrook et al. 2014), on par with
those of many eusocial insects, such as bumblebees (Jandt and
Dornhaus 2009) and harvester ants (Jeanson and Fewell 2008;
Holbrook et al. 2011). In the field, colonies composed of only
docile individuals grow quickly but die off in fewer generations
because of invasion by predatory social parasites. Conversely,
aggressive colonies do not so easily accumulate social parasites,
but their deficient brood care practices prevent them from growing
or proliferating as quickly as their docile counterparts. Colonies
containing both docile and aggressive individuals enjoy the
highest overall success (Pruitt and Riechert 2011b; Pruitt and
Riechert 2011a; Pruitt 2012, 2013; Pruitt et al. 2012a). A closely
related species, Anelosimus exemius, also exhibits DOL, but this is
primarily related to age (Settepani et al. 2013), body size, and body
condition (Ebert 1998) rather than personality. Three other social
Anelosimus species—A. rupununi, A. guacamayos, and
A. oritoyaku—experience higher foraging success when colonies
are composed of a mixture of docile and aggressive spiders, sug-
gesting that these species may also exhibit some degree of DOL
during foraging (Pruitt et al. 2012b). Recent work suggests that
behavioral compositions could be locally adapted in one species of
Anelosimus and that this species may have evolved mechanisms
of maintaining these optimal compositions if perturbed (Pruitt and
Goodnight 2014; Pruitt et al. 2017a), possibly due to adaptive
DOL.

African desert social spiders from the genus Stegodyphus
build a three-dimensional communal nest and construct numer-
ous two-dimensional capture webs that radiate away from it.
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Several Stegodyphus species exhibit between-individual varia-
tion in boldness that has been linked to colonies’ DOL and col-
lective behavioral type. For instance, participation in prey capture
is positively related to individuals’ boldness and negatively as-
sociated with body condition in S. dumicola (Keiser et al. 2014;
Wright et al. 2015, 2017). S. dumicola also exhibits DOL in
defensive behavior, where bolder individuals are more likely to
engage in defensive silk-spinning when attacked by predatory
ants (Wright et al. 2016a) whereas shy individuals tend to adopt
follower roles in risky tasks (Pruitt et al. 2017b). Trait diversity
linked with DOL also increases over time as individuals become
familiarized with nest mates and, conversely, sudden changes in
group membership decreases group success in collective tasks
and reduces DOL (Laskowski et al. 2016). In S. sarisanorum,
boldness and condition are similarly related to task participation
in prey capture (Grinsted et al. 2013; Settepani et al. 2013;
Beleyur et al. 2015). In S. mimosarum, DOL in prey capture
has been linked to body size (Wickler and Seibt 1993). Thus,
across all three independently evolved social species of
Stegodyphus, similar patterns of personality-based DOL emerge
and appear to play a role in colony success.

Division of labor, whether personality-based or otherwise, has
been observed in some subsocial spiders and other social arach-
nids. In the subsocial spider, Amaurobius ferox, there is some ev-
idence for foraging DOL, since it has been observed that only a
small, but consistent, subset of individuals initially attack prey,
while most colony members never participate in subduing prey
(Kim et al. 2005). In another subsocial species, Australomisidia
ergandros, it was found that feeding-type compositions shifted in
favor of scroungers over producers as group sizes increased
(Dumke et al. 2016). Finally, in the cooperative pseudoscorpion
Paratemnoides nidificator, which also exhibits DOL, the tasks that
individuals perform are related to their age and sex, but personality
has not been considered (Tizo-Pedroso and Del-Claro 2011).

Similarities and differences

There are several reasons to suspect eusocial insects should have
higher DOL than social arachnids. In both eusocial insects and
arachnids, DOL tends to increase with group size (Robinson
1992; Gautrais et al. 2002; Holbrook et al. 2011). This is possibly
because, as colonies grow, they become more complex, and the
profitability of streamlined workflow increases. While colony
sizes in arachnids vary from two to several thousand individuals,
colony sizes approach 100,000 in honeybees and more than
1,000,000 in some wasps, ants, and termites (Bourke 1999).
Furthermore, eusocial insects need to perform numerous com-
plex tasks that are wholly absent in arachnid societies, including
active foraging for resources such as food, water, and nesting
materials. This requires insect societies to be comparatively more
active, and DOL may help to avoid resource bottlenecks. In
contrast, arachnid societies passively wait for prey to become
ensnared, and spiders produce their own nesting materials

@ Springer

endogenously. Both insect and arachnid societies engage in pa-
rental care. Finally, the lack of morphological castes in arachnid
societies further conveys they may be limited in the level of task
specialization that they can achieve. Despite these observations,
studies on DOL in social arachnids have revealed surprisingly
high levels of DOL (Holbrook et al. 2014; Wright et al. 2014). In
fact, relative to their size, arachnid societies appear to have higher
levels of task specialization than eusocial insects. One might
argue that arachnid collective personalities are therefore compar-
atively more orderly—the one notable exception being the obli-
gate sterility and reproductive division of labor that characterize
the eusocial insects. Future studies on DOL and the mechanisms
governing task specialization in both groups, and others, will
help reveal any truly consistent differences in how they organize
work, as well as its functional consequences.

Foraging, exploration, and boldness

Many recent studies have explored the collective foraging and
exploratory tendencies of colonies. This is because foraging is
something groups must do mostly outside their nest, and it is
therefore easier to observe in intact colonies. Foraging is vital
for colony growth and survival because it is how colonies acquire
resources and discover new nesting locations. Boldness, on the
other hand, is defined as the propensity of an individual to engage
in risky behavior (Sloan Wilson et al. 1994). While prima facie it
may seem that boldness bears no relation to foraging and explo-
ration, these traits are often interdependent: foraging and explo-
ration require leaving the safety of the nest, and thus present risk.
In fact, boldness is often measured as the latency to enter a new
environment, which is the necessary first step to exploration and
foraging. It is therefore of little surprise that studies on collective
personality regularly detect associations between these aspects of
colony activity.

Eusocial insects

Inter-colony differences in foraging behavior have been docu-
mented in ants and bees, while wasps, termites, and other euso-
cial insects remain mostly absent from the literature. In harvester
ants, for instance, colonies vary in their active foraging window:
some colonies consistently begin foraging earlier each day, and
cease foraging later than other colonies, which influences total
resource intake and colony growth (Cole et al. 2008, 2010). This
is directly related to the colony’s genetic diversity. Other work
has shown that the proximate mechanism driving these inter-
colony differences may be related to how colonies regulate their
foraging in response to environmental feedbacks (Gordon et al.
2011). However, colony survival is not always associated with
higher overall foraging activity, at least in some species (Gordon
2013). In some species, it is colonies that exhibit restraint in
foraging or greater fearfulness that enjoy the greatest fecundity
(Gordon 2013; Blight et al. 2016).
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The role of collective exploration in determining colony suc-
cess is not well-known generally. Usually, exploration is tucked
within a broader behavioral syndrome of other group behaviors,
like aggressiveness or activity. Some studies, however, have
linked inter-group foraging differences to differences in colony
exploration and worker route learning ability (Pasquier and
Gruter 2016). In fire ants, differences in exploratory behavior
are correlated with foraging activity, and together predict colony
growth in situ (Bockoven et al. 2015). In ants of the genus
Temnothorax, success in competition for nests between species
is determined by an interaction between colony exploratory ten-
dencies. Temnothorax longispinosus performs best in rival
house-hunting matches when their opponent (7 curvispinosus)
has similar exploratory tendencies to their own. Conversely,
T. curvispinosus tend to win contests for nests when their explor-
atory tendency is different from their own (Lichtenstein et al.
2015). A separate house-hunting study conducted in Argentine
ants (Linepithema humile) observed colony-level differences in
the speed and accuracy of collective nest relocation decisions;
fast-deciding colonies were also more accurate (i.., they chose
nests of higher quality when given multiple alternatives) (Hui
and Pinter-Wollman 2014).

Collective exploration is also thought to be a factor in bio-
logical invasions (Chapple et al. 2012; Carere and Gherardi
2013), possibly due to its effects on resource identification and
enhanced competitive ability. In Argentine ants, colonies from
introduced ranges tend to be more explorative, and more ag-
gressive, than colonies in the species’ native range (Blight
et al. 2017). Boldness, like exploration, also frequently forms
a syndrome with other group personality traits like exploration
and aggressiveness, but collective boldness is not often direct-
ly measured in studies of collective personality. In at least one
study, however, colony-level boldness was directly related to
colony responsiveness to alarm pheromone, which could be
an important component of colony defense (Chapman et al.
2011) and successful range expansion.

Studies on honeybees and bumblebees are often used for
collective personality studies. Perhaps the most well-known
example of honeybee collective behavior, and its conse-
quences for fitness, is outlined in a study by Wray et al.
(Wray et al. 2011). This study showed behavioral consistency
in many colony-level traits, particularly collective foraging
and defensive behavior. More defensive colonies were also
better foragers, and this syndrome was positively correlated
with both colony productivity and winter survival. There have
been many studies detailing the genetic basis for collective
traits such as foraging and aggressiveness in honeybees
(Breed et al. 2004; Guzman-Novoa et al. 2004; Hunt 2007,
Alaux et al. 2009), but Wray and colleagues demonstrated that
these behaviors may be under strong selection, given that only
24% of new colonies survive their first winter in temperate
climates (Seeley 1978). In bumblebees, inter-colony differ-
ences in collective foraging are linked with innate color

preferences and learning speed of workers (Raine and
Chittka 2007, 2008), and colony foraging tendencies remain
consistent over a colony’s lifespan (Evans and Raine 2014).
Lastly, anthropogenic factors, such as the use of agricultural
pesticides, have been shown to negatively impact bumblebee
collective foraging behavior, and potentially colony success
(Gill et al. 2012). Exposure to such stressors provides one
mechanism to explain non-adaptive differences in colony be-
havior, and their influence will likely only continue to grow.

Social arachnids

In arachnids, foraging behavior is the most well-studied aspect
of collective personality. This is, in part, because the ability to
subdue large prey has long been thought to underlie the evo-
lution of sociality in these systems (Nentwig 1985; Lubin and
Bilde 2007; Powers and Aviles 2007; Yip et al. 2008; Avilés
and Guevara 2017; Pruitt and Avilés 2017). Unlike in the
above sections on eusocial insects, collective exploration will
not be considered here because social arachnids generally do
not explore the environment beyond their webs in search of
food. Individual and collective boldness, however, do appear
to be linked to foraging efficiency in several social spiders. In
S. dumicola, between-colony variation in the proportion of
bold individuals present is positively related to both the speed
and magnitude of collective foraging response to prey in the
lab and field (Grinsted et al. 2013; Grinsted and Bacon 2014;
Keiser et al. 2014; Keiser and Pruitt 2014; Wright et al. 2015;
Lichtenstein et al. 2016b). Boldness in this species is also
linked to the propensity to transmit cuticular bacteria to other
nest mates (Keiser et al. 2016a), and the proportion of bold
individuals within a colony can influence the ease with which
bacteria spread throughout a colony (Keiser et al. 2017), in-
cluding during collective foraging, which could determine a
colony’s vulnerability to disease outbreaks. Participation in
web repair is also positively associated with individuals’ bold-
ness in S. dumicola (Keiser et al. 2016b). Boldness further
determines the degree to which an individual spider will ex-
hibit a “keystone” behavioral phenotype. Keystone individ-
uals are defined as individuals that exhibit a large influence
over group dynamics relative to their abundance (Modlmeier
etal. 2014c). In S. dumicola, bold individuals catalyze greater
task participation in shy colony members, leading to 400%
more attackers and to an 80% decrease in latency to attack
prey (Pruitt et al. 2013; Pruitt and Keiser 2014). However, not
all populations are susceptible to keystone influence (Pruitt
et al. 2017b). Thus, how individual-level personalities assem-
ble together to generate collective personality appears to vary
across sites, and is sometimes itself subject to site-specific
selection (Modlmeier et al. 2014b; Pruitt et al. 2017b).

In Anelosimus, collective foraging aggressiveness can be de-
termined by the presence of aggressive or bold individuals.
Aggressive spiders are more likely to engage in prey capture,
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attack more quickly, and secure prey more than their docile
counterparts (Pruitt et al. 2008, 2012a; Holbrook et al. 2014;
Wright et al. 2014), which makes colonies behave more aggres-
sively in aggregate. Aggressive foraging behavior is likewise
linked with individual boldness in several other Anelosimus spi-
ders, such as A. domingo and A. eximius (Pruitt et al. 2011). Thus,
across the Anelosimus genus, which contains more social species
and independent origins of sociality than any other, individual-
level personalities assemble seemingly additively in determining
colony behavior (Agnarsson et al. 2006).

Similarities and differences

Insect and arachnid societies differ in the ways they acquire
resources and interact with their environment. For example,
eusocial insect societies are often initiated by one or sometimes
a few individuals. Once a nesting site is chosen, foundresses must
explore the environment for building materials and continually
forage for food and water to produce eggs and feed young. When
workers emerge, they take over foraging and defensive tasks.
Foraging in eusocial insects is sometimes individualistic, where
single foragers explore their surroundings for resources.
However, once a resource is discovered, many species recruit
others to help in transport. In social spiders, gravid females oc-
casionally disperse long distances via “ballooning” (Schneider
et al. 2001). This method of dispersal is passive and involves less
explicit exploration. Likewise, rather than individually exploring
their environment for resources, social spiders sit and wait for
prey to become ensnared. For these reasons, studies on collective
exploratory tendencies and activity level are almost absent in
social spiders, and research instead focuses more on traits such
as boldness and foraging aggressiveness toward prey. Other so-
cial arachnids, however, such as the social huntsman Delena
cancerides, which actively hunt their prey, might be more ame-
nable to studies focusing on collective foraging and exploration.
This species hunts prey solitarily, like some species of wasps and
ants, but occasionally shares some portion of this prey with fel-
low colony mates (Yip and Rayor 2011, 2013).

Collective exploration and boldness, however, may be more
relevant in social spiders during the process of founding colonies
via “bridging.” Bridging occurs when individuals send out
strands of silk that anchor to a nearby bush (Schneider et al.
2001). Spiders then chain along these silken bridges and found
a new colony together. It is unknown whether individual or
colony-level boldness positively correlates with bridging behav-
ior versus ballooning, or whether colony life history is associated
with preferred dispersal routes. Habitat selection in many social
arachnids is relatively unexplored, save for species that occupy
limited real estate in rock cavities and under the bark of trees, like
D. cancerides (Rowell and Aviles 1995).

Given the differences between eusocial insects and arachnids,
these taxa provide a rich landscape for examining similarities and
differences in collective personality. Linking personality with

@ Springer

meaningful variation among colonies in dispersal mode, growth
rate, reproductive strategies, and aging remains a frontier and
provides convenient links with the most prominent themes oc-
curring in the literature on individual-level personalities, like the
pace-of-life syndrome hypothesis (Biro and Stamps 2008).

Defensive behavior and aggressiveness

The ability of a colony to successfully defend itself, or defeat a
rival in aggressive conflict, is often vital. Given the strength and
ubiquity of predation and conflict as a selective force on animal
societies, small differences in these traits can be instrumental in
determining various outcomes (Davidson 1998; Rowles and
ODowd 2007; Parr 2008; Cerda et al. 2013; Bengston and
Dornhaus 2014).

Eusocial insects

In some Temnothorax ants, colonies composed of more ag-
gressive individuals exhibite greater group defensive behavior
against intruders (Modlmeier et al. 2014b), forage more effec-
tively (Lichtenstein et al. 2016a), and are faster at nest reloca-
tion (Modlmeier et al. 2014b). Aggressive Aphaenogaster ant
colonies are also better foragers, more thoroughly explore
their environment, and are better intraspecific competitors
compared to more docile colonies (Blight et al. 2016).
However, high aggressiveness appears to be a double-edged
sword: more aggressive Aphaenogaster colonies continue to
forage at dangerously high temperatures, resulting in in-
creased worker mortality rates (Blight et al. 2016).

Aggression also plays an important role in colony defense.
More aggressive harvester ant colonies display less nest damage
than less aggressive colonies, suggesting that they may be better
defended (Wiernasz et al. 2014). Colonies of some ant species
become more collectively aggressive when they encounter social
parasites, such as slave-making ants. These forewarned colonies
are less likely to be the target of slave raids and they lose fewer
brood when raids occur (Kleeberg et al. 2014). Temnothorax
colonies also vary in their collective aggressiveness depending
on whether they are raised by their own queen or a parasitic
slave-making queen (Keiser et al. 2015b), suggesting that devel-
opmental differences likely help determine inter-colony variation
in collective aggressiveness. Lastly, the consequences of collec-
tive personalities also play a role in insect-plant mutualisms. A
recent study showed that Cecropia trees harboring more aggres-
sive Azteca constructor ant colonies suffered less leaf damage
than trees harboring docile colonies (Marting et al. 2018). Other
potential mutualisms that could be influenced by collective be-
havior have been hypothesized, such as that between paper
wasps and weaver birds, but this has yet to be rigorously evalu-
ated (Bologna et al. 2007).

Honeybees also display marked differences in collec-
tive aggressiveness (Collins et al. 1982; Breed and Rogers



Behav Ecol Sociobiol (2019) 73: 31

Page 9 of 23 31

1991; Breed et al. 2004), and colony aggressiveness and
defensive behavior are positively correlated with foraging
activity, which is linked to colony success. Colony-level
defensive behavior is also influenced by the behavioral
distribution of worker bees. One study showed that colo-
nies composed of a 1:1 mixture of aggressive and docile
bees displayed the most defensive behavior, but that col-
onies containing more individually aggressive bees are
more hygienic than other compositions (Paleolog 2009).
Such results convey that the links between the behavioral
tendencies of individuals and groups are not always linear
and intuitive. Honeybee colony aggressiveness can also
be shaped by a few particularly aggressive workers (i.e.,
keystone individuals) that recruit more docile bees to at-
tack intruders, as indicated in co-fostered colonies of
European (docile) and Africanized (aggressive) bees
(Guzman-Novoa et al. 2004).

Work on collective aggressiveness in social wasps is com-
paratively scant, and nonexistent in termites. However, it has
been shown that inter-colony differences in aggressiveness are
linked with queen behavioral type in paper wasps (Polistes
metricus) (Wright et al. 2016b). Bold queens are more likely
to remain on their nest after being repeatedly antagonized and
give rise to workers that are also more likely to remain nest-
bound when the colony is agitated. Conversely, shy queens
tend to temporarily abandon their nest when agitated, but
these queens produce aggressive workers that readily leave
their nest to attack mock predators. Bolder queens also enjoy
greater colony growth in the wild. Other insects that exhibit
some degree of social organization also display group-level
behavioral variation in defensive behavior, such as sheltering
in domiciliary cockroaches when exposed to light (Planas-
Sitjaetal. 2015; Salazar et al. 2018), and evasion in pea aphids
when exposed to predatory cues (Muratori et al. 2014).
However, these represent more passive forms of defensive-
ness in comparison to other species that defend themselves
aggressively.

The trend among many of these systems is that ag-
gressiveness is an important driver of colony defense and
competition against competitors. Another pattern emerg-
ing from these studies is that increased aggressiveness,
while predictive of success in a wide variety of contexts,
comes with costs. Colony aggressiveness may therefore
regularly be under balancing selection in many insect
systems. We therefore caution researchers when reporting
the benefits of colony aggressiveness when only a narrow
set of contexts is considered. Furthermore, researchers
performing manipulation studies (particularly those occur-
ring in the lab) that appear to discover “optimal” behav-
ioral compositions should be skeptical regarding the eco-
logical validity of their results, especially if these
“optimal” compositions deviate greatly from those ob-
served in nature.

Social arachnids

The ratios of behavioral types can determine the collective
defensive behavior in several species of social spider. The
webs of A. studiosus, can be expansive (several meters
across), containing a rich community of heterospecific social
parasites, ranging from kleptoparasites to colony-level preda-
tors (Agnarsson 2006; Perkins et al. 2007). Social parasite
communities also increase in both abundance and richness
with host colony size (Pruitt and Riechert 2011b) and nega-
tively impact colony survival (Pruitt and Riechert 2011b).
Aggressive A. studiosus colonies, while prone to infighting
(Pruitt and Riechert 2009), are better defended against social
parasite invaders (Pruitt and Riechert 2011b) and are more
likely to respond to invaders (Pruitt and Riechert 2011b) and
repel them (Pruitt and Ferrari 2011; Wright et al. 2014).

In S. dumicola, colonies are frequently raided by predatory
ants from the genus Anoplolepis (Henschel 1998). S. dumicola
colonies commonly experience high annual extinction rates of
over 90% per year, and ant attacks can wipe out colonies in
minutes (Wright et al. 2016a). In response, S. dumicola
collectively spin walls of defensive silk to impede advancing
ants (Wright et al. 2016a). Participation in defensive silk-
spinning behavior is positively associated with individual
boldness, yet colonies containing a mixture of bold and shy
spiders exhibit over two times as much defensive silk-
spinning behavior as monotypic colonies (Wright et al.
2016a). Here again, non-additive (i.e., synergistic) effects of
group composition on collective personality appear to be com-
mon across many arthropod societies. Finally, many of the
links between individual and collective personality seen in
Stegodyphus disappear when colonies are subjected to
prolonged predation risk, suggesting that some environments
can remove the signature of collective personality by causing
among-colony behavioral conformity (Wright et al. 2017).

Similarities and differences

Differences in the nest structures and individual morphology
in eusocial insects and arachnids influences how these socie-
ties respond to predators, competitors, and disturbances to
their colonies. Many eusocial insects can respond to a larger
range of threats, from small arthropods to vertebrates, than can
arachnids. This is owed to insects’ ability to leave their nests,
en masse, with several thousand venomous, stinging, biting,
and often flying, individuals to mob an intruder. Social arach-
nids are not so defended, as these societies are often smaller
and less cohesive, and individuals are incapable of flying and
stinging. Only a handful of studies have investigated defen-
sive behavior in social arachnids (Pruitt 2013; Yip 2014;
Keiser et al. 2015a; Wright et al. 2016a), whereas colony
defensive behavior has been documented across a broad swath
of eusocial insect taxa (Eisner et al. 1976; Judd 1998; Breed
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et al. 2004). We therefore might predict stronger positive se-
lection on collective defensive behavior in eusocial insects
compared to arachnids.

Another difference between eusocial insects and arachnids
is how they display aggressiveness. In arachnid societies, ag-
gressiveness is often a reactive behavior in response to distur-
bance in their capture webs. Beyond this substrate, social spi-
ders are unresponsive. In eusocial insect societies, however,
aggressiveness is used both reactively against intruders and
proactively against competitors and prey. We therefore might
expect broader syndromes of correlated behavioral traits in
association with aggressiveness and overall activity levels in
eusocial insects as compared to arachnids, and that the situa-
tional costs and benefits of collective aggressiveness should
be more pronounced.

One notable similarity between social spiders and ants ap-
pears to be trade-offs associated with aggressiveness. In ants,
more aggressive societies tend to have increased foraging ac-
tivity. While this appears to enhance resource acquisition, this
also results in higher worker mortality due to overactive forag-
ing in unfavorable environmental conditions (Gordon 2013).
More cautious colonies that mitigate foraging in adverse con-
ditions are commonly more successful. Similarly, in some spi-
ders, aggressive colonies experience greater success in most
contexts. However, aggressiveness comes with costs—
aggressive colonies often cannibalize their own young, and do
not provision young proficiently. In situ, mixed colonies enjoy
greater overall fitness (Pruitt 2012). In the spider S. dumicola, a
similar outcome occurs; aggressive colonies attack prey faster,
and attack with more individuals than docile colonies (Keiser
and Pruitt 2014; Wright et al. 2015). However, colonies of
mixed composition exhibit twice as much defensive behavior
when being raided by predatory ants (Wright et al. 2016a),
which may explain why mixed compositions are most common
in nature. We argue that such performance trade-offs associated
with collective personality could be common across many so-
cial taxa, invertebrate or otherwise.

Decision-making, cognition, and learning

Between-individual variation in traits like cognition and learn-
ing might more appropriately be viewed as traits that inform
personality, rather than being a personality trait per se (Carere
and Locurto 2011; Griffin et al. 2015). Nevertheless, variation
in collective cognition and learning are important when choos-
ing nesting sites (Seeley and Buhrman 1999; Mallon et al.
2001; Pratt et al. 2002; Passino et al. 2008; Sumpter and
Pratt 2009), foraging (Beckers et al. 1993; Beekman et al.
2001), or possibly engaging in collective movements.
Overall cognitive capacity is larger in collectives than individ-
uals, suggesting that groups may be more adept at making
optimal choices than individuals (Sasaki and Pratt 2012;
Sasaki et al. 2013), and that this accuracy may scale with
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group size. Different tasks performed within a colony might
also have different cognitive demands, and thus cognitive
ability could determine how efficient individuals and, in turn,
their colonies are at executing particular tasks (Reznikova
2008). Some investigators have argued that colonies them-
selves might profitably be viewed as single cognitive units
(Sasaki and Pratt 2018).

Eusocial insects

The bulk of studies investigating collective decision-making,
cognition, and learning in eusocial insects comes from work
on ants and bees. Colonies often must choose among nest sites
that vary in quality depending on multiple attributes (Visscher
2007). In ants, while studies abound describing the processes
involved in decision-making, from individuals up to their col-
onies, none to our knowledge have quantified between-colony
variation in any cognitive trait. At least one study in
Temnothorax ants, however, has demonstrated that nest relo-
cation efficiency increases with increased colony aggressive-
ness (Modlmeier et al. 2014b), suggesting that collective per-
sonality represents another axis of decision-making strategies
not captured by studies that evaluate group size alone. Yet,
how aggressiveness may have influenced cognitive decision-
making processes has not been investigated.

In honeybees, individual bees have been shown to differ
widely in their cognitive and learning abilities using proboscis
extension reflexes (Bitterman et al. 1983) and sucrose respon-
siveness (Scheiner et al. 1999, 2004). Honeybee learning abil-
ity can be affected by the presence of parasitic mites (Kralj
et al. 2007), exposure to certain pesticides (Frost et al. 2013;
Evans and Raine 2014; Stanley et al. 2015; Urlacher et al.
2016), and age (Scheiner et al. 2003). These individual differ-
ences frequently occur within the same colony, and likely help
to determine colony-level behavior. At present, we know of no
studies that have tested for colony-level differences in cogni-
tion in honeybees, or its possible effects on colony success or
fitness. In bumblebees, however, different populations have
been shown to exhibit differences in learning ability in re-
sponse to rewarding stimuli (Raine et al. 2006; Ings et al.
2009). These differences in learning ability are correlated with
differences in color preference, which has been shown to in-
fluence foraging performance and colony fitness (Raine and
Chittka 2005). Additionally, higher learning speeds have been
linked with increased foraging success in bumblebees (Raine
and Chittka 2008). To what degree standard personality assays
at the individual or colony level may enhance the predictabil-
ity of inter-colony differences in learning and performance
remains little examined.

In primates and several other mammals, there exists a pos-
itive relationship between brain size and group size (Dunbar
1992; Dunbar and Shultz 2007; Perez-Barberia et al. 2007;
Street et al. 2017). One possible explanation for this has been
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termed the social brain hypothesis, which posits that complex
social life somehow requires comparatively complex, and thus
larger, brains (Dunbar 1992). However, there are many alter-
native and non-mutually exclusive genetic (Montgomery et al.
2010), developmental (Finlay and Darlington 1995), ecologi-
cal (Altmann 1998), and energetic explanations (DeCasien
et al. 2017) that also need to be considered. In insects, how-
ever, no such general relationship (positive or negative) exists
(Farris 2016), though it has been shown in some ant species
(Kamhi et al. 2016). Instead of investing in individual cogni-
tion, social insects are thought to instead place emphasis on
communication, which requires less brain investment
(O'Donnell et al. 2015). This phenomenon is known as the
distributed cognition hypothesis (Muscedere and Traniello
2012; Tlies et al. 2015; O'Donnell et al. 2015; Farris 2016).
Presently, there are no studies investigating how such distrib-
uted communication systems may influence collective
personality.

Social arachnids

Many have viewed arachnid behavior as being governed by
instinct (Jackson and Cross 2011; Jakob et al. 2011).
However, investigations hint that this is not always the case
(Wilcox and Jackson 1998; Herberstein et al. 2013;
Peckmezian and Taylor 2015). To what degree social living
promotes greater or reduced cognitive ability, discussed above
as the social brain and distributed cognition hypotheses
(Dunbar and Shultz 2007; Perez-Barberia et al. 2007), and
how this impacts collective learning in social arachnids, is
unknown. Brain size however does not appear to differ be-
tween solitary species that differ in prey capture behavior, i.e.,
orb weaving vs. kleptoparasitism (Quesada et al. 2011).
Studies on S. dumicola have shown that both individuals
and whole colonies of spiders are capable of associative learn-
ing tasks using seismic cues (Holbrook et al. 2014; Pruitt et al.
2016). Furthermore, information can be transmitted from
trained to untrained spiders at different rates depending on
the behavioral type of demonstrators (Pruitt et al. 2016).
This is the only study investigating links between learning,
personality, and collective behavior in arachnids to date.
Thus, many avenues remain open to exploration.

Similarities and differences

There are many reasons to suppose that selection on traits
like collective cognition, learning, and collective decision-
making should differ between eusocial insects and arach-
nids. Eusocial insects interact with their broader environ-
ments more intimately than arachnid societies in most
respects. Thus, we might expect a higher capacity for
collective learning and information transfer in eusocial
insects relative to arachnids, especially in spatial and

visual learning and memory. We see evidence for this in
bumblebees, where there is a link between individual and
colony learning speed and visual memory (Raine and
Chittka 2012). This variation is also linked with resource
acquisition rates (Raine and Chittka 2007). Honeybees
also have adept visual learning and memory (Zhang
et al. 1999). When a new resource patch is discovered,
individual workers gather information about the quality,
distance, and direction of resources and communicate this
information back to workers in a dance (Detrain and
Deneubourg 2008). Similar information transfers occur
when honeybee colonies relocate to new nesting sites
(Seeley 1985; Seeley and Visscher 2004; List et al.
2009). Many ants likewise rely on spatial learning and
memory in house-hunting and collective foraging
(Mallon et al. 2001; Pratt et al. 2002; Detrain and
Deneubourg 2008; Sumpter and Pratt 2009).

Arachnid societies, on the other hand, might perform
as well as insects on associative learning and memory
tasks, but tend to rely on seismic cues (Pruitt et al.
2016). Social arachnids have poor eyesight; thus, visual
learning tasks are likely not relevant for this system.
Studies on collective cognition in arachnids are needed
to determine how/whether group cognitive ability scales
with group size, as seen in some eusocial insects. While
many studies have linked individual personality with
learning styles (Bebus et al. 2016; Medina-Garcia et al.
2017; Nawroth et al. 2017; Shaw and Schmelz 2017), the
intersection of collective personality and group cognition
in virtually any taxon remains a wide-open field.

Nest construction

One of the most impressive collective behaviors of social ar-
thropods is cooperative nest-building. These nest structures
can vary widely in size and shape, from small inconspicuous
piles of sand blocking nest entrances in Temnothorax ants, to
large termite mounds that reach heights of 4 meters or more
(Bignell et al. 2011a, b). In arachnids, webs can vary in size
from small structures a few centimeters across to massive
blanket-like webs spanning several meters in diameter. The
building of many of these structures is a self-organizing pro-
cess, where higher-level patterns emerge from the interactions
between individuals eliciting both positive and negative feed-
back responses. These responses are mediated indirectly by
stigmergy, a process where modifications of the environment
by one individual stimulate the performance of a second mod-
ification by others (Camazine 1991; Karsai and Penzes 1993;
Theraulaz and Bonabeau 1995; Bonabeau et al. 1997;
Theraulaz et al. 1998a, 2002). The presence of such feedback
mechanisms, and variability in them, likely underlie the vari-
ability in collective behavioral tendencies seen in many euso-
cial insects and possibly arachnids (Table 1). Despite the
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Table 1 A survey of foundational and well-established hypotheses on collective personalities
Hypothesis Collective Temporal scale Taxa Source
personality trait
HI: Groups exhibit stable Collective Days Ants Lichtenstein et al. (2015), Marting et al. (2018), Wiernasz
differences in collective aggressiveness et al. (2014)
behavior Spiders Pruitt et al. (2013), Pruitt and Keiser (2014)
Weeks Ants Bengston and Dornhaus (2014), Blight et al. (2017),
Scharf et al. (2012)
Bees Wray et al. (2011)
Months Ants Blight et al. (2016, Blight et al. 2016), Buczkowski &
Silverman (2006), Crosland (1990)
Bees Pearce et al. (2001)
One year Ants Suarez at al. (2002)
Exploratory and Days Ants Marting et al. (2018), Gordon et al. (2011), Lichtenstein
foraging behavior et al. (2015)
Bees Raine and Chittka (2008)
Fish Jolles et al. (2018)
Weeks Ants Bengston and Dornhaus (2014), Blight et al. (2017),
Bockoven et al. (2015), Scharf et al. (2012)
Bees Wray et al. (2011)
Months Ants Blight et al. (2016, Blight et al. 2016)
Years Ants Cole et al. (2010), Gordon et al. (2013)
Nest Days Ants Cronin et al. (2015)
repair/relocation
Cockroaches  Planas-Sitja et al. (2015)
Weeks Ants Scharf et al. (2012)
Bees Wray et al. (2011)
Hypothesis Collective Member trait  Taxa Source
personality trait
H2: The personality scores of  Aggressiveness Aggressiveness  Ants Modlmeier et al. (2014a)
group ) Bees Rittschof (2017)
members determine the .
collective Boldness Wasps Wright et al. (2017)
personality of the group Spiders Pruitt et al. (2013), Pruitt and Keiser (2014), Pruitt &
Pinter-Wollman (2015), Wright et al. (2015)
Exploratory and Activity level Fish Brown & Irving (2013), Jolles et al. (2017)
foraging behavior  and sociability
Lepidopterans Dussutour et al. (2008)
Boldness Fish McDonald et al. (2016)
Exploratory Birds Aplin et al. (2014)
behavior
Slime molds ~ Vogel et al. (2015)
Nest Activity level Termites Mizumoto et al. (2015)
repair/relocation
Aggressiveness  Ants Modlmeier et al. (2014b)
Exploratory Ants Hui and Pinter-Wollman (2014)
behavior
Hypothesis Collective Performance Taxa Source
personality trait metric
H3: Collective personality Aggressiveness Contests over Ants Bengston and Dornhaus (2014), Blight et al. (2016),
predicts colony performance resources Lichtenstein et al. (2015)
Colony mass Bees Wray et al. (2011)
Spiders Pruitt et al. (2016), Pruitt and Keiser (2014)
Damage to nest  Ants Wiernasz et al. (2014)
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Table 1 (continued)

Hypothesis Collective Temporal scale Taxa Source
personality trait
Host plant health Ants Marting et al. (2018)
Repelling Ants Jongepier et al. (2014), Pamminger et al.
parasites (2011, 2012)
Survival and Spiders Pruitt et al. (2015)
reproduction
Exploratory and Contests over Ants Bengston and Dornhaus (2014), Blight et al. (2016),
foraging behavior  resources Lichtenstein et al. (2015)
Colony mass Bees Wray et al. (2011)
Hypothesis Collective Life history Taxa Source
personality trait trait
H4: Collective personality Aggressiveness Productivity Ants Bengston et al. 2017, Blight et al. (2016),
shapes colony life history Bockoven et al. (2015), Scharf et al. (2012)
Reproductive Ants Bengston et al. (2017)
investment
Exploratory and Productivity Ants Bengston et al. (2017), Blight et al. (2016)
foraging behavior
Reproductive Ants Bengston et al. (2017)
investment
Nest Productivity Ants Scharf et al. (2012)
repair/relocation

variation in nests observed between species, and even within
species, studies testing for consistent between-colony differ-
ences in nest architecture that control for environment are
limited.

Eusocial insects

Between-colony variation in nest construction behavior in
eusocial insects has been observed in only a handful of
studies. Temnothorax rugatulus prioritizes nests with small
openings, as these are often more easily defended
(Visscher 2007). When a nest has unsuitably wide en-
trances, T. rugatulus workers will retrieve small grains of
sand and other debris which they then use to wall-in the
exposed areas of their crevice. Researchers have found that
individual colonies differ consistently in the wall architec-
tures that they construct both across environments and re-
peated building events (DiRienzo and Dornhaus 2017).
The subterranean termite, Reticulitermes speratus, builds
shelter tubes that protect individual termites while forag-
ing. When researchers split larger colonies into smaller
sub-colonies and observed their shelter tube-building, they
found that sub-colonies from the same source colony
built similarly patterned tubes that were distinct from the
tubes built by sub-colonies created from other colonies
(Mizumoto and Matsuura 2013). These differences can be
attributed to the degree of positive feedback exhibited, as
well as the number of termites actively building the

structures (Mizumoto et al. 2015). More studies are needed
to understand the mechanisms driving nest variation across
colonies, as well as their performance implications.

Social arachnids

No current studies exist addressing collective personali-
ties and the types/shapes/sizes of webs groups collective-
ly spin. However, we know from a study in A. studiosus
that webs constructed by aggressive individuals retain
prey 64% longer than webs constructed by docile spiders
(Wright et al. 2014). In S. dumicola, the shape of the
substrate architecture available to construct capture webs
influences both the mean and repeatability of collective
foraging behavior across colonies (Modlmeier et al.
2014a), conveying that physical differences in the sur-
rounding environment impacts the collective behavior
that groups exhibit. Future studies that more finely quan-
tify aspects of web architecture in association with colo-
nies’ collective behavioral type are still needed.

Similarities and differences

There are currently too few studies investigating the role
of group personality in eusocial insect and arachnid nest
construction to produce any meaningful comparisons.
Yet, the number of plausible interesting relationships be-
tween collective personality and nest-building behavior
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Table 2 Questions, themes, and hypotheses

General Specific hypotheses
question

Q1: In colonies that experience fission-fusion dynamics, how do the personalities of groups change as they divide or merge?

Hypothesis 1a: In social species whose colonies fragment, daughter colonies will initially resemble their mother colony in collective
personality.

Hypothesis 1b: Daughter colonies will develop distinct collective personalities, which predict division of labor within the super-colony.

Hypothesis 1c: Variation in collective personality between the nests of a single polydomous colony can change to benefit the
super-colony, akin to division of labor across multiple nests.

Q2: Do colonies’ collective behaviors determine non-linear relationships between colony mass and metabolism?
Hypothesis 2a: The presence of seemingly inactive “lazy individuals” will reduce colony metabolic rate and collective activity level.

Hypothesis 2b: The metabolic rate of active colonies will scale like single organisms, whereas the metabolic rates of inactive colonies
will plateau at a shallower threshold.

Hypothesis 2c: The presence of inactive individuals will be locally adapted (perhaps in patchy resource areas), driving geographic
variation in metabolic scaling patterns driven by collective personality.

Q3: Does colony personality influence collective cognition/learning?
Hypothesis 3a: Groups will differ in their collective cognitive capacity based on the cognitive capacities of individual constituents.

Hypothesis 3b: Groups will differ in collective learning based on the distribution of learning types within the group (e.g., proportion or
presence of associative vs. spatial learners).

Hypothesis 3c: Groups will perform better at certain tasks based on the learning types they contain. For instance, spatial learners might
be better foragers, whereas associative learners might defend their colonies more closely.

Hypothesis 3d: Mixed colonies will benefit from having a diversity of learning types, based on environmental/population differences
such as food abundance or threat level.

Hypothesis 3e: The presence of one or a few individuals of high cognitive ability will be sufficient to drive fast collective learning rates
and low error rates for the group.

Q4: Do groups exhibit consistent differences in their decision-making strategies?
Hypothesis 4a: Different colonies will consistently tend to favor speed over accuracy and vice versa during migrations to new nests.
Hypothesis 4b: Different colonies will consistently tend to favor cohesion over speed and vice versa during migrations to new nests.
Hypothesis 4c: Low nest competition will favor high accuracy, which will require more time, and high competition favors high speed.
Q5: Can autocorrelation of group-level personality be used as an indicator of incipient group collapse?

Hypothesis 5a: Groups will exhibit stable colony personalities across their lifespans with some stochastic variation and predictable
seasonal variation.

Hypothesis 5b: The emergence of reduced temporal autocorrelation or increased within-colony variance in personality will signal the
collapse or disbanding of a group.

Hypothesis 5c: The emergence of reduced temporal autocorrelation or increased within-colony variance in personality will precede
other indicators of colony collapse such as increase internal violence, decreased nest maintenance, and decreased reproductive rate.

Hypothesis 5d: Across the lifespans of colonies, predictable patterns in collective personality will emerge.
Q6: Do collective personalities of colonies determine their interior carrying capacity and population biology?

Hypothesis 6a: Colonies will have internal carrying capacities and intrinsic growth rates specific to colonies that depend on their
collective personalities.

Hypothesis 6b: The collective personality of colonies will determine their intra-colony intrinsic growth rate and carrying capacity.
Hypothesis 6¢: Colonies with low intra-colony carrying capacities and intrinsic growth rates will grow and reproduce less readily.

Hypothesis 6d: Populations composed of colonies with low carrying capacities and intrinsic growth rates will be more stable, will reach
higher densities of colonies, and be less likely to overshoot their population carrying capacity.

Q7: Can parasites shape colony personality to increase parasite reproduction and dispersal?

Hypothesis 7a: Social parasites will manipulate the collective behavior of groups to further their own propagation (increase affinity to
foreign conspecifics, decrease colony aggressiveness so more parasites can infect colony, increase exploration so parasites can
propagate easier, etc.).

Hypothesis 7b: Infected colonies will differ behaviorally from uninfected colonies, and this difference in collective behavior increases
the infection risk of neighboring colonies and increases host colony competence.

Q8: Do colonies’ collective personalities influence associated inquiline communities?
Hypothesis 8a: Non-aggressive colonies will foster more inquilines and associated animal life, thereby destabilizing the colonies.

Hypothesis 8b: Aggressive colonies will repel inquilines, and consequently will not benefit from potential mutualistic interactions with
inquilines.
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Table 2 (continued)

General Specific hypotheses
question

Hypothesis 8c: Colonies with moderate aggressiveness and greater intracolonial behavioral diversity will foster an intermediate load of
inquilines that involve more mutualistic interactions.

Hypothesis 8d: Colonies of intermediate aggressiveness and mutualistic interactions with inquilines will be more temporally stable than
extremely aggressive and docile colonies.

Q9: To what degree does the evolution of colony personality mimic the evolution of individual-level traits?

Hypothesis 9a: The heritability of colony personality is greater in colonies that operate more as a single selective unit (e.g., highly
eusocial societies, inbred groups) or in instances where societies are established by a single or group of related foundresses.

Hypothesis 9b: Among-group variation in collective personality and the effectiveness of selection on it positively co-varies with the
level of genetic divergence across groups

Hypothesis 9c: Negative frequency-dependent selection and cross-contextual trade-offs associated with colony personality act to
maintain heritable variation in colony traits within populations.

Hypothesis 9d: Colonies surrounded by neighbors of unlike collective personality will compete less for resources, and increase the
collective performance of that neighborhood of colonies.

Hypothesis 9e: Through time, neighboring colonies will exhibit stronger differences in their collective personalities to adopt distinct
niches and reduce competition across societies.

Q10: Colony personality and queen number and behavior: are polygynous colonies (multiple queens) more aggressive than monogynous colonies (single
queen) towards intruders?

Hypothesis 10a: Workers from polygynous colonies will be less aggressive to foreign queens and other intruders.

Hypothesis 10b: Polygynous colonies will be more willing to accept and rear foreign queens than monogynous colonies, due to reduced
overall collective aggressiveness.

Hypothesis 10c: Polygynous colonies will be more susceptible to parasitism by inquilines.
Q11: How does collective personality determine tolerance/affinity of neighbors?

Hypothesis 11a: Presence of highly aggressive colonies members will increase collective aggressiveness of colonies, and yet aggressive
individuals will be more likely to perish in fights between colonies.

Hypothesis 11b: On a short time scale, aggressive interactions between colonies will decrease collective aggressiveness by depleting
aggressive individuals.

Hypothesis 11c: Colonies that quickly create aggressive individuals and recover their collective aggressiveness will outcompete
colonies still depleted of aggressive individuals.

Hypothesis 11d: Cycles of colonies depleting and replenishing aggressive individuals will lead to arms race to create more and more
aggressive colonies.

Hypothesis 11e: Colonies with very low aggressiveness may outperform aggressive colonies when aggressive colonies are at high
representation, because they avoid the cost of inter-group conflict, akin to a colony level hawk-dove game

Q12: How does collective personality relate to the social responsiveness or social susceptibility of its members?

Hypothesis 12a: The social responsiveness of a colony will depend on the behavioral distribution of its individuals. Certain behavioral
types (e.g. docile or shy types) will be more responsive to fellow group members than others.

Hypothesis 12b: The behavioral types that are socially responsive to the behavior of fellow colony members (e.g., shy individuals) may
not be the most socially responsive to individuals from other colonies (e.g., aggressive individuals).

Hypothesis 12¢: Colonies’ social responsiveness will have a concave-down relationship with state (starvation level, condition, infection
status): small reductions in colony condition will increase social responsiveness before reaching such threshold where responsiveness
to fellow colony members and enemies alike will drop off dramatically.

Q13: How does collect personality influence horizontal transmission of group members across colonies?

Hypothesis 13a: Less collectively aggressive colonies will be more likely to exchange individuals, whereas aggressive colonies will be
more likely to retain members and repel interlopers.

Hypothesis 13b: The transmission of individuals between colonies will erode between-colony behavioral variation.

Hypothesis 13c: Polydomous (multi-nest) colonies will exchange more individuals than monodomous colonies, thereby homogenizing
inter-subcolony behavioral variation.

Q14: Can colony mortality and collective behaviors form positive feedback loops?

Hypothesis 14a: Colonies that exhibit a reduced tendency to forage, defend themselves, or engage in hygienic behaviors will suffer
increased mortality of colony members.

Hypothesis 14b: The mortality of colony members will reduce collective foraging, defense, and hygienic behaviors at the colony level,
and may bias the representation of personality types in the remaining members.

Hypothesis 14c: Mortality of group members and reduced collective foraging, defense, and hygienic behavior will form positive
feedback cycles that lead to colony collapse.
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Table 2 (continued)

General
question

Specific hypotheses

Hypothesis 14d: The beginning of this feedback cycle will generate reduced temporal autocorrelation and increases in within-colony
variance in collective personality, foretelling of imminent collapse.

Q15: Does social heterosis (i.e., within-colony behavioral diversity) generate variation in the flexibility of collective behavior?

Hpypothesis 16a: Diversity in member colony personality will beget greater behavioral flexibility in collective behavioral tendencies.

Hypothesis 16b: Colonies with more flexible collective personalities will prove more successful at exploiting a range of resources and
conditions, whereas more consistent colonies will before better than flexible colonies only under a narrow range of environmental

conditions.

Hypothesis 17c: Stable environments will select for behavioral consistency in collective personality, whereas dynamic environments

will favor greater plasticity in collective personality.

Q16: How does collective personality shape patterns of niche construction by large colonies?

Hypothesis 17a: The collective personality of large social arthropod colonies will change how they alter local ecosystem or community
properties (e.g. deposits of nutrients, excessive nest structures, or inquiline communities).

Hypothesis 17b: Such alterations to local environments will favor the performance of certain collective behavioral phenotypes, often of

the phenotypes of the colonies that made them.

Hypothesis 17c: When a collective behavioral phenotype alters the local environment, and the local environment in turn favors that
collective behavioral phenotype, can generate a feedback loop.

Hypothesis 17d: Behavior vs. local environment feedback loops could generate behavioral correlations. For instance, intense collective
foraging may create large midden heaps, which might attract parasites or predators, and this might favor collective aggressiveness.
This result would be a correlation between collective foraging and collective aggressiveness.

are countless. Thus, this topic remains a unique niche
and opportunity for new researchers.

Future directions

By comparing our understanding of 10 aspects of collec-
tive personality in eusocial and arachnid societies, we shed
light on many unknowns in the literature on collective per-
sonality, as well as emphasize that numerous key questions
remain unanswered. For instance, in groups that experi-
ence fission-fusion dynamics, how might collective per-
sonalities change as groups fractionate or merge? How of-
ten does collective personality influence group cognition
or decision-making? Can parasites modify or exploit the
collective behavior of groups to the parasite’s advantage,
similar to the way some parasites manipulate the behavior
of individuals (Lefevre et al. 2009; Andersen et al. 2012)?
More broadly, does variation across social taxa in social
structure (e.g., temporary/facultative/obligate sociality,
communal, subsocial, and eusocial) generate predictable
variation in the types of personality exhibited by individ-
uals or groups, or their distributions? And the list goes on.
We catalog here questions, themes, and hypotheses
(summarized in Table 2) that should be addressed in the
near future to help take a broader perspective on this topic.
Our ultimate goal is to forge links between the literature on
collective personality and other fields in evolutionary be-
havioral ecology beyond what the literature has already
reasonably established (Table 1). While this list is by no

@ Springer

means exhaustive, it is meant to inspire researchers to think
diversely and creatively about how collective personality
stands to influence the way groups function, and how
groups interact in a broader ecological context.

Our review also highlights that many studies have
linked collective personality with colony performance
(Table 1), but surprisingly, very few of these studies have
been conducted in situ. Yet, field studies are likely to be
illuminating (and essential) because they can reveal situ-
ational costs and benefits to colonies’ collective behavior-
al tendencies that are obscured in lab environments.

Finally, we argue that by approaching collective personal-
ity traits with the same framework that evolutionary behavior-
al ecologists approach individual traits, we are likely to en-
hance our understanding of how and why collective behavior-
al traits evolve in contrasting environments (e.g., costs vs.
benefits), how they interact with colonies’ life history and
niche, and the degree to which such traits can respond to
selection (Table 2). Collective personality, as a framework,
has the potential to inform our understanding of how selection
acts on intraspecific variation in collective phenotypes, which
in turn has given rise to much of the variation in collective
behavior observed across arthropods societies (and potentially
beyond) today. If we have succeeded, this review will serve as
an updated roadmap and compass for those interested in push-
ing the field of collective personalities forward.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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