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Abstract

Under various ecological conditions, producing a biased sex ratio may be adaptive. However, the factors that translate specific
ecological conditions into internal processes remain an enigma. A potential mediator is maternal testosterone, which may reflect
physical, reproductive, and social conditions. The nutria (Myocastor coypus) is a polygynous rodent, invasive in many parts of the
world, which shows fluctuating sex ratios. Using necropsies of 82 pregnant culled nutrias, we found that in early pregnancy, offspring
sex ratios are more male-biased than in later pregnancy. Since sex ratios decrease with pregnancy age, male fetuses in our study
population may be terminated. In 68% of the litters, the heaviest fetus was a male, suggesting that males are the “expensive” sex. We
also found that while maternal weight was not associated with testosterone, heavier females and those with lower testosterone had
male-biased sex ratios. Litters of high testosterone females had female-biased sex ratios. To the best of our knowledge, this study is the
first to show a negative association between maternal testosterone and male-biased sex ratios. Testosterone, through its role in
reproduction, might be mediating maternal internal and external conditions by adjusting intra-uterine sex ratio.

Significance statement

For decades, the mechanisms behind offspring sex ratios have been of interest across disciplines. Maternal testosterone has been
implicated in mediating maternal condition, thus influencing secondary sex ratios. Here, we investigated the reproductive
parameters of a culled nutria and integrated it with maternal hair testosterone levels to test the association between long-term
testosterone and sex ratios. Our most surprising result was that high maternal testosterone levels were related with female-biased
sex ratios. This is contrary to previous studies in other species and counter-intuitive. Heavier females tended to have male-biased
litters. We also found that the proportionate representation of males within litters declined over the course of pregnancy. Male
fetuses were usually the heaviest fetus, suggesting that they are the more “expensive” sex. We believe that our study provides
new insights in this long-debated issue and will contribute to understanding the reproductive costs involved with maternal
testosterone across animal models.

Keywords Hair testing - Invasive species - Maternal testosterone - Sex ratio - Trivers—Willard

Communicated by C. Soulsbury The ubiquity of a 1:1 sex ratio has served as a classic textbook
Electronic supplementary material The online version of this article example of the stabilizing force of a negative frequency-
(https://doi.org/10.1007/500265-018-2517-3) contains supplementary dependent selection since raised by Fisher (1930). However,
material, which is available to authorized users. birth sex ratios may deviate from 1:1 (Clutton-Brock and

Tason 1986; Booksmythe et al. 2017). Several competing,
b4 L. Koren not mutually exclusive, hypotheses have been proposed to

Lee.Koren@biu.ac.il explain the adaptive value of biased birth sex ratios in chro-

mosomal sex determination in vertebrat .g., Trivers an
The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan osomal sex dete ato vertebrates (e.g., vers and

University, 5290002 Ramat Gan, Isracl Willard 1973; Clark 1978; Silk 1983; van Schaik and Hrdy
2 Hula Research Center, Department of Animal Sciences, Tel-Hai 1991; Krackow 1995; James 1,996; Camerm,l 200,4; Grant and
College, 1220800 Upper Galilee, Tsrael Chamley 2010). Of these, Trivers and Willard’s (TW) sex
N allocation theory (Trivers and Willard 1973; Leimar 1996)

Faculty of Life Sciences, University of Haifa-Oranim, . . .
36006%0 Tivon. Isracl b stands out as the leading and most-cited hypothesis (James

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00265-018-2517-3&domain=pdf
http://orcid.org/0000-0002-7425-501X
https://doi.org/10.1007/s00265-018-2517-3
mailto:Lee.Koren@biu.ac.il

101 Page 2 of 9

Behav Ecol Sociobiol (2018) 72: 101

2013). This theory predicts that selection should act on parents
to vary their level of investment in offspring when fitness
returns differ for the two sexes (Trivers and Willard 1973).
Even when the two sexes have, on average, an equal repro-
ductive value, differences in variation in reproductive success
between males and females may be profound. Thus, for ex-
ample, in polygamous species, high-quality males might gain
higher reproductive success. Accordingly, females that can
produce high-quality offspring might benefit from producing
more sons. TW hypotheses can also apply for heritable sexu-
ally selected traits, where females mating with attractive mates
will benefit from producing more “sexy sons” than daughters
(Cameron et al. 2003). It can also apply to any other trait that is
both heritable and positively correlated with reproductive suc-
cess (James 2013). A second, not necessarily mutually exclu-
sive hypothesis, which also seeks to explain the adaptive value
of biased secondary (i.e., birth) sex ratios, is the local resource
competition (LRC) hypothesis, which is based on sexual dif-
ferences in dispersal and philopatry (Clark 1978; Silk 1983;
van Schaik and Hrdy 1991). The LRC hypothesis posits that
when resources are scarce and only one sex disperses, females
should produce more offspring of the dispersing sex, to avoid
potential future local resource competition with kin
philopatric offspring (Clark 1978; Silk 1983; van Schaik and
Hrdy 1991). Several empirical studies support LRC as they
show that in species where one sex disperses, litters are biased
towards the dispersing sex, regardless of the sexual identity of
the dispersing sex (Silk, 1983). While both hypotheses lay
different predictions on the evolutionary factors that maintain
a biased sex ratio, both require a feedback mechanism which
links the environmental condition to altering sex ratio.

As environmental or social conditions change, parents are
expected to re-adjust their efforts and invest in the more
“profitable” sex (West and Sheldon 2002). In mammals, the
prenatal and often the postnatal investments in offspring are
mostly maternal. Consequently, maternal body condition or
social status might predict the direction of sex-biased invest-
ment according to the costs and benefits of raising each sex
(Clark 1978; Correa et al. 2011). Meta-analysis showed that
mammalian mothers in good condition at the time of concep-
tion tend to have male-biased litters (Cameron 2004; but also
see Hewison and Gaillard 1999; Brown 2001; Sheldon and
West 2004), and suggests that facultative sex ratio adjustments
might occur around the time of implantation (Cameron 2004).
Mothers can vary their sex-biased investment by producing
unequal numbers of male and female offspring (Johnson and
Ritchie 2002), adjusting litter size (e.g., by abortion (Gosling
1986; James 2015) or infanticide (Beery and Zucker 2012)),
via sex selective lactational investment (Moses et al. 1995),
and/or adjusting the quality of the sexes produced (Laaksonen
et al. 2004; Love and Williams 2008).

Regardless of the adaptive value in producing biased sex
ratios, the factors that mediate the maternal condition, which
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alter in utero sex ratios, remain a mystery. In other words, the
question of how the reproductive system “knows” to produce
more sons or daughters with respect to maternal and environ-
mental condition remains open. Among the proximate mech-
anisms that have been suggested to influence sex allocation
are maternal glucose levels (e.g., Cameron 2004), glucocorti-
coids (e.g., Love et al. 2005; Navara 2010), and testosterone
(e.g., Grant 2007). Steroid hormones are known to influence
various aspects of embryonic development, including sex
(Adkins-Regan et al. 1995; James 1996; Dufty et al. 2002;
Grant and Chamley 2010). For example, maternal glucocorti-
coids have been shown to be linked with sex ratios (e.g., Love
et al. 2005; Ryan et al. 2011, 2014). The steroid hormone
testosterone is an androgen involved in numerous physiolog-
ical processes, including neuronal growth and function, mus-
cle and bone development, immune function, and spermato-
genesis in males (Staub and De Beer 1997; Muehlenbein and
Bribiescas 2005; Moore et al. 2011). A few mammalian stud-
ies showed male-biased sex ratios following maternal testos-
terone elevation (Grant and Irwin 2005; Shargal et al. 2008;
Helle and Laaksonen 2008; Grant et al. 2011; but also see
Diez et al. 2009; French et al. 2010; Banszegi et al. 2012;
Ryan et al. 2014). Given that elevated maternal androgens
are transferred to the young via the placenta and yolk and have
direct observable phenotypic effects on developing embryos
and postnatal offspring, these hormones are excellent candi-
dates to play a key role in sex-biased investment in vertebrates
(Navara 2013).

Adaptive sex ratio biases at birth are not common in most
mammalian orders (Hewison and Gaillard 1999). However,
the nutria (Myocastor coypus) shows fluctuating sex ratios
across groups and years (Gosling 1983). The nutria mating
system is polygynous (Gosling and Baker 1989; Guichon et
al. 2003; Tunez et al. 2009), with larger males that are socially
dominant (Guichoén et al. 2003; Tanez et al. 2009). The vari-
ance in reproductive success between males and the level of
polygyny can become extremely high so that a single large
male can dominate two adjacent groups (Ttnez et al. 2009).
Differential maternal investment in the sexes can be seen as
early as lactation, when males spend more time suckling from
the highest yielding teat and females from the lowest yielding
teat (Gosling et al. 1984). Males also grow faster than females
throughout lactation and weaning (Gosling et al. 1984). In
nutrias, females in good condition may selectively abort small
litters that are predominantly female yet retain large litters and
small predominantly male litters (Gosling 1986).

Reproduction in nutrias includes relatively early sexual
maturity (i.e., at 4 month of age), year round breeding
(Leblanc 1994), post-partum estrus, and large litters reaching
13 pups (Newson 1966). All of these make this species a
successful invader worldwide (Carter and Leonard 2002).
The nutria was introduced to Israel in the 1950s. Their damage
to canal banks have led to an intensive culling program in the
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Hula Valley, in Northern Israel, from which we collected ma-
ternal hair samples, and conducted necropsies to quantify sex
ratios in utero. We predicted that high maternal testosterone
will be associated with better female condition and male-
biased litters (Grant 2007). Given that female condition has
been shown to be associated with testosterone in several spe-
cies (e.g., Bouissou 1978; Grant et al. 2011) and that better
condition mothers have male-biased litters (Clutton-Brock et
al. 1984; Sheldon and West 2004), the main hypothesis of this
study was that maternal testosterone is a significant mecha-
nism that mediates female reproduction through facultative
litter sex ratio adjustment (James 1989; Grant 2007).

Materials and methods
Sample collection

All animals were collected in the Agamon Hula Park, as a
secondary use of eight culling efforts in 2013-2015. A total
of 153 females were dissected, of which 76% (117) were
pregnant. However, we included only 82 pregnant nutrias
(i.e., gestation age of 50—138 days, where fetuses showed
differentiation of corporal regions) and their fetuses (n=
461;250 males, 211 females). All females were in good phys-
ical condition, without mange or bruising.

Pregnant females were weighed using a spring scale
(Pesola, Switzerland, 10 Kg capacity, 100 g division).
Fetuses were weighed using an electronic balance to the
nearest 0.01 mg (Precisa, Switzerland, BJ610C, d=0.01 g).
Morphometric measurements were collected using a standard
measuring tape. We measured total nutria length, length from
nose to tail base, shoulders to tail base in mothers, and crown
to rump in fetuses. One mother was physically damaged dur-
ing the culling. While we were able to accurately measure
weight in the mother and eight fetuses, length measurements
could not be accurately recorded.

Offspring sex ratio

Fetuses were mostly sexed based on external morphology. We
measured the anogenital distance (AGD; Correa and Frugone
2013), which has been historically used as a proxy for early
androgen exposure since testosterone is responsible for the
elongation of the perineal tissue (vom Saal and Bronson
1980). Though nutria fetal sex is clearly visible by external
examination, we followed Willner et al. (1979) validation of
AGD via internal examination of 10 male and 12 female fe-
tuses. This method is widely used in nutrias (e.g., Sone et al.
2008). We calculated an AGD index by dividing fetal AGD
length by fetal weight (Hotchkiss and Vandenbergh 2005). We
found that AGD was significantly longer in male fetuses
(AGD index, t,4; = 14.8; P<0.001) and used it thereafter. In

addition, we used published primers for the Sry gene (Garcia-
Meunier et al. 2001), which is only expressed in males, for
sexing fetuses that were < 11 weeks old. Before this gestation
age, the length of the AGD is less than 3.5 mm in males and
2 mm in females and is thus unreliable. The molecular method
was validated using four adult males, four adult females, two
male fetuses, and three female fetuses, whose internal and
external genitalia were examined. The housekeeping gene
12S was used as a positive control, and an adult female was
used as a negative control.

Steroid measurements

Hair testosterone and cortisol were extracted and quantified
using a protocol that was developed for wildlife and applied to
multiple species (e.g., Koren et al. 2002; Bryan et al. 2015;
Arnon et al. 2016). Hair is an ideal medium for studying the
long-term effects of stable social, physiological, nutritional,
and environmental conditions, baseline levels, and chronic
stress. In addition, hair is easy to store and is stable for long
periods (i.e., thousands of years; Webb et al. 2010; Wilson et
al. 2013). The main advantage of this approach is that hair
provides a long-term record of steroid hormone concentra-
tions integrated over the period of hair growth, reflecting the
average individual baseline and disregarding the acute stress
of culling. Hair testing is especially suitable for measuring
testosterone, which has been shown to be highly repeatable
between subjects over weeks and months, using a test-retest
design (Dabbs 1990; Sellers et al. 2007; Liening et al. 2010;
While et al. 2010).

Studies show that nutrias have two juvenile molts, yet after
the age of 7 months, hair growth becomes constant (Nabozny
et al. 2015). In our study population, it takes mature females
6—8 weeks to regrow full-length hair after it is fully shaven.
Thus, hair samples of culled pregnant females used in our
study likely reflect integrated circulating steroid levels from
the first and second trimester of pregnancy. Hair was sampled
by shaving an area of 2 cm? on each side of the upper thigh.
Hair was washed twice with water for 3 min, and twice with
isopropanol for 3 min, to remove external contaminants.
Steroids were extracted overnight with methanol following
sonication and incubation at 50 °C and quantified using com-
mercial ELISA kits (Salimetrics Europe, Newmarket, UK).
For more details on the extraction protocol, see Koren et al.
(2002), Klein et al. (2004), and Amon et al. (2016). For tes-
tosterone, the manufacturer reported antibody cross-reactivity
of 36.4% with dihydrotestosterone, 21.02% with 19-
nortestosterone, 1.9% with 11-hydroxytestosterone, 1.157%
with androstenedione, and less than 0.49% with all other ste-
roids. For cortisol, reported antibody cross-reactivity is 19.2%
with dexamethasone, and less than 0.568% with all other ste-
roids. Kits were validated for nutria hair by showing linearity
(5-50 mg hair for testosterone and 0.5—10 mg hair for cortisol)
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and parallelism between serially diluted hair extracts
(representing 5-50 mg for testosterone and 0.5-10 mg for
cortisol) and kit standards (slope covariance P= 0.68 for tes-
tosterone and P= 0.21 for cortisol). For testosterone, intra-
assay CV was 1.96% for six repeats on the same plate and
6.61% for cortisol. Inter-assay CV was 4.62% across three
plates for testosterone and 8.17% for cortisol. Recovery was
studied by spiking hair samples with a known steroid amount
and was calculated as 100.67% for testosterone and 90.93%
for cortisol.

Statistical analysis

We estimated pregnancy age using Newson’s formula for
weights (1966), which is based on litters of known gestational
age. General linear models assuming normal distribution and a
logit link function were used to test the effects of maternal
testosterone and cortisol levels (separately), female weight,
pregnancy age, and litter size, on offspring sex ratios. As fe-
male weight, pregnancy age, and litter size are intercorrelated,
we verified that the variation inflation factor was low, which
allowed us to retain all variables in the model (VIF between
0.8-1.9). Fetal weight and length from crown to rump in re-
lation to sex were tested using linear regression, with maternal
identity included as a random factor. In order to test whether
sex was a significant predictor of the heaviest fetus in the litter,
we used the likelihood ratio (deviation from 0.5 probability;
chi-square).

The significance of sex in predicting extreme growth retar-
dation in our sample was tested using a binomial probability
test. Fetuses exhibiting extreme growth retardation were de-
fined as weighing below 75% of the average fetal weight.
These fetuses had also been included in the sex ratio analysis,
since we had no way of accurately determining their viability
before the culling and subsequent freezing. Model fitting and
tests were all done in the JMP software (version 12, SAS Inc.,
Cary, NC, USA). Since no behavioral data were collected, no
blinded methods were used.

Data availability All data analyzed during this study are in-
cluded in the supplementary information files.

Results

Using necropsies of 82 pregnant nutrias, we found that the
most significant predictor of litter sex ratio is estimated preg-
nancy age (Table 1). As pregnancy progressed, the initially
high male biases in sex ratios decrease, as male fetuses are
potentially terminated (Fig. 1b; Table 1). We also found that
while female weight was not associated with testosterone
(F3,78=0.9, P= 0.45), both affected sex ratios (Table 1).
Litter size was not associated with sex ratios (Table 1).
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Surprisingly, females that had higher testosterone had female-
biased sex ratios (Fig. la; Table 1). In addition, females that
were heavier had male-biased sex ratios (Fig. 1c; Table 1).
Overall, the model explained 16% of the variance in litter sex
ratios (R*>=0.16, F481=3.658, P= 0.0088). No association
was found between maternal testosterone and litter size (R =
0.0006, n=82, P= 0.63), estimated pregnancy age (R*=
0.007, n =82, P=0.45), nor seasonality (F3 g; =0.34, P=0.8).

Maternal cortisol, the dominant nutria glucocorticoid
(Wilson et al. 1964; Callard and Leathem 1969), was not
related to offspring sex ratio (£ g, =0.0075, P= 0.93).
There was also no association between maternal cortisol and
litter size (R2 =0.006, n= 82, P= 0.48) nor maternal testos-
terone levels (R2=O.0005, n= 82, P= 0.85). We found a
positive relationship between maternal cortisol and estimated
pregnancy age (R*=0.05, n= 82, P= 0.038).

In 68% of litters (mean = 5.63 offspring/litter), the heaviest
fetus was a male (x21 =7.99; P= 0.0027). When the entire
litter was considered, male fetuses at the final stages of the
pregnancy (estimated pregnancy age of 121-138 days;
n= 47) were significantly heavier than female fetuses
(F137=4.67, P= 0.037) and significantly longer from crown
to rump (Fy 29 = 10.88, P = 0.0026), even after controlling for
maternal effects (mother ID). In addition, some fetuses exhib-
ited extreme growth retardation, weighing between 12 and
75% of the average fetal weight. Growth-retarded males were
more common than growth-retarded females (nine males vs.
two females, P= 0.0327, binomial probability of 9/11).

Discussion

Contrary to our predictions, elevated maternal testosterone was
related to female-biased litters. This result was surprising since
we hypothesized that good maternal condition would be related
with higher testosterone, and male-biased litters, as seen in sev-
eral mammalian studies (Grant 2007; Grant and Irwin 2005;
Shargal et al. 2008; Helle and Laaksonen 2008; Grant et al.
2011). In other systems, maternal testosterone has also been
shown to affect litter size (Rutkowska et al. 2005; Ryan et al.
2014), female reproduction (Christiansen 2001), and sex differ-
ences in the immune system (Libert et al. 2010). Since testoster-
one levels may also reflect maternal social rank (Grant et al.
2011), and increase in response to chronic stress (Grant et al.
2011), it may serve as a mediator between the maternal environ-
ment and internal prenatal sex ratios. Thus, if the ultimate mech-
anism maintaining biased sex ratios in nutria is sexual differences
in variation and fitness return for the two sexes (Trivers and
Willard 1973), then high testosterone may indicate maternal
stress or poor body condition driving the production of female-
biased litters. Alternatively, if the adaptive value of male-biased
litters lies in reducing local competitions with related daughters
(LRC hypothesis, Clark 1978), then low female testosterone may
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Table 1 Model effects test and

parameter estimates for predicting Parameter Estimates Std error Sum of squares F ratio Prob>
litter sex ratio. Italics denotes P
significant effects (n =82)
Estimated pregnancy age —0.0047 0.0016 0.463 9.14 0.0034
Maternal testosterone —0.0413 0.018 0.268 529 0.0241
Maternal weight 0.0662 0.0298 0.249 492 0.0295
Litter size —0.0105 0.0175 0.018 0.36 0.5499

indicate a kin-dense local environment, triggering the production
of more sons, the dispersing sex in nutria.

Our morphological finding that females that weighed more
tended to produce male-biased litters supports parental invest-
ment theory, where mothers in better condition should invest
more in male offspring, as male offspring size and/or condition
may produce greater fitness returns (Trivers and Willard 1973).
This result is in line with previous studies, which found that
nutria mothers in better condition produce more sons (Gosling
et al. 1984; Gosling 1986). Overall, males in polygamous species
are expected to show higher variation in fitness returns. Nutrias
are polygynous, with extensive variation in male reproductive
success (Gosling and Baker 1989; Guichon et al. 2003). Large
males control large territories and have greater reproductive suc-
cess (Gosling and Baker 1989; Guichon et al. 2003; Ttnez et al.
2009). Although all of these morphological findings are consis-
tent with TW, they may not constitute conclusive evidence
supporting this hypothesis (e.g., Hewison and Gaillard 1999;
Brown 2001; Schindler et al. 2015). Poor nutrient supplies may

1.00

be the cause of abortion at various stages of gestation in the nutria
(Gosling et al. 1984). In other mammalian species, maternal
weight, diet, fat reserves, and nutritional status were associated
with sex ratio biases, where better nutritional condition was
linked with a male-biased sex ratio (e.g., Rivers and Crawford
1974; Ryan et al. 2011). However, this relationship may not be
universal (Javad Zamiri 1978).

Poor condition, whether resulting from density, social, or
nutritional environments, may lead to maternal stress. While
elevated cortisol might imply maternal stress (reviewed in
Navara 2010), we did not find an association between mater-
nal cortisol and sex ratios. We found only a weak positive
relationship between maternal cortisol and estimated pregnan-
cy age (R2 =0.05,n= 82, P=0.038), which can be accounted
for by the rise in maternal glucocorticoids with the progression
of pregnancy, observed in many species (Nathanielsz et al.
1975; Kitterman et al. 1981; Chan et al. 1993; Patel et al.
1996). However, stressful conditions may be associated with
elevated testosterone in females (Powell et al. 2002; Roos et
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Sex ratio
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Fig. 1 Estimated model parameter slopes and offspring sex ratios. Sex
ratios are the ratio of males in a litter, where 1 indicates all male litters and
0 indicates all female litters. Shaded area indicates confidence intervals. a
Higher maternal testosterone is associated with female-biased sex ratios.

Estimated pregnancy age (days)
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Maternal testosterone is expressed in picograms per milligram of hair. b
As pregnancy progresses, sex ratios decline. Pregnancy age is estimated
in days according to Newson (1966). ¢ Higher maternal weight is asso-
ciated with male-biased sex ratios
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al. 2011; Christiansen 2001; King et al. 2005; Grant et al.
2011; Bryan et al. 2015; but also see Ward and Weisz 1984;
Kunstmann and Christiansen 2004; Schopper et al. 2012),
possibly linking environmental stressors to reproductive sub-
optimality and sex allocation (Grant et al. 2011; James 2015).
High levels of testosterone may have adverse effects on fe-
male reproduction, such as an increased risk of infertility and
cycle disturbance, fetal loss, preterm birth, and low birth
weight (Balen et al. 1995; James 2015). Testosterone may be
linked to nutrias’ adjustment to changes in the environment by
fetal absorptions and abortions (~50-60% of embryos not
reaching full term; Newson 1966; Willner et al. 1979). In
human females, for example, high levels of circulating testos-
terone are associated with a high incidence of ovarian dys-
function (Smith et al. 1979; Steinberger et al. 1981), and in
rabbits (Oryctolagus cuniculus), administration of testoster-
one during pregnancy resulted in increased rates of abortion
and resorption (Fuller et al. 1970). Stress had been shown to
effect sex ratio, reduce litter size, and cause differential male
mortality pre-and post-conception (e.g., Pratt and Lisk 1989;
Bacon and McClintock 1999). Males seem to be especially
vulnerable to stressful environments, from conception to in-
fancy (e.g., Kruger and Nesse 2004; Catalano and Bruckner
2006; Baxter et al. 2012). This appears to be reflected in our
study, since we found that sex ratios decreased as pregnancies
progressed. We also found significantly more growth retarda-
tion and fetal absorption in male than female fetuses (9 vs. 2,
respectively), suggesting post-implantation sex ratio adjust-
ments (Gosling 1986), independently, or in addition to pre-
implantation sex allocation. In the last stage of pregnancy,
male weight and length were higher than females’, suggesting
higher in utero growth rate and greater demands for maternal
resources (Gosling et al. 1984).

Trade-offs between litter size and sex ratios have been at-
tributed to both testosterone and cortisol, suggesting an indi-
rect effect of the hypothalamic—pituitary—adrenal axis activa-
tion on sex ratio via stimulation of adrenal testosterone (Ryan
et al. 2014). Though we did not find a relationship between
cortisol and testosterone in our study, we cannot exclude the
possibility that stress affected adrenal or ovarian androgen
production. In addition, hair testing is not the most suitable
matrix to detect short-term associations between steroid levels
under acute stress. Contrary to blood, the steroid levels that we
measured in hair probably represent average circulating levels
over the early weeks of pregnancy. Stress may mediate the
hypothalamic—pituitary—gonadal axis in females via activation
of a sympathetic neural pathway originating in the hypothal-
amus and releasing norepinephrine into the ovary (Toufexis et
al. 2014). Chronic or repeated sympathetic nerve activation,
caused by stress, can also stimulate androgen secretion from
the ovary, affecting reproductive function (Lara et al. 2002;
Greiner et al. 2006; Bernuci et al. 2008; Toufexis et al. 2014).
At this point, the mechanisms behind our results remain a
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mystery. However, we suggest that maternal testosterone
may be an important mediator of litter sex ratio adjustment
through its reflection of environmental conditions and its role
in reproduction.
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