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Abstract

This article provides a brief historical perspective on the integration of physiology into the concept of the pace of life of birds,
evaluates the fit of immune function into this framework, and asks what it will take to fruitfully understand immune functioning
of birds in pace of life studies in the future. In the late 1970s, physiology started to seriously enter avian life history ecology, with
energy as the main currency of interest, inspired by David Lack’s work in the preceding decades emphasizing how food
availability explained life history variation. In an effort to understand the trade-off between survival and reproduction, and
specifically the mortality costs associated with hard work, in the 1980s and 1990s, other physiological phenomena entered the
realm of animal ecologists, including endocrinology, oxidative stress, and immunology. Reviewing studies thus far to evaluate
the role of immune function in a life history context and particularly to address the questions whether immune function (1)
consistently varies with life history variation among free-living bird species and (2) mediates life history trade-offs in experiments
with free-living bird species; I conclude that, unlike energy metabolism, the immune system does not closely covary with life
history among species nor mediates the classical trade-offs within individuals. Instead, I propose that understanding the tremen-
dous immunological variation uncovered among free-living birds over the past 25 years requires a paradigm shift. The paradigm
should shift from viewing immune function as a costly trait involved in life history trade-offs to explicitly including the benefits
of the immune system and placing it firmly in an environmental and ecological context. A first step forward will be to quantify the
immunobiotic pressures presented by diverse environmental circumstances that both shape and challenge the immune system of
free-living animals. Current developments in the fields of infectious wildlife diseases and host-microbe interactions provide
promising steps in this direction.
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Physiology, life history, and behavior united
in the pace of life

Since the introduction of the pace of life concept at the end of
the twentieth century, several research disciplines have in-
creasingly become integrated, notably comparative
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physiology/ecophysiology, life history ecology, and behavior-
al biology. Each has its own rich body of knowledge and
familiarity with these can positively contribute to the integra-
tion. For example, physiologists have a long-standing interest
in connecting physiological mechanisms to demographic
traits such as survival and reproduction. More than a century
ago Rubner (1908), later enhanced by Pearl (1928), proposed
the rate of living theory, based on the observation that the
faster an organism’s metabolism, the shorter its life span.
After the Second World War, comparative physiologists built
upon this work on the rate of living by uncovering differences
in metabolic rate among animals in different environments,
laying the foundation for ecological energetics (e.g.,
Scholander 1950a, b; Bartholomew and Dawson 1953,
Schmidt-Nielsen 1972, 1984). During these same decades,
among animal ecologists, understanding reproduction and sur-
vival became major topics of research, effectively spawning
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the field of life history ecology and evolution (for a review see
Ricklefs 2000a). More than half a century after the inception
of'the rate of living theory, animal ecologists fascinated by life
history trade-offs started to include measurements of the un-
derlying physiology to understand factors driving the ecology
and evolution of life history phenomena such as reproduction
and migration. Towards the end of the twentieth century, the
concept of the pace of life emerged in the literature, basically
replacing and combining the rate of living theory that had
inspired comparative physiologists and life history theory that
had guided animal ecologists. Also during this time, the dis-
covery that animals have individually consistent coping
styles—or personalities—with significant ecological and evo-
lutionary consequences spawned a new field of behavioral
research (e.g., Verbeek et al. 1994, 1996; Dingemanse et al.
2004). Where the comparative physiologists emphasized
among-species comparisons, the animals ecologists aimed to
reveal trade-offs at the within-individual level using experi-
ments, and most recently, the behavioral biologists interested
in personalities focused on understanding among-individual
variation. In order to advance the integration of these various
research traditions, in this article, I will use the extensive
knowledge of birds to (i) provide a brief history of the inte-
gration of physiology into the avian life history ecology
framework, (ii) review comparative among-species studies
and experimental within-individual studies to evaluate the fit
of immune function as a physiological life history trait that
represents investment in self-maintenance/survival in this
framework, and (iii) explore what it takes to fruitfully under-
stand immune function in avian pace of life studies in the
future.

Life history variation and trade-offs
at the species and individual level:
a role for physiology

At the species level, survival and reproduction are inversely
associated (Ricklefs 2000b). Early bird ecologists had differ-
ent explanations for this inverse association (for historical
overviews see Ricklefs 2000a, b): David Lack, who worked
in temperate zone Europe with bountiful springs, proposed
that food supply drove avian life history variation, through
its primary effect on reproduction. Reproduction, in turn, af-
fected mortality, through density dependence effects.
Contemporary ecologists Alexander Skutch, who worked in
tropical American sites, and Philip Ashmole, who studied
birds on oceanic islands, proposed that the primary driver of
life history variation was (extrinsic) mortality. They agreed
that mortality determined population density and thereby af-
fected reproduction either directly (Skutch) or through food
availability (Ashmole). Despite their different views of the
mechanisms underlying life history variation, all three of these
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early ecologists looked to the ecological factors characterizing
the environments in which they worked to explain the inverse
relationship between survival and reproduction.

At the within-individual level, the trade-off between sur-
vival and fecundity has been and continues to be heavily stud-
ied. Especially in Europe, much of the life history work on
birds was built on Lack’s ideas about the role of food. The
time had come to investigate the mechanisms underlying life
history variation. A landmark paper that created focus on these
underlying mechanisms was “The prudent parent: energetic
adjustments in avian breeding” (Drent and Daan 1980). A
famous part of this paper discusses the optimal workload of
individual parents that care for their young:

We will argue that the working capacity of the parents is
limited (in proximate fashion) by physiological con-
straints defining a sustained work level in metabolic
terms. In some situations parent birds may ignore this
physiological warning level, but the penalty will be a
loss of condition which will in turn entail increased
mortality. At this point much of the evidence is circum-
stantial... (Drent and Daan 1980).

In other words, Drent and Daan (1980) suggested that there
are limits to how hard an individual should work for its off-
spring. Working too hard would negatively affect body con-
dition, although these authors at that time did not specify
exactly what comprised body condition. The first step was to
demonstrate that hard work really did increase mortality. A
classic example is a brood size manipulation experiment with
kestrels (Falco tinnunculus) that showed that individuals trig-
gered to work harder, because they received more nestlings to
raise, showed a serious drop in survival during the next winter
(Daan et al. 1996). The study of the kestrels was unique in
following the individual birds throughout the winter after the
experimental breeding season and determining the exact
timing of death as well. Such manipulations of brood size
and reproductive effort became characteristic for the 1980s
and 1990s (e.g., Dijkstra et al. 1990; Norris et al. 1994;
Moreno et al. 1995; Sanz and Tinbergen 1999). These types
of studies suggested that the “loss of condition” was really
there.

The mechanistic explanation for the trade-off between re-
production and survival, i.e., the units in which to measure the
loss of condition, started to receive attention too. Originally,
the mechanistic explanation focused on food and energetics
(Drent and Daan 1980; Kersten and Piersma 1987; Daan et al.
1996), in line with David Lack’s hypothesis about the primary
role for food in reproduction. This interest in energetics led to
the introduction of field energetics methodologies (e.g., Hails
and Bryant 1979; Weathers and Nagy 1980; Weathers et al.
1984; Williams and Nagy 1984; Buttemer et al. 1986) into
studies of life history ecology, in addition to the use of already
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available respirometry techniques to measure metabolism in
the laboratory (Lasiewski and Dawson 1967; Hill 1972;
Withers 1977). A decade later, in the late 1980s and early
1990s, other physiological phenomena increasingly received
attention from ecologists too: stress endocrinology (Wingfield
and Silverin 1986; Astheimer et al. 1989), oxidative damage
and aging (von Schantz et al. 1999; Haussmann et al. 2002;
Monaghan and Haussmann 2006), and immune function
(Norris et al. 1994; Sheldon and Verhulst 1996; Deerenberg
et al. 1997; Nordling et al. 1998; Lochmiller and Deerenberg
2000; Norris and Evans 2000). Integrating measures of these
physiological systems into ecological studies further im-
proved the possibilities to qualify and quantify the elusive
concept of “body condition.” In the course of time, a key shift
occurred: these physiological traits started to be viewed as life
history, or pace of life, traits themselves instead of merely
mechanistic explanations underlying classical life history phe-
nomena such as the trade-off between survival and reproduc-
tion (Ricklefs and Wikelski 2002; Sandland and Minchella
2003; Tieleman et al. 2004).

Immune function in a life history context:
a mechanism mediating trade-offs?

In the 1990s, at the start of the discipline of eco-immunology,
virtually nothing was known about variation in immune func-
tion of free-living wild animals. This included, for the sake of
the current paper, a lack of knowledge of immunological var-
iation in birds too. Information was largely restricted to
veterinary-based knowledge of zoo animals and poultry. The
interest in eco-immunology arose more or less simultaneously
in studies of a variety of ecological and evolutionary phenom-
ena. The common denominator among these studies was an
interest in what makes up “body condition.” Because natural
selection favors “good quality” individuals, it is obviously
relevant to ask what good quality really is. This applies to
whatever context or phenomenon is of interest, including traits
subject to sexual selection (Hamilton and Zuk 1982; Folstad
and Karter 1992), how behavior is mediated by brain and
immune function (psychoneuroimmunology), population dy-
namics (Lochmiller 1996), costs underlying life history-trade-
offs (Deerenberg et al. 1997; Nordling et al. 1998), and pre-
dictions of which species might be good invaders into new
areas such as cities (invasion biology, Lee and Klasing 2004).

Zooming in on how immunology entered and affected the
field of life history ecology and evolution, and particularly the
understanding of trade-offs between reproduction and survival/
self-maintenance, I can evaluate hypotheses at the level of
species and individual (Lochmiller and Deerenberg 2000;
Lee 2006). Comparisons among species inform us about
macro-evolutionary patterns; (experimental) studies at the level
of individuals provide insights into micro-evolutionary

processes. At the species level, the general hypothesis is that
species with high reproductive rates have low survival and
concordant low investments in immune function (Lochmiller
and Deerenberg 2000; Ricklefs and Wikelski 2002; Martin
et al. 2004, 2006; Tieleman et al. 2005; Lee 2006; Lee et al.
2008; Matson et al. 2009b; Versteegh et al. 2012). The analogy
for individuals is that those that put in more (in an experimental
context, i.e., too much) effort to reproduce do so at the expense
of their immune defenses with the consequence that their
probability of survival decreases (Deerenberg et al. 1997,
Lochmiller and Deerenberg 2000; Tieleman et al. 2008;
Hegemann et al. 2013a). These general hypotheses are
sometimes refined to specify differential responses of different
arms of the immune system that may be subject to different
selective pressures (Lochmiller and Deerenberg 2000; Lee and
Klasing 2004). Although these hypotheses were clear, it was
not at all straightforward to describe the state of immune de-
fenses in wild birds in a way that is both ecologically relevant
and physiologically sound. Therefore, testing these hypotheses
was preceded or accompanied by the development of assays to
quantify immune function in free-living animals (Box 1).

Box 1 Describing immune defenses, in a way that is ecologically
relevant and physiologically sound

The vertebrate immune system is highly complex and at the inception of
eco-immunology in the 1990s was best known from studies of humans
and domesticated animals. Unfortunately, that knowledge could not be
directly used in the ecological context of wild animals. Doctors and
veterinarians focused on making sick animals better by fixing specific
problems. Most ecological and evolutionary questions asked what it
takes for animals to stay healthy, i.e., how they prevent problems.
These ecological and evolutionary questions required assays that
allowed comparisons among species and individuals and were suitable
for non-model organisms. In addition, they preferably could be applied
while animals functioned naturally in their natural habitats, with min-
imal capturing and (repeat) sampling. That meant that the field of
ecological immunology had to develop its own set of tools.

In the early days, ecologists sought biomedical or veterinary advice and
emphasized measurements of the acquired arm of the immune system,
such as antibody defenses triggered by the injection of sheep red blood
cells (e.g., Deerenberg et al. 1997; Lochmiller and Deerenberg 2000). In
the past 10—15 years, attention has shifted to the innate, non-specific arm
of the immune system to the components that together make up the first
line of defense and are thought to be more relevant for ecological and
evolutionary questions. (Lochmiller and Deerenberg 2000; Lee 2006;
Millet et al. 2007). Although many authors have applied these assays,
many are still being fine-tuned and further studied to improve interpre-
tation (Matson et al. 2005, 2006b, 2009a, 2012a, b; Millet et al. 2007;
Tieleman et al. 2010; van de Crommenacker et al. 2010; Horrocks et al.
2011b). Current practice is to use a combination of assays to try to
capture multiple components of the immune system (Lee 2006; Millet
et al. 2007; Buehler et al. 2011, 2012; Evans et al. 2017). Despite the
progress in developing and interpreting ecologically relevant immune
assays, the field of ecological immunology still has important steps to
make to summarize the complexity of an individual’s or species’ im-
mune system, for example, in a limited number of key axes, in a way that
describes its ecological functioning. Future progress in ecological im-
munology will be greatly served by further development of the ecolog-
ical toolbox and of the ecological interpretation of the various measures.
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Immune function in a life history context:
among species

Empirical support for the hypothesis of high investment in
reproduction coinciding with low investment in immunity
and low survival at the species level is mixed in comparative
studies of birds. Whereas some studies support components of
the hypothesis (e.g., Martin et al. 2001; Tella et al. 2002;
Tieleman et al. 2005; Lee et al. 2008; Pap et al. 2015), others
do not find support (e.g., Horrocks et al. 2012a, 2015;
Versteegh et al. 2012). Notably, these latter studies do find
that another component of physiology, namely metabolic rate,
varies according to predictions with life history. In addition,
several studies contradict each other. For example, Tella et al.
(2002) do not find the relationship between cell-mediated
immunity and clutch size that Martin et al. (2001) reported a
year earlier. Yet, Tella et al. (2002) do find a relationship
between cell-mediated immunity and longevity. Although dif-
ficult to quantify without in-depth study, as a research com-
munity, we may need to be aware of publication bias, as cur-
rent scientific practice favors attention for positive and signif-
icant findings while deemphasizing negative and non-
significant results. Studies that find no correlation between,
for example, reproductive effort and components of immunity
should be considered just as important and informative as
those studies that do find such relationships.

The difficulty in extracting a general pattern of covariation
between immune function and pace of life, and also the diffi-
culty in devising meta-analyses in order to obtain a general
pattern, may arise for a number of reasons: First, there is no
common approach in selecting the most appropriate trait(s) to
characterize pace of life, and the outcomes of searches for
correlations between immunity and pace of life depend on
the pace of life trait that is included (e.g., Tella et al. 2002;
Lee et al. 2008). Some studies relate immune function directly
with measures of reproduction (especially clutch size) or sur-
vival (lifespan) (e.g., Tella et al. 2002; Horrocks et al. 2012a),
but more often studies use proxies that are considered part of
the pace of life syndrome and expected to indirectly correlate
with reproduction and survival, such as incubation period,
development time, or metabolic rate (e.g., Tieleman et al.
2005; Lee et al. 2008; Pap et al. 2015). Perhaps ideally, one
would like to use the probability of recruitment of individual
offspring into the breeding population and the probability of
survival of an adult from one breeding season to the next
(Ricklefs 1983; Tella et al. 2002). Alternatively, a multivariate
approach including a comprehensive set of life history traits to
capture pace of life might be helpful (see also Araya-Ajoy
et al. 2018, topical collection on Pace-of-life syndromes).

The second reason for the difficulty in extracting a com-
mon picture of immune function and life history is that there is
a plethora of indexes to qualify and quantify the immune
system of wild animals, and the outcomes of searches for

@ Springer

correlations with life history traits are not consistent among
different immune indexes within a single study and within
identical immune indexes among different studies. To add to
the complexity, different immune indexes only sometimes co-
vary with each other, and patterns of covariation are not con-
sistent among species or populations and over time, empha-
sizing the overlapping and redundant nature of the immune
system (Matson et al. 2006a; Versteegh et al. 2012; Buehler
et al. 2012). Examples to illustrate these points include some
early comparative studies that used the, then fashionable, cell-
mediated immune function (PHA wing web swelling) and
found contradictory results. Whereas Martin et al. (2001)
found a positive association between cell-mediated
immunity and clutch size, Tella et al. (2002) could not repeat
this with an extended data set. Studies that are contradictory
within themselves include for example Lee et al. (2008), who
show how one immune index (natural antibodies) varies with
one pace of life trait (incubation period) and not with another
(clutch size), while another immune index (complement)
shows exactly the opposite pattern (varying with clutch size,
not incubation period). Studies like this, revealing as they are
about complexity and variation, leave us with an unsatisfac-
tory answer to the question of a general fit of immune function
into the pace of life syndrome.

A third reason for the lack of general patterns between
immune function and life history may be that comparative
studies of immune function and life history used different sets
of bird species. Because of their differences in environment
and ecology, this then tends to obscure comparisons of results
among studies (see also Sandland and Minchella 2003). Some
studies, for example, are restricted to the Neotropics
(Tieleman et al. 2005; Lee et al. 2008), others to temperate
Europe (Pap et al. 2015), while again others include a mixture
of species from a variety of continents (Martin et al. 2001;
Tella et al. 2002; Horrocks et al. 2012a, 2015).

Finally, the absence of a clear trade-off between immune
function and life history traits could result from variation in
acquisition hiding variation in allocation of resources, a
classical explanation for contradictory results in life histo-
ry studies (van Noordwijk and de Jong 1986; Reznick et al.
2000; Araya-Ajoy et al. 2018, topical collection on Pace-
of-life syndromes). This problem is especially pertinent at
the level of among-individual variation within a popula-
tion, when individuals with more resources can have
higher investments in two traits that are assumed to be
traded off against each other, than individuals with fewer
resources. At the level of comparisons among species,
when working with trait values averaged over multiple
individuals, this acquisition-allocation problem is general-
ly smaller (van Noordwijk and de Jong 1986; Araya-Ajoy
et al. 2018, topical collection on Pace-of-life syndromes).
However, only experimental studies could unequivocally
expose life history trade-offs.
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In light of these potential reasons for the lack of general
patterns between immunity and life history, I find it telling that
more integrative studies that included multiple immune index-
es and multiple life history traits, while controlling for ecolog-
ical variation by focusing only on closely-related species,
found no relationships between immune function and pace
of life (Ardia 2007; Horrocks et al. 2012a, 2015; Versteegh
etal. 2012).

Immune function in a life history context:
experiments at the individual level

Empirical support from experiments to test the individual lev-
el hypothesis is also ambiguous. This hypothesis states that
those individuals that are experimentally triggered to invest
more effort in reproduction do so at the expense of their im-
mune defenses with the consequence that their probability of
survival declines. Trade-offs between reproduction and im-
mune function are reported frequently in experimental studies
(e.g., Deerenberg et al. 1997; Nordling et al. 1998; Knowles
et al. 2009), as are trade-offs between survival and immune
function (e.g., Hanssen et al. 2004; Meller and Saino 2004).
However, studies also abound that manipulated work load yet
found no consequences for immune function, or found effects
on only some immune indexes and not on others, or found
effects that depended on location and year (e.g., [lmonen et al.
2002; Ardia 2005; Tieleman et al. 2008; Knowles et al. 2009;
Hegemann et al. 2013a). Recent reviews addressing the more
general question of the physiological costs of hard work dur-
ing reproduction point out that there is substantial variation in
workload capacity among individuals, which in turn contrib-
utes to the individual variation in responses to experimental
manipulations, including those of the immune system
(Williams 2012; Williams and Fowler 2015). In addition, the
time lag between manipulation and effect is variable, while
typically only a single time point is measured (Sandland and
Minchella 2003; Hegemann et al. 2013a; Williams and Fowler
2015). Specifically, the changes in parental immune function
resulting from manipulation during the first brood sometimes
do not appear during the first brood, but during subsequent
broods later in the breeding season, or in the following year
(e.g., Hegemann et al. 2013a). This variation in time lag and
the finding in some studies that experimental effects of ma-
nipulations of reproductive effort on immune function vary
among years or locations (e.g., Sandland and Minchella
2003; Ardia 2007; Hegemann et al. 2013a; Williams and
Fowler 2015) suggest that the ecological and/or environmen-
tal context may feed into the dynamics between reproduction
and immunity.

A final puzzling and complicating factor when studying the
individual’s immune responses to experimentally altered re-
productive effort is the lack of covariation among

immunological indexes that is reported in many studies
(Ardia 2007; Tieleman et al. 2008, 2010; Buehler et al.
2012; Hegemann et al. 2012, 2013a; Versteegh et al. 2012;
Pigeon et al. 2013). In addition, when covariation is reported
among some immune indexes, this is often species or
population-specific and not repeated in other studies
(Versteegh et al. 2012). For example, hemolysis and hemag-
glutination covary in studies on stonechats (Saxicola sp.)
(Versteegh et al. 2012), red knots (Calidris canutus)
(Buehler et al. 2008a; Buehler et al. 2011), and several species
of waterfowl (Matson et al. 2006a), but not in kestrels (Parejo
and Silva 2009) and five shorebird species (Mendes et al.
2006). These findings could be highly influential in directing
future thinking about immune function in an ecological con-
text. Somehow, as a research community, we have not yet
come to grips with the complexity provided by the redundan-
cy and overlapping functions within the immune system and
the fact that each immune system is shaped by the unique
history of disease and antigenic encounters in the course of
an individual’s life time. Including these notions in hypotheses
about ecological immunity, however, would fit with the ob-
servation that individual animals can vary different compo-
nents of their immune system independent from each other
and adds extra scope for understanding individual variation
in responses to work load demands.

Immune function in a life history context:
conclusions

Evaluating the comparative and experimental studies of im-
mune function in the context of life history trade-offs, my first
conclusion is that there is tremendous variation in immune
parameter values, both among species and among individuals.
This raises the interesting question of why there is so much
variation? My second conclusion is that, despite support by
some studies, in general, the variation in immune function
does not line up smoothly with life history variation at the
species level, nor consistently explain life history trade-offs
in experiments targeted at the within-individual level. Studies
that diverge from predictions about the links between immu-
nity and life history tend to have included large environmental
or ecological variation, either because of including a large
biogeographical scope (e.g., Ardia 2007; Horrocks et al.
2012a, 2015; Versteegh et al. 2012, 2014) or multiple years
within a single study site (Hegemann et al. 2012, 2013a;
Pigeon et al. 2013). This finding leads to the hypothesis that
environmental conditions are more important in shaping im-
mune function of birds than life history variation. This hypoth-
esis deserves testing in a broader taxonomic context than
birds, spanning a wider variety in immune systems and life
history traits than present in the avian clade. In a review on
invertebrates, Sandland and Minchella (2003) reached a
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similar conclusion and recommendation. Studies in other tax-
onomic groups such as mammals (e.g., Archie et al. 2012;
Brock et al. 2013; Flies et al. 2015) also suggest that environ-
mental and socioecological conditions affect immune function
and need to be taken into consideration when exploring the
nature of links between immune function and life history.

In addition, to build on the foundation in understanding
immune function as life history trait, laid by the among-
species comparisons and the within individual trade-offs
reviewed in this paper, it would be useful to more thoroughly
investigate among-individual variation in immune function in
a variety of study systems. Among-individual level variation
in immunity has thus far received relatively limited attention
and among-individual correlations are generally reported at
the phenotypic level only. To increase understanding of
level-specific trade-offs will require studies with much larger
sample sizes than are available from previous ecophysiologi-
cal work, and study designs that allow teasing apart within and
among individual effects, both genetic and environmental
(van de Pol and Wright 2009; Dingemanse et al. 2012). I
expect that such studies will also benefit greatly from includ-
ing measures of the environmental and ecological contexts to
understand variation in immune function.

Immune function in the context
of environment

It has been known for a long time that environment impacts
life histories. For example, clutch sizes are smaller in the tro-
pics than in temperate areas (Moreau 1944; Ricklefs 1980),
growth rates of chicks are higher in the arctic than at lower
latitudes (e.g., Schekkerman et al. 2003), and metabolic rates
are low in desert (e.g., Tieleman and Williams 2000; Tieleman
et al. 2004) and tropical regions (e.g., Tieleman et al. 2006;
Wiersma et al. 2007) compared with temperate zones. Also for
individuals, there is substantial variation in reproduction and
survival related to environmental conditions, for example,
among seasons and years. It is therefore perhaps not
surprising that hypotheses were put forward about how and
why immune function, as an upcoming life history trait, varies
with environmental conditions. For example, Meller and
Erritzoe (1996) found that the size of bird immune organs is
associated with nest type and particularly nest reuse. In
addition, Piersma (1997) suggested that arctic and marine
waders would combine fast growth and costly migrations with
low immune investments in relatively resource rich and para-
site poor environments, compared with lower-latitude fresh-
water shorebirds that would have high immune investments.
Similarly, deserts were proposed to provide not only fewer
resources but also to harbor fewer diseases than the tropics,
selecting for a slow pace of life in combination with low
instead of high investments in immunity (Tieleman 2005;
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Horrocks et al. 2011a). And finally, Matson (2006) tested
whether island birds had reduced immune defenses to evaluate
the hypothesis that islands harbor relatively few diseases com-
pared with continents. Generalizing the various hypotheses
about connections between specific environments and immu-
nity, among species, immune investments were proposed to
depend on resources available for competing life history func-
tions (such as growth, migration, or reproduction), while the
balance between immune function and these other functions
may be shifted by the level of infection risk (Lochmiller and
Deerenberg 2000). At the individual level, investments in im-
munity were hypothesized to be balanced against competing
annual cycle activities (such as growth, migration, or repro-
duction) and adjusted to the risk of becoming sick.

Although not extensively studied, support for these hypoth-
eses linking immunity with environment exists both at the
species level and at the individual level. For example, at the
species level, Horrocks et al. (2015) found that among 12 lark
species representing 23 environments, immunity was not as-
sociated with life history, but when plotted along a gradient of
environmental aridity, ranging from temperate environments
to hyper-arid deserts, various innate immune traits decreased
when environments were drier. This finding is congruent not
only with the idea that fewer resources are available for allo-
cation to immune function in drier environments, but also with
the assumption that drier areas are less diverse in general,
including when it comes to disease-causing agents
(Tieleman 2005). Other studies also show differences in im-
mune function among environments, at biogeographic scales
ranging from large, such as latitudinal gradients, to small,
including variation in land use by humans (e.g., Martin et al.
2004; Buehler et al. 2008b; Buehler et al. 2009¢; Pigeon et al.
2013; Zylberberg et al. 2013; Gutierrez et al. 2017), but a
comprehensive review remains to be constructed.

At the individual level, environmental variation occurs at
different levels, for example, among seasons or years within
individuals or with different behaviors within or among indi-
viduals. Seasonal variation in immune function is well docu-
mented albeit for only a limited number of bird species
(Buehler et al. 2008a; Pap et al. 2010a, b; Hegemann et al.
2012, 2013b; Horrocks et al. 2012b; Versteegh et al. 2014).
From these studies, the seasonal pattern of variation is studied
in multiple years only in the skylarks (Alauda arvensis), and
surprisingly, two consecutive years can show largely the same
pattern but also substantially diverge in some seasons
(Hegemann et al. 2012). This is the case for multiple immune
indexes (complement-mediated lysis, natural antibodies,
haptoglobin) and raises the question of what causes differences
in immunity among years? Candidate environmental factors to
consider include food/diet, temperature, and disease dynamics/
risk of infection within a population. In general, factors such as
food and temperature may be more predictable than disease
dynamics, and the question arises what the relative importance
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is of variation in each of these factors to explain the observed
variation in immune function. The individual experience with
these environmental factors may also be influenced by an indi-
vidual’s behavioral style, potentially explaining among-
individual variation in immune function. Proactive styles have
been hypothesized to be associated with either higher (Barber
and Dingemanse 2010) or lower (Réale et al. 2010) investment
in immunity. A recent study on superb fairy wrens (Malurus
cyaneus) found weak support for the latter based on a decrease
in one (natural antibodies) of four immune indexes with explo-
ration score, whereas the other indexes did not vary with this
exploration score (Jacques-Hamilton et al. 2017).

The relative importance of different environmental factors
in shaping the immune function of birds, at ultimate and prox-
imate levels, remains understudied, especially in the field.
Studies in captivity suggest that resource balance cannot ex-
plain everything. Stonechats, kept in a common garden setting
in captivity with ad libitum access to food and constant room
temperatures during the entire year, displayed significant
changes in immune function in the course of the year
(Versteegh et al. 2014). The annual pattern differed among
subspecies, with the three subspecies involved originating
from different environments (Versteegh et al. 2014).
Experimentally modifying the annual pattern of temperature
that the captive stonechats experienced into a dynamic pattern
that resembled their natural situation more closely did not
change their annual pattern of immune function (Versteegh
et al. 2014), a finding corroborating an earlier study on red
knots (Buehler et al. 2008b). Likewise, altering day length and
food availability had little impact on indexes of constitutive
innate immunity (Buehler et al. 2009a, b), but Buehler et al.
(2009a) found that the acute phase response of red knots in
captivity was affected when birds faced food restriction.

Experimental manipulations of environmental factors to
study effects on immunity in free-living birds are difficult to
achieve and have not been performed. A “natural experiment”
with skylarks in the Netherlands, however, suggests potential
for causal environmental effects on immune function
(Hegemann et al. 2015). The skylarks of the breeding popu-
lation in the Drents-Friesche Wold are partial migrants, which
mean that some individuals stay around the breeding site in
the winter, whereas others migrate south, most likely to France
and the Iberian Peninsula. Using stable isotope values in the
larks’ claws to determine whether birds stayed or not,
Hegemann et al. (2015) compared body condition of locally
wintering birds and their migrant counterparts. Although care-
ful interpretation is needed because these birds were not ran-
domly assigned to either strategy, the findings are intriguing.
Considering migrating skylarks only, individuals that did not
survive until the following breeding season had the same
complement-mediated lysis titer as individuals that did sur-
vive. For residents, this was different: non-surviving residents
had lower lysis scores before the winter than surviving

residents. Thus, lysis appeared to partially predict survival
for resident birds (Hegemann et al. 2015). Within-individual
changes in lysis scores for birds that survived the winter also
pointed to the direction of an environmental effect on immu-
nity, because migrant birds scored similarly on lysis in two
consecutive breeding seasons, but resident birds had a lower
lysis score after spending the winter in the Netherlands
(Hegemann et al. 2015). Although it is unclear which factors
drive this, environmental factors provide a possible explana-
tion. It would be worthwhile to follow up with experimental
studies manipulating environmental circumstances in the win-
ter, also in light of the dramatic decline of skylarks in most of
north-western Europe (in the Netherlands, over 95% in the
past four decades), which has been attributed to a poor winter
food situation (Donald et al. 2001; Pan-European Common
Bird Monitoring Scheme, PECBMS 2009).

Returning to my quest to understand variation in immune
function in wild birds, I can now conclude that among species
in different environments, immunity substantially varies, al-
beit not along the lines predicted with life history variation.
Also within individuals, in different seasons or years, clear
changes in immune function are documented, but the environ-
mental factors that are the main causative agents remain to be
pinpointed. While temperature and day length—of impor-
tance for resource balance—do not seem to have major prox-
imate effects, food availability has effects on some compo-
nents of the immune system but not on others, despite their
substantial variation.

Shifting the eco-immunology paradigm
to include not only life history but also
environmental and ecological contexts

Based on the eco-immunological studies on birds during the
past 25 years, I propose that it is time to shift the eco-
immunology paradigm. Thus far, eco-immunological ques-
tions have been rooted in a life history theoretical framework,
in the context of which immune function is usually considered
a physiological currency used to pay “costs” (remember the
loss of condition in terms of the prudent parent from Drent and
Daan (1980)). As a costly mechanism, immune function could
then mediate and explain the widely observed trade-offs be-
tween survival and reproduction (and other life history traits
such as growth or migration) (but see Williams and Fowler
(2015) for a critical review of the costs of reproduction). The
fact that the data so far provide only ambiguous support, at
best, for this role of immunity, may be caused by the inclina-
tion to continue to view immune function mainly as a costly
affair. Obviously, immune systems have not evolved to be
costly; their primary purpose is to protect.

To understand the tremendous variation in immune systems
among wild birds, I suggest to shift the paradigm to include—

@ Springer



55 Page 8 of 13

Behav Ecol Sociobiol (2018) 72: 55

much more explicitly—the protective benefits of the immune
system. An important step forward to achieve this is to include
the environmental and ecological context prominently in the
hypotheses. Also when these hypotheses concern pace of life
phenomena, it will be paramount to include these environmen-
tal and ecological contexts to understand both potential costs
and benefits of immune function. This suggestion connects
with Réale et al. (2010), who, in a different context, argue for
understanding and exploiting ecological variation in space and
time in order to comprehend the interactions of various pace of
life elements. Thus far, in the limited number of eco-
immunology studies that explicitly considered the environment,
its role has been largely hypothetical and based on assumptions,
rather than on bird-relevant data that qualify and quantify the
immune protection resulting from and demanded by different
environmental or ecological circumstances. The realization that
we need to map the environmental factors that challenge and
shape the immune system confronts us with an enormous chal-
lenge. It requires capturing a holistic view of the environmental
factors shaping immunity. Although daunting, this is a typical
field ecological challenge: to describe the environment from the
perspective of the animal. This environmental parameter would
be something akin to the concept of (standard) operative tem-
perature that emerged in studies of animal energy balance in the
1970s and 1980s and that was developed in response to a sim-
ilar need to capture multiple temperature-related environmental
factors at once and from the animal’s perspective (Porter and
Gates 1969; Bakken 1980; Bakken et al. 1981). (Standard)
operative temperatures include the effect not only of air tem-
perature, but also of radiation, convection, and conduction,
which together determine the thermal environment experienced
by the animal and are measured with species-specific copper
models (Bakken 1980; Bakken et al. 1981). In the case of the
immune system, Horrocks et al. (2011a) previously proposed to
call the environmental variable of interest “immunobiotic
pressure.” This concept recognizes that what challenges and
shapes the immune system is not only just pathogens (i.c.,
micro-organisms that, unless defended against, will actively
cause sickness and death), but also other elements, including
commensal micro-organisms, that often coevolve with the host.
The goodness of fit between the immune defenses of the animal
and the immunobiotic pressure posed by the environment will
provide information about the effective operative protection
experienced by the animal under specified environmental con-
ditions (Horrocks et al. 2011a).

Future outlook: including a microbial
perspective to understand immune function
in an environmental and ecological context

Whether or not “immunobiotic pressure” is a viable concept
depends on the ability to quantify this entity or to split it up
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into components that can be quantified. Several exciting de-
velopments provide optimism that determining the
immunobiotic pressure experienced by animals is within
reach. Studies of wildlife disease that formerly focused on
single infectious diseases increasingly expand to include mul-
tiple infections and infection histories (e.g., Ezenwa and Jolles
2011; Nunn et al. 2014; Henrichs et al. 2016), recognizing the
need for a more holistic approach. Researchers intending to
capture the infectious disease component of immunobiotic
pressure can make use of sentinel birds (Komar 2001; Fall
et al. 2013; Chaintoutis et al. 2014). Sentinel birds, raised in
controlled environments, for example naive to specific infec-
tions or in contrast explicitly exposed to certain infectious
agents at known times during their development or life, can
subsequently be exposed to the environment of interest to
measure its immunobiotic pressure.

Another exciting development towards including the
biogeographic and temporal landscape of immunobiotic
pressures in understanding of the physiology, behavior,
and life history of animals is the work on microbiomes
(McFall-Ngai et al. 2013; Kohl and Carey 2016; Evans
et al. 2017). Microbial communities comprise a large, and
probably the largest, component of immunobiotic pressure.
A pioneering field study that tried to relate immune func-
tion of free-living birds with microbial pressure measured
the free-floating microbes in air and on the surface of birds
(Horrocks et al. 2012a, b). Air is a component of the envi-
ronment that every terrestrial animal encounters continu-
ously no matter where it lives, thereby providing an omni-
present subset of the microbial environment. Horrocks
et al. (2012a) used an air-sampling machine designed for
industrial applications, where a controlled air flow passes
through a lid with holes over an agar plate, on which mi-
crobes can grow colonies. They sampled air in two desert
environments, where they had established that immune in-
dexes of larks were low, and in a temperate environment,
where immunity values of larks were high. Applying three
different types of agar, to select for three broad classes of
microorganisms, temperate zone air consistently contained
more microbes than desert air, in line with the hypothe-
sized differences. Although this study was limited by the
use of culturing techniques, technological developments
within microbial ecology over the past decade, including
the accessibility and affordability of next-generation se-
quencing, have made it possible to describe microbial com-
munities in extreme detail and to start to understand their
functional properties (Amann et al. 1995; Hugenholtz
2002).

Including microbes in studies of animal physiology, behav-
ior and life history promise more than establishing a compo-
nent of immunobiotic pressure and thereby providing environ-
mental context. Microbes are everywhere, not only in the en-
vironment surrounding the animal, but also on and in the
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animal. This realization makes the distinction between animal
and surroundings fade: animal and surroundings become a
continuum (Ruiz-Rodriguez et al. 2014; Avena et al. 2016;
Lemieux-Labonte et al. 2016; Goodenough et al. 2017; van
Veelen et al. 2017). The microbial ecology of the environment
presents an immunobiotic pressure within which the bird (in-
cluding its associated microbes) operates (the immunobiome;
Horrocks et al. 2011a). A bird’s immune system may be im-
portantly shaped by the microbial communities in the environ-
ment that it faces (Buehler et al. 2009¢; Horrocks et al. 2011a,
2012a; Evans et al. 2017). The microbial communities living
in and on the animal appear to be involved in many of the
animal’s life history traits, including metabolism, immune
function, reproduction, and behavior (Kohl 2012; Theis
et al. 2012; McFall-Ngai et al. 2013; Evans et al. 2017).
This is also the reason why the biomedical world is currently
so interested in the human microbiome; it substantially influ-
ences human health and disease (Huttenhower et al. 2012;
Lozupone et al. 2012; Methe et al. 2012; Yatsunenko et al.
2012). The question for evolutionary ecologists interested in
the pace of life phenomenon is how, and by how much, do
microbes affect immunity, metabolism, and growth, as well as
survival and reproduction? Some authors propose to replace
the concept of animals by holobionts, i.e., the host plus its
associated microbes that can adapt quickly through changes
in the microbial partners (Zilber-Rosenberg and Rosenberg
2008; Bosch and McFall-Ngai 2011; McFall-Ngai et al.
2013; Bordenstein and Theis 2015; but see Moran and Sloan
2015; Douglas and Werren 2016). In any case, the microbial
inhabitants of hosts may provide a source of phenotypic plas-
ticity to the host, with which it can rapidly adjust to alterations
in the environment and that hitherto has not been considered
in studies of pace of life. Especially the understanding of the
tremendous amount of variation in immune systems of free-
living animals, uncovered in the past 25 years, may benefit
from a microbial perspective: it contributes understanding of
the health benefits of immune functioning, makes visible a
component of the immunobiotic pressure experienced by the
animal, and provides insights into the animal microbiome’s
effect on health and disease.
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