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Abstract
Rats are highly social animals, with a rich social behavioral repertoire, including the emission of so-called ultrasonic vocaliza-
tions (USV). Typically, three main types of USV can be distinguished based on a number of acoustic features, such as call
duration, peak frequency, and frequency modulation: (I) isolation-induced 40-kHz USV in pups, as well as (II) aversive 22-kHz
USVand (III) appetitive 50-kHz USV in juvenile and adult rats. In this review, evidence from selective breeding, devocalization,
and playback studies is summarized and discussed, and it is concluded that appetitive 50-kHz USV serve as situation-dependent
socio-affective signals with important communicative functions, for instance as play signals and/or social contact calls.
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Introduction

Species differ in their auditory abilities. Humans (Homo
sapiens) are able to hear sounds in the frequency range be-
tween 16 and 20,000 Hz, with significant variance between
individuals. Other species, however, are able to perceive
sounds, which humans are not able to hear; either because
sound frequency is too low for the human hearing system, as
for instance in elephants (e.g., Elephas maximus; for reviews,
see: Langbauer 2000; O’Connell-Rodwell 2007), or too high,
i.e., above 20 kHz in the so-called ultrasonic range, as for
instance in whales or dolphins (e.g., Tursiops truncatus; for
reviews, see: Madsen and Surlykke 2013; McGowen et al.
2014) and bats (e.g., Rhinolophus ferrumequinum; for re-
views, see: Jones and Teeling 2006; Geva-Sagiv et al. 2015),
but also mice (Mus musculus; for reviews, see: Wöhr and
Scattoni 2013; Portfors and Perkel 2014) and rats (Rattus

norvegicus; for reviews, see: Brudzynski 2013; Wöhr and
Schwarting 2013).

First evidence that at least some rodent species are able to
hear in the ultrasonic range was provided by Gould and
Morgan (1941) in rats (probably Rattus norvegicus). They
trained rats to run from one compartment of a test box to
another one whenever a tone was presented in order to avoid
electric shock. Gould and Morgan (1941) found that rats did
not only run to the other compartment when tones were ap-
plied, which are audible to humans, with sound frequencies of
1, 2, 4, 8, and 14 kHz, but also in response to tones with sound
frequencies of 21 and 40 kHz not audible to humans. They
concluded: “No animal in whom hearing has been studied at
all adequately presents such a disposition of auditory sensitiv-
ity as this” (Gould and Morgan 1941). The ability of voles
(Myodes glareolus) and deer mice (Peromyscus maniculatus)
to perceive sounds in the ultrasonic range was then demon-
strated by Schleidt (1948) and Dice and Barto (1952), respec-
tively. First comprehensive comparative analyses were per-
formed by Schleidt (1951, 1952).

Anderson (1954) then discovered that rats (Rattus
norvegicus) are able to produce pure ultrasonic sounds, so-
called ultrasonic vocalizations (USV). He concluded that
these ultrasonic sounds “may serve for communication be-
tween individual rats” and added that “it is also conceivable,
though certainly not yet demonstrated, that rodents use high-
frequency sounds for orientation in some manner comparable
to the process of echolocation employed by bats.” Shortly
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after that, Zippelius and Schleidt (1956) reported that the house
mouse (Mus musculus), the yellow-necked mouse (Apodemus
flavicollis), and the common vole (Microtus arvalis) produce
USVas pups when being removed from the nest and separated
from dam and littermates, for which they used the term
“Pfeifen des Verlassenseins” (“whistles of loneliness”), origi-
nally introduced by Lorenz (1935). For the first time, Zippelius
and Schleidt (1956) thus implicitly established a link between
ultrasonic calling and affect. They further performed the first
series of studies on the communicative function of such
isolation-induced USV emitted by pups. While Zippelius and
Schleidt (1956) did not obtain evidence that the USVaffect the
behavior of the littermates, they observed clear behavioral re-
sponses in the dams, including search and retrieval behavior.
Importantly, however, this response pattern was specifically
seen when dams were exposed to pups scattered outside the
nest, which were able to vocalize, but not in response to pups
unable to vocalize. Zippelius and Schleidt (1956) reported that
they were able to elicit search and retrieval behavior more than
100 times in a row by placing yellow-necked mouse pups able
to vocalize outside the nest and concluded that this response
pattern does not extinct in dams (“Die Reaktion desWeibchens
auf das „Pfeifen des Verlassenseins“ ist praktisch
unermüdbar”; Zippelius and Schleidt 1956). The important
communicative role of USV in maintaining dam-pup interac-
tions was later confirmed by Sewell (1970) through playback
experiments in wood mice (Apodemus sylvaticus). Sewell
(1970) presented tape recordings of isolation-induced USV to
lactating dams through a loudspeaker placed on one or the
other side of a T partition away from the nest. Dams left the
nest and displayed search behavior in response to 48 out of a
total of 56 USV presentations (86%). Importantly, 38 out of

these 48 responses were correct (79%), i.e., the dams entered
the partition where isolation-induced USV were presented,
clearly demonstrating that the dams were able to accurately
localize the sound source. The dams generally reached the
loudspeaker in less than a minute, yet did not respond to back-
ground noise or artificial 45 kHz pulses.

Types of ultrasonic vocalizations in rats

Today, it is known that mice and rats emit multiple distinct
types of USV (for comprehensive overviews on USV in mice,
see: Wöhr and Scattoni 2013; Portfors and Perkel 2014; for
comprehensive overviews on USV in rats, see: Brudzynski
2013; Wöhr and Schwarting 2013). In rats, three main types
of USV can be distinguished based on a number of acoustic
features, such as call duration, peak frequency, and frequency
modulation: (I) isolation-induced 40-kHz USV in pups, as
well as (II) aversive 22-kHz USVand (III) appetitive 50-kHz
USV in juvenile and adult rats (for representative spectro-
grams, see Fig. 1).

40-kHz USV (pups) Isolation-induced 40-kHz USV in pups are
mostly characterized by call durations of ~ 100 ms or shorter,
peak frequencies between 30 and 60 kHz, and are often
frequency-modulated with various different call subtypes
(Brudzynski et al. 1999). They occur in response to social
isolation within the first 2 weeks of life and serve an important
communicative function in eliciting maternal caregiving
behavior, particularly search and retrieval behavior (Wöhr
and Schwarting 2008a). In line with Zippelius and Schleidt’s
seminal work in mouse pups (Zippelius and Schleidt 1956), it

Fig. 1 Representative
spectrograms of the three main
types of ultrasonic vocalizations
(USV) emitted by rats. a
Isolation-induced USVemitted by
a ~ 11 day old male Wistar rat
during isolation from dam and
littermates. b Aversive 22-kHz
USVemitted by a ~ 3 month old
male Wistar rat during fear
learning. c Appetitive 50-kHz
USVemitted by a ~ 1 month old
maleWistar rat during rough-and-
tumble play mimicked by a
human experimenter through
tickling. Please note the
difference in time resolution in b,
as compared to a and c (for other
examples, see: Wöhr and
Schwarting 2013)
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is believed that they reflect isolation distress (for reviews, see:
Brudzynski 2013; Wöhr and Schwarting 2013).

22-kHz USV (juveniles/adults)Aversive 22-kHz USVare char-
acterized by comparatively long call durations of ~ 1000ms or
longer, a relatively narrow frequency range between 18 and
24 kHz and low levels of frequency modulation. They typi-
cally occur in bouts of 2 to 8 USV, with calls starting a bout
often being characterized by higher peak frequencies and
downward slope (Wöhr et al. 2005). Aversive 22-kHz USV
occur in response to predator exposure (Blanchard et al. 1991,
1992) and social defeat (Sales 1972a; Lore et al. 1976), i.e., in
life-threating and dangerous situations, and it is thus believed
that they reflect a negative affective state akin to anxiety and
fear (for reviews, see: Brudzynski 2013; Wöhr and
Schwarting 2013). However, in males, they have also been
repeatedly reported following ejaculation, which has a high
rewarding value. It was thus speculated that such post-
ejaculatory 22-kHz USV serve to maintain contact with the
female and perhaps to discourage intervention by other males
during periods of sexual inactivity (Barfield and Geyer 1972,
1975; Anisko et al. 1978; Adler and Anisko 1979; Thomas
et al. 1982). Recently, Sachs and Bialy (2000) showed that the
presence of females during the post-ejaculatory period facili-
tates penile erection and the emission of 22-kHz USV, and
Bialy et al. (2016) challenged the idea that post-ejaculatory
22-kHz USV reflect negative affective states through applying
a conditioned place preference paradigm. In the laboratory,
aversive 22-kHz USV can be reliably elicited by air puffs
(Brudzynski and Holland 2005; Browning et al. 2017) and
electric shocks (van der Poel et al. 1989; van der Poel and
Miczek 1991), as for instance during fear learning paradigms
(Jelen et al. 2003; Wöhr et al. 2005). Freezing behavior, the
most commonly used measure for fear in rodents, is highly
positively associated with the emission of aversive 22-kHz
USV (Wöhr and Schwarting 2008a). It is thus believed that
aversive 22-kHz serve an alarming function and warn
conspecifics about external danger, such as predators. In
support of this idea, Blanchard et al. (1991, 1992) performed
a series of experiments using large groups of rats living in a
semi-natural environment, i.e., a visible burrow system, and
found that the emission of aversive 22-kHz USV during pred-
ator exposure is potentiated by the presence of an audience,
i.e., a group of familiar conspecifics living in the same envi-
ronment. They further found that aversive 22-kHz USVemis-
sion by the sender led to defensive reactions in recipients not
directly exposed to the predator. Under standardized laborato-
ry conditions, it was shown that playback of aversive 22-kHz
USV induces behavioral inhibition (Wöhr and Schwarting
2007) and potentiates the startle reflex (Inagaki and Ushida
2017) in the recipient. Aversive 22-kHz USV further appear to
play a key role in the social transmission of fear (Wöhr and
Schwarting 2008b; Kim et al. 2010).

50-kHz USV (juveniles/adults) Appetitive 50-kHz USV are
characterized by comparatively short call durations. In many
cases, call duration is shorter than ~ 50 ms. The frequency
range, in which 50-kHz USV occur, is very broad and ranges
from 30 to 90 kHz, yet most 50-kHz USV occur between 50
and 70 kHz. Many different subtypes have been described and
frequency modulation is strongly depending on the subtype,
ranging from flat calls often completely lacking frequency
modulation to trills with a very high level of frequency modu-
lation. However, there is no consensus on call subtype classifi-
cation, with classification systems differentiating between 2
(Burgdorf et al. 2011b), 4 (Pereira et al. 2014), or even 14
(Wright et al. 2010) subtypes. Appetitive 50-kHz USV occur
at high rates during rough-and-tumble play or play fighting in
juveniles (Knutson et al. 1998; Lukas and Wöhr 2015) and
mating in adults (Sales 1972b; Thomas and Barfield 1985).
They were also detected during aggressive encounters in adult-
hood, yet compelling evidence was provided indicating that the
dominant rat emits appetitive 50-kHz USV, whereas the
defeated one produces aversive 22-kHz USV while freezing
(Burgdorf et al. 2008). In the laboratory, high rates of appetitive
50-kHz USV can be elicited by mimicking rough-and-tumble
play through tickling by a human experimenter (Panksepp and
Burgdorf 2000; Wöhr et al. 2009), with dorsal and ventral
tickling being most efficient in eliciting appetitive 50-kHz
USV (Panksepp and Burgdorf 2003; Schwarting et al. 2007;
Ishiyama and Brecht 2016). Despite variations in the exact
tickling procedure between laboratories, tickling-induced appe-
titive 50-kHz USV were consistently observed and typically
associated with strong approach behavior (for review, see:
LaFollette et al., 2017). Another way of inducing high rates
of appetitive 50-kHz USV in the laboratory is the administra-
tion of psychostimulants, most notably amphetamine (Pereira
et al. 2014; Engelhardt et al. 2017a; for review, see: Rippberger
et al. 2015). It is thus believed that 50-kHz USV reflect a pos-
itive affective state akin to joy and happiness (for reviews, see:
Brudzynski 2013; Wöhr and Schwarting 2013) and it was Jaak
Panksepp who suggested that they share some similarities to
human laughter as the “evolutionary antecedents of human joy”
(Panksepp 2005; for more details, see: Panksepp and Burgdorf
2000, 2003). Consistent with the idea that appetitive 50-kHz
USV reflect a positive affective state, it was repeatedly shown
that aversive stimuli inhibit their production. For instance, it
was found that 50-kHz USV are inhibited under bright white
light conditions during rough-and-tumble play (Knutson et al.
1998) and tickling (Ishiyama and Brecht 2016).

Appetitive 50-kHz ultrasonic vocalizations
serving as social contact calls

The communicative function of appetitive 50-kHz USV was
extensively studied during mating (for reviews, see: Barfield
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et al. 1979; Barfield and Thomas 1986). In the last two de-
cades, however, the dominant research focus changed with the
discovery that rats emit appetitive 50-kHz USV during rough-
and-tumble play as juveniles (Knutson et al. 1998). Knutson
et al. (1998) found that 50-kHz USVemission correlated with
appetitive components of rough-and-tumble play behavior,
such as dorsal contacts, and that 50-kHz USVoccur in antic-
ipation of rough-and-tumble play. They further provided evi-
dence indicating that social motivation drives 50-kHz USV
emission by showing that rats exposed to single housing for
about 2 weeks display more rough-and-tumble play behavior
and emit more 50-kHz USV, as compared to controls housed
in groups (Knutson et al. 1998). Burgdorf et al. (2006) con-
firmed high 50-kHz USV emission during rough-and-tumble
play and showed that emission rates change as a function of
rough-and-tumble play behavior. It was further shown that
particularly the frequency-modulated subtype of 50-kHz
USV is positively associated with appetitive components of
rough-and-tumble play behavior, such as dorsal contacts
(Burgdorf et al. 2008). Emission of appetitive 50-kHz USV
was found to be higher in males than females, with males
playing more than females (Himmler et al. 2014). Moreover,
there is also evidence for strain differences. During rough-
and-tumble play, more 50-kHz USV were found to be emitted
by Sprague-Dawley than Wistar rats, with Wistar rats engag-
ing less in rough-and-tumble play behavior (Manduca et al.
2014a, b). Social experiences, such as social rejection, might
also have an impact (Schneider et al. 2016). Himmler et al.
(2014) further performed a detailed temporal analysis and
found that 50-kHz USVoccur at particularly high rates before
a playful interaction and that different 50-kHz USV subtypes
are associated with specific types of behaviors, such as the
short subtype, which was seen at high rates after evasions
but not complete rotations. Finally, it was found that rats prefer
to spend most of the time with a rat that had shown high levels
of appetitive 50-kHz USV during rough-and-tumble play
mimicked by a human experimenter through tickling, as com-
pared to a rat that did not (Panksepp et al. 2002; Panksepp and
Burgdorf 2003). Together, the data provide qualified support
for the hypothesis that 50-kHz USV serve as a socio-affective
signals fulfilling important pro-social communicative func-
tions, for instance as play signals and/or social contact calls.

Experimental evidence: selective breeding studies Panksepp
and Burgdorf, 2000; Panksepp et al. 2001) applied a selective
breeding line approach with the aim to select rats for low or
high tendencies to emit appetitive 50-kHz USV in response to
rough-and-tumble play mimicked by a human experimenter
through tickling. A random line was used as control. By the
third generation, there was a segregation of the high line from
the random line, with the high line emitting more 50-kHz
USV. The low line was segregated from the other two lines
from the very outset and characterized by very low 50-kHz

USV emission rates. In the fourth generation, the high line
exhibited more pinning behavior during rough-and-tumble
play than low and random lines, with the random line
displaying an intermediate pinning level (Panksepp et al.
2001). During rough-and-tumble play, 50-kHz USVemission
was most prominent in the high line. In line with the idea that
50-kHz USV serve as play signals and/or social contact calls,
only moderate 50-kHz USV levels were obtained in the ran-
dom line, while in the low line 50-kHz USV were virtually
absent (Panksepp et al. 2001). A similar result pattern was
obtained during exposure to a novel unfamiliar environment,
yet at much lower levels (Panksepp et al. 2001). Moreover, in
the fourth generation, not only 50-kHz USVemission but also
the production of isolation-induced 40-kHz USVwas affected
by selective breeding for 50-kHz USV. Isolation-induced 40-
kHz USV were low in the low line, but high in the high line,
with intermediate levels in the random line (Panksepp et al.
2001; for details, see Table 1).

Because this first selective breeding approach could not be
pursued since the rats died off, Burgdorf et al. (2005)
attempted to replicate selective breeding for low or high ten-
dencies to emit appetitive 50-kHz USV in response to rough-
and-tumble play mimicked by a human experimenter through
tickling. “Those original lines died off as a consequence of a
laboratory shut-down for asbestos abatement and our inability
to achieve a cross-fostering transfer of those lines to another
facility, necessitated by our adults harboring a skin parasite
that preclude the direct re-housing of our breeding stock”
(Burgdorf et al. 2005). While in the first selective breeding
study ultrasonic recordings by means of bat detectors were
exclusively focused on 50-kHz USV, a more sophisticated
approach covering all relevant ultrasonic frequency bands in-
cluding the ranges of appetitive 50-kHzUSV but also aversive
22-kHz USV was applied in the second selective breeding
study. Similar to the first selective breeding study, four gener-
ations of selective breeding sufficed to generate constitutional
differences between lines of rats in both 50-kHz USV emis-
sion and related social behavior. Specifically, there was a seg-
regation of the high line from low and random lines by the
fourth generation, with the high line emitting more 50-kHz
USV (Burgdorf et al. 2005). However, random and low lines
did not segregate (Burgdorf et al. 2005) and the random line
was found to emit more 50-kHz USV only after the ninth
generation (Burgdorf et al. 2009). Line differences in 50-
kHz USV emission appeared to be mostly driven by the
frequency-modulated 50-kHz USV subtype (Burgdorf et al.
2009). While no 22-kHz USV occurred in the high line, a
substantial amount of 22-kHz USV was seen in low and ran-
dom lines (Burgdorf et al. 2005). In the second selective
breeding study, isolation-induced 40-kHz USV were found
to be similar in pups from all lines under standard test condi-
tions in the seventeenth generation (Harmon et al. 2008). In a
place preference conditioning paradigm, however, the low line
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failed to display the typical preference for an odor associated
with the dam and emitted more isolation-induced 40-kHz
USV than high and random lines, with the latter not differing
from each other (Harmon et al. 2008). More robust line dif-
ferences in isolation-induced 40-kHz USV were reported by
Iacobucci et al. (2013) in the seventeenth generation. Low line
pups were found to emit clearly more isolation-induced 40-
kHz USV. This line difference was seen irrespective of the
social context. Specifically, low line pups emitted more
isolation-induced 40-kHz USV no matter whether they were
tested under clean bedding, familiar home cage bedding, or
unfamiliar home cage bedding conditions. In contrast to low
line pups, where isolation-induced 40-kHz USVemission was
not affected by the social context, isolation-induced 40-kHz
USV emission was modulated by social context in high line
pups, with stronger responses under familiar and unfamiliar
bedding conditions. In the fourteenth generation, Burgdorf
et al. (2009) further showed that rats selectively bred for low
rates of 50-kHz USV engage less in social interactions as
adults, as compared to high and random line rats. Reduced
social interaction time in the low line was paralleled by a
decrease in the frequency-modulated 50-kHz USV subtype,
whereas flat 50-kHz USV were found to have increased
(Burgdorf et al. 2013). Moreover, the high line was found to
be less aggressive (Burgdorf et al. 2009). In contrast to the first
selective breeding study, however, selective breeding effects
on rough-and-tumble play in juveniles were moderate in the
thirteenth generation of the second study. Specifically, rats
selectively bred for low rates of 50-kHz USV displayed al-
tered rough-and-tumble play behavior, with reduced dorsal
contacts but more pinning behavior (Webber et al. 2012; for

details, see Table 1). In response to amphetamine and cocaine,
hyperactivity and 50-kHz USV emission was reported to be
more prominent in the high than the low line (Mu et al. 2009,
2010; Brudzynski et al. 2011a, b; for reviews, see: Moskal
et al. 2011; Burgdorf et al. 2013).

A different but related selective breeding line approach was
applied byBrunelli et al. (2006). They compared 50-kHzUSV
emission during rough-and-tumble play in rats selectively
bred for low or high rates of isolation-induced 40-kHz USV
as pups to an unselected random control group. They found
that rough-and-tumble play behavior and 50-kHz USV emis-
sion is reduced in both lines, as compared to the random con-
trol group. This indicates that not only high trait anxiety
levels, as seen in the rats selectively bred for high rates in
isolation-induced 40-kHz USV as pups (Dichter et al. 1996),
but also low social motivation leads to a reduction in appeti-
tive 50-kHz USV in a social context (for review, see: Brunelli
2005). Moreover, in rats selectively bred for high anxiety-
related behavior on the elevated plus maze, 50-kHz USV
emission is almost completely absent during rough-and-
tumble play behavior (Lukas and Wöhr 2015). As the breed-
ing lines differ in their hypothalamic vasopressin availability
and vasopressin is strongly implicated in the regulation of
social behavior, Lukas and Wöhr (2015) further tested wheth-
er manipulating the vasopressin system alters rough-and-
tumble play behavior and concomitant 50-kHz USVemission.
While the administration of synthetic vasopressin had no ef-
fect, blocking the central vasopressin system by means of a
vasopressin 1a receptor antagonist resulted in lower levels of
rough-and-tumble play and fewer 50-kHz USV, indicating
that the central vasopressin system is involved in the

Table 1 Selective breeding studies: social behavior and ultrasonic communication

First selective breeding approach for 50-kHz USV Low line High line Age Generation References

Emission of appetitive 50-kHz USV Low* Adolescence 1st Panksepp et al. 2001

Emission of appetitive 50-kHz USV Low* High* Adolescence 3rd Panksepp et al. 2001

Rough-and-tumble play Low* High* Adolescence 4th Panksepp et al. 2001

Emission of isolation-induced 40-kHz USV Low* High* Infancy 4th Panksepp et al. 2001

Second selective breeding approach for 50-kHz USV

Emission of aversive 22-kHz USV Low* Adolescence 2nd Burgdorf et al. 2005

Emission of appetitive 50-kHz USV High* Adolescence 4th Burgdorf et al. 2005

Emission of aversive 22-kHz USV High* Adolescence 9th Burgdorf et al. 2009

Emission of appetitive 50-kHz USV Low* High* Adolescence 9th Burgdorf et al. 2009

Rough-and-tumble play Altered* Adolescence 13th Webber et al. 2012

Social interaction behavior Low* Adulthood 14th Burgdorf et al. 2009

Aggressive behavior Low* Adulthood 14th Burgdorf et al. 2009

Conditioned place preference for maternal odors Low* Infancy 17th Harmon et al. 2008

Emission of isolation-induced 40-kHz USV Low# Infancy 17th Iacobucci et al. 2013

*As compared to random line (control group)
# As compared to high line
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regulation of affiliative communication in rodents (Lukas and
Wöhr 2015). Other studies on 50-kHz USV emission during
rough-and-tumble play focused on the effects of acute or pre-
natal ethanol (Willey et al. 2009; Wellmann et al. 2015;
Waddell et al. 2016), morphine (Manduca et al. 2014a), am-
phetamine (Manduca et al. 2014a), endocannabinoid signal-
ing modulators (Manduca et al. 2014b), and valproic acid
(Wellmann et al. 2014; Raza et al. 2015). There is also a
number of studies specifically targeting the glutamatergic neu-
rotransmitter system (Burgdorf et al. 2011a, b; Moskal et al.
2011) or the insulin-like growth factor I (Burgdorf et al. 2010).
Together, the selective breeding studies (Panksepp and
Burgdorf 2000; Panksepp et al. 2001; Burgdorf et al. 2005,
2009, 2013; Brunelli et al. 2006; Harmon et al. 2008;Mu et al.
2009, 2010; Brudzynski et al. 2011a, b; Webber et al. 2012;
Iacobucci et al. 2013; Lukas andWöhr 2015) demonstrate that
it is possible to select for appetitive 50-kHz USV, that such a
selection process affects related components of the social be-
havioral repertoire, and that, in turn, selective breeding for
anxiety-related traits alters 50-kHz USVemission, supporting
the nation that 50-kHz reflect a positive affective state akin to
joy and happiness.

Experimental evidence: devocalization studies As described
above, multiple evidence was provided that appetitive 50-kHz
USV promote and maintain playful social interactions, in line
with the idea that 50-kHz USV serve as play signals and/or
social contact calls. Supporting this view, rough-and-tumble
play behavior was found to be altered following deafening. In
deafened rats, the close quarter wrestling component of rough-
and-tumble play was found to be diminished, yet play initia-
tion remained unchanged (Siviy and Panksepp 1987). To fur-
ther test the hypothesis that appetitive 50-kHz USV serve as
play signals to promote and maintain playful social
interactions, Kisko et al. (2015a, b, 2017) performed a series
of experiments using rats unable to vocalize due to surgical
devocalization. If appetitive 50-kHz USV serve as play sig-
nals, Kisko et al. (2015b) hypothesized that rough-and-tumble
play behavior is disrupted in their absence in pairs of
devocalized rats. Consistent with this hypothesis, Kisko
et al. (2015b) observed clearly reduced levels of rough-and-
tumble play behavior in pairs of devocalized rats, with
devocalized rats launching fewer playful attacks. They also
found more startle responses when contacted by the play part-
ner and that devocalized rats are more likely to defend them-
selves in response to a playful attack, as compared to control
rats exposed to sham surgery. Social investigation and
allogrooming, in contrast, were not affected by surgical
devocalization. As shown in a subsequent study (Kisko et al.
2017), rough-and-tumble play behavior is not only reduced in
devocalized pairs but also in intact pairs that were housed with
devocalized cage mates before testing. It thus appears possible
that there is a critical period to learn about the contextual uses

of 50-kHz USV during the rough-and-tumble play period and
that an intact rat playing with a devocalized cage mate during
this critical period may not receive the necessary feedback
from hearing 50-kHz USV.

In dyads with one devocalized and one intact rat, Kisko
et al. (2015a, b) repeatedly observed alterations in specific
components of the rough-and-tumble play behavioral reper-
toire, such as defensive responses. By this means, Kisko et al.
(2017) further provided evidence that the rat that is pinning is
emitting appetitive 50-kHz USV, since 50-kHz USVemission
rates were found to be substantially higher when the intact rat
is pinning than when it is pinned by the devocalized partner.
Moreover, in line with the study by Himmler et al. (2014),
Kisko et al. (2015b) found that appetitive 50-kHz USV are
more frequent before playful contact is made than when such
contact is terminated, yet this temporal pattern was not affect-
ed by devocalization of one of the play partners. In fact, it was
found that pre-contact 50-kHz USVare just as frequent when
the devocalized play partner initiated the playful interaction as
when an intact one was. As indicated by the fact that 50-kHz
USV were emitted by the initiator of the playful interaction,
they still may be used to signal playful attack, but given that
they were just as likely to be emitted by the receiving partner,
they may also function as enticements by one rat to solicit
playful attack from another (Kisko et al. 2015b). Kisko et al.
(2015b) therefore tested whether rats prefer to engage in
rough-and-tumble play with an intact play partner over a
devocalized play partner when both partners are simulta-
neously available. Contrary to the findings obtained by
Panksepp et al. (2002, 2003), they found “that the non-vocal
rats were just as attractive as ones that can vocalize” (Kisko
et al. 2015b). In their subsequent study, Kisko et al. (2015a)
replicated this finding using unfamiliar rather than familiar
play partners. However, they also found that in dyads more
playful attacks are launched against mute partners and that
mute partners respond to playful attacks more often than intact
partners. This response pattern was specifically seen in
juveniles. In adulthood, devocalization did not affect the
number of playful attacks, yet agonistic attacks were occurring
more often in pairs containing a devocalized partner. The in-
crease in agonistic attacks was found to be paralleled by more
aggression-related behaviors, such as tail rattling, piloerection,
and lateral display. This suggests that in pairs of adult rats,
where one rat is unable to vocalize, the risk that a playful
interaction escalates to serious fighting is higher. Together,
the series of devocalization studies performed by Kisko
et al. (2015a, b, 2017) indicate that appetitive 50-kHz USV
are necessary to facilitate rough-and-tumble play in juvenile
rats, perhaps by promoting a positive affective state in the
play partners or by establishing and maintaining social
proximity. Surgical devocalization increases agonistic attacks
in adulthood.
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Experimental evidence: playback studiesAnother experimen-
tal, yet noninvasive approach to study the communicative
functions of appetitive 50-kHz USV under standardized con-
ditions is playback. In playback studies, precisely defined
acoustic stimuli can be presented and between-subject vari-
ance is easily minimized, with all subjects being exposed to
the exact same stimulus. For instance, Burgdorf et al. (2008)
showed that rats engage in more nose-poking behavior in an
instrumental task to elicit playback of frequency-modulated
50-kHz USV, indicating that the presentation of frequency-
modulated 50-kHz USV is rewarding. Playback of flat 50-
kHz USV had no effect, while playback of aversive 22-kHz
USV led to a reduction in nose-poking behavior, indicating
that rats avoid them.

Around the same time, Wöhr and Schwarting (2007; for
review, see: Seffer et al. 2014; for methodological details, see:
Wöhr et al. 2016) developed a radial maze playback paradigm
to study the communicative functions of appetitive 50-kHz
USV by assessing behavioral responses in recipient rats. In
this paradigm, a given rat is exposed to playback of appetitive
50-kHz USV and appropriate acoustic control stimuli in a
counter-balanced manner on an elevated radial eight arm
maze. Social approach behavior is defined by a higher number
of entries into and more time spent on proximal arms, i.e., the
three arms close to the active ultrasonic speaker used for play-
back of appetitive 50-kHz USV, as compared to the three
distal ones away from the speaker. Bymeans of this paradigm,
it was repeatedly shown that playback of appetitive 50-kHz
USV leads to social approach behavior in juvenile and adult
male (Wöhr and Schwarting 2007, 2009, 2012; Willuhn et al.
2014; Seffer et al. 2015; Brenes et al. 2016; Engelhardt et al.
2017a) as well as female (Willadsen et al. 2014) rats,
supporting the notion that they serve an affiliative function
as social contact calls irrespective of the sex of the recipients.
A number of related observations support this view. For in-
stance, 50-kHz USV occur in anticipation of social contact.
Specifically, in rats exploring an environment, the emission of
50-kHz USV was found to be driven by potential social con-
tact and elicited by the odor of conspecifics, with 50-kHz
USV emission rates being proportional to the number of rats
that left their odor in the environment (Brudzynski and Pniak
2002). Moreover, 50-kHz USVoccur after separation from a
conspecific. Separation results in a transient increase in 50-
kHz USV emission, most notably in flat calls, probably to
reestablish social proximity (Wöhr et al. 2008). Beyond that,
50-kHz USV might further orchestrate complex social inter-
actions, such as cooperative actions to obtain food rewards, as
indicated by a positive covariation between cooperative be-
havior and 50-kHz USVemission (Łopuch and Popik 2011).

By means of the 50-kHz USV radial maze playback para-
digm, it was further found that the behavioral response pattern
evoked in the recipients depends on certain acoustic features
of appetitive 50-kHz USV. By comparing the response

patterns evoked by appetitive 50-kHz USV with the ones elic-
ited by other acoustic stimuli, it was demonstrated that social
approach behavior specifically occurs in rats exposed to 50-
kHz USVand, to a lower extent, in response to 50-kHz USV
sine wave tones. No evidence for social approach behavior
was obtained in response to 22-kHz USV, time- and
amplitude-matched white noise, and background noise.
While the appetitive 50-kHz USV presented were mostly fre-
quency-modulated, the 50-kHz sine wave tones were identical
to the 50-kHzUSVwith respect to peak frequency, call length,
and temporal patterning, yet were lacking frequency modula-
tion (Wöhr and Schwarting 2007). The fact that playback of
50-kHz USV sine wave tones is efficient in inducing social
approach behavior, although at a lower level, indicates that
frequency modulation of 50-kHz USV is not a necessary com-
ponent of appetitive 50-kHz USV for eliciting social approach
behavior. This is consistent with the idea that primarily the flat
50-kHz USV subtype functions as social contact call, as sug-
gested by the transient increase in mostly flat 50-kHz USV
typically seen following separation from a conspecific (Wöhr
et al. 2008).

Besides stimulus type, age and sex play an important role.
Specifically, juvenile rats were found to display strong social
approach behavior in response to appetitive 50-kHz USV
(Wöhr and Schwarting 2007, 2009, 2012; Seffer et al. 2015;
Engelhardt et al. 2017a). In adulthood, however, the strength
of the response appears to be sex-dependent. While in adult
male rats comparatively weak responses occurred and only
moderate social approach behavior was evoked by appetitive
50-kHz USV (Wöhr and Schwarting 2007, 2009; Willuhn
et al. 2014; Seffer et al. 2015; Brenes et al. 2016), strong social
approach behavior was seen in adult female rats (Willadsen
et al. 2014). However, there is a study by Snoeren and Ågmo
(2014) on female rats where no evidence for social approach
behavior in response to playback of appetitive 50-kHz USV
was obtained. An important difference between the two stud-
ies is that Willadsen et al. (2014) presented 50-kHz USVonly
once, whereas Snoeren and Ågmo (2014) repeatedly exposed
females to 50-kHz USV.

In fact, an interesting phenomenon is the fast extinction of
the social approach response elicited by playback of appetitive
50-kHz USV. Typically, recipient rats display an immediate
orientation response and strong social approach behavior to-
wards the sound source within a couple of seconds when
exposed to 50-kHz USV. However, this response rarely lasts
longer than 2 or 3 min (Wöhr and Schwarting 2012; Willuhn
et al., 2014; Seffer et al. 2015). Moreover, rats repeatedly
exposed to playback of 50-kHz USV do not display a prefer-
ence for the sound source during the second presentation.
Lack of preference is seen even after a long delay of 1 week
between the two stimulus presentations (Wöhr and
Schwarting 2012). Through pharmacological manipulations,
evidence was provided that the underlying mechanism is
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acetylcholine-dependent memory consolidation. Specifically,
rats treated with the amnestic agent scopolamine, a muscarinic
acetylcholine receptor antagonist blocking memory consoli-
dation, immediately after the first presentation of 50-kHzUSV
displayed social approach behavior during the second presen-
tation, while vehicle-treated controls did not (Wöhr and
Schwarting 2012). More recent studies further showed that
the strength of the social approach response elicited by appe-
titive 50-kHz USV depends on social experiences of the re-
cipient rat, such as post-weaning social isolation (Seffer et al.
2015) and social versus physical environmental enrichment
(Brenes et al. 2016; for review, see: Wöhr et al. 2017).
Finally, inter-individual differences in trait-like variations in
the emission of 50-kHz USV play an important role as well
(Engelhardt et al. 2017b). Of note, Saito et al. (2016) showed
that playback of appetitive 50-kHz USVaffects decision-mak-
ing, with rats exposed to 50-kHz USVmaking more “optimis-
tic” decisions in an instrumental task where rats had to press a
lever in order to avoid foot shock or to receive a food reward
in response to tone presentations.

The 50-kHz USV radial maze playback paradigm and its
modification were recently also used to study neurobiological
processes involved in rodent ultrasonic communication. One
research line focused on brain activation patterns evoked in
recipient rats. Through electrophysiological recordings and
immunohistochemistry, it was shown that playback of appeti-
tive 50-kHz USV results in decreased firing rates and reduced
c-fos expression in the amygdala, whereas playback of aver-
sive 22-kHz USV leads to enhanced firing (Sadananda et al.
2008; Parsana et al. 2012; Ouda et al. 2016; Kagawa et al.
2017). The amygdala is orchestrating anxiety and fear re-
sponses and is strongly involved in aversive learning process-
es (Fendt and Fanselow 1999; Maren and Quirk 2004). The
deactivation of the amygdala in response to appetitive 50-kHz
USV was found to be paralleled by an activation of the nucle-
us accumbens, where immediate early gene expression was
increased following 50-kHz USV playback (Sadananda et al.
2008; Pultorak et al. 2016), but also in the anterior cingulate
cortex (Saito and Okanoya 2017). The nucleus accumbens is a
key brain area implicated in reward processing, with dopa-
mine signaling being strongly involved (Schultz 2007;
Salamone and Correa 2012). Consistently, fast-scan cyclic
voltammetry recordings showed that playback of 50-kHz
USV leads to phasic dopamine release in the nucleus accum-
bens within a couple of seconds, while no phasic dopamine
release was evident in response to multiple acoustic control
stimuli. Interestingly, phasic dopamine release levels were
positively correlated with social approach behavior and char-
acterized by a similarly fast extinction as social approach
when rats were repeatedly exposed to playback of 50-kHz
USV (Willuhn et al. 2014).

Another related research line focused on neurotransmitters
and neuropeptides by systematically manipulating relevant

characteristics of the recipient. In line with the findings ob-
tained by fast-scan cyclic voltammetry recordings (Willuhn
et al. 2014), Engelhardt et al. (2017a) found that the systemic
administration of moderate doses of amphetamine, which
leads to a massive increase in monoamines, including dopa-
mine, in the synaptic cleft, results in increased social approach
behavior in response to playback of appetitive 50-kHz USV.
Besides dopamine, the opioid system also appears to play an
important role, as it was found that systemic application of
low doses of the μ-opioid agonist morphine leads to enhanced
social approach behavior, while the μ-opioid antagonist nal-
oxone had opposite effects (Wöhr and Schwarting 2009).

Recently, for the first time, 50-kHz USV from a genetic rat
model were applied as stimulus in the 50-kHz USV playback
paradigm and it was found that appetitive 50-kHz USV re-
corded from the genetic Parkinson’s disease model elicited
reduced social approach behavior in recipients (Pultorak
et al. 2016). Together, the playback studies (Wöhr and
Schwarting 2007, 2009, 2012; Burgdorf et al. 2008;
Sadananda et al. 2008; Parsana et al. 2012; Snoeren and
Ågmo 2014; Willadsen et al. 2014; Willuhn et al. 2014;
Seffer et al. 2015; Brenes et al. 2016; Ouda et al. 2016;
Pultorak et al. 2016; Saito et al. 2016; Saito and Okanoya
2017; Engelhardt et al. 2017a, b; Kagawa et al. 2017) show
that appetitive 50-kHz USV induce social approach behavior
in recipients, with the strength of responding being dependent
on a number of factors, such as age, sex, and trait-like inter-
individual differences as well as certain acoustic features of
appetitive 50-kHz USV.

Conclusion

In conclusion, evidence from selective breeding, devocalization,
and playback studies strongly suggests that appetitive 50-kHz
USV serve as situation-dependent socio-affective signals with
important communicative functions in rats, for instance as play
signals and/or social contact calls.
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