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Abstract The immune system is an important defence
against pathogens but requires resources that hosts may also
use otherwise. Thus, trade-offs between investment in immu-
nity versus other life-history traits may exist, especially during
resource-demanding periods such as reproduction. Here, we
investigated the potential trade-off between an activated im-
mune system and parental care in free-living great tits.We also
studied whether variation in baseline immune indices prior to
immunization contributes to individual differences in the re-
sponses to an immune challenge. To this end, we injected free-
living great tit females with either phosphate-buffered saline
(PBS) or with bacterial lipopolysaccharides (LPS) when nes-
tlings were 9 days old and subsequently recorded parental
feeding rates. We quantified potential fitness consequences

via the growth and survival of their nestlings. Exposure to
LPS tended to decrease female feeding rates. However, nes-
tling body mass was not affected by the maternal immune
challenge, probably because males compensated for the
change in feeding rate of their partner. We found a negative
relationship between haptoglobin levels and female feeding
rates pre-treatment, but not with any of the other innate im-
mune traits. Although there was substantial variation in female
innate immune indices, we found no evidence that baseline
immunity affected how females reacted to an immune chal-
lenge in terms of changes in parental behaviour.
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Introduction

Animals are faced with a wide range of parasite taxa, which
exploit the host for resources they need for their own replica-
tion. In response to this, hosts have evolved a wide range of
adaptations to prevent an initial parasite infection and to erad-
icate established infections (Clayton and Wolfe 1993; Christe
et al. 1994; Sheldon and Verhulst 1996; Murphy et al. 2012).
One of the most important adaptations is the immune system
and its different components. However, even though an im-
mune response confers a fitness benefit against a parasite, as it
increases the survival probability, it also requires resources
(Sheldon and Verhulst 1996). Mounting an immune response
and maintaining an efficient immune system is thought to be a
demanding process due to the damaging effects of reactive
oxygen species (ROS) and the energetic and nutritional costs
associated with it (Sheldon and Verhulst 1996; Lochmiller and
Deerenberg 2000; Bonneaud et al. 2003; Costantini and
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Møller 2009; Hasselquist and Nilsson 2012). Based on the
costs associated with mounting an immune response and
maintaining the immune system, there may be a trade-off be-
tween investment in central life-history components such as
reproduction and an investment in the immune system
(Sheldon and Verhulst 1996; Lochmiller and Deerenberg
2000; Norris and Evans 2000; Demas and Nelson 2012).
Indeed, several studies have shown that an increased repro-
ductive effort impairs a bird’s immune responsiveness, para-
site resistance and a bird’s ability to control (chronic) infec-
tions (Siikamäki et al. 1997; Nordling et al. 1998; Knowles
et al. 2009). Vice versa, induction of an immune response via
immunization with a diphtheria-tetanus vaccine or the endo-
toxin lipopolysaccharide (LPS) led to reduced feeding rates
(Ilmonen et al. 2000; Raberg et al. 2000; Bonneaud et al.
2003). Thus, an activated immune system can lower breeding
success, and this could be caused by an energetic or nutritional
trade-off between immune function and workload when feed-
ing young. Reducing the workload could also be an adaptive
response to infection to avoid oxidative stress, as workload
and immune system activation are both ROS producing activ-
ities (Hasselquist and Nilsson 2012).

Costs of immunity have, as detailed above, mainly been
studied in terms of deployment costs, which arise when an
immune response is mounted. These deployment costs are
due to the use of energy and resources or are a consequence
of collateral damage caused by the immune system when
mounting the response (McKean et al. 2008). However, the
immune system is also costly because of maintenance costs
that are related to the energy and resources an individual in-
vests into the infrastructure, continuous surveillance and
maintenance in the absence of an infection (=baseline immu-
nity). Individuals differ in their baseline immune characteris-
tics, yet the costs and benefits of high levels of baseline im-
munity are less clear. Variation in baseline immunity may be
linked to how individuals will respond to an infection, even-
tually preventing additional responses of the acquired immune
system or the acceleration of the course of the immune
reaction.

Baseline immunity consists in particular of components
of innate immunity such as natural antibodies (NAbs) and
complement activity. NAbs broadly recognize and bind to
antigens, a process which can result in activation of the
complement cascade and ends with the lysis of foreign
cells (Boes 2000; Ochsenbein and Zinkernagel 2000;
Matson et al. 2005; Murphy et al. 2012). Acute phase
proteins (APPs) such as haptoglobin (Hp) play an impor-
tant role too. APPs have several antimicrobial functions,
such as opsonizing bacteria and activating the complement
cascade (Murphy et al. 2012). APP concentrations can rise
significantly in response to an acute infection, trauma or
inflammation (Murata et al. 2004; Quaye 2008; Cray et al.
2009; Matson et al. 2012).

Here, we investigated the trade-off between an activation of
the immune system and parental care in free-living female
great tits (Parus major) while also linking the observed re-
sponses to their baseline innate immunity. We investigated
potential consequences of an immune challenge on reproduc-
tive effort. Females were immunized with the non-replicating
antigen LPS when nestlings were 9 days old, and we com-
pared their responses with those of females injected with PBS
(control treatment).We recorded parental feeding rates prior to
and after the immune challenge via nest box cameras.
Furthermore, we quantified the consequences of the injected
endotoxin on offspring growth and survival by repeatedly
measuring nestling body weight and determining fledging
success. We collected a blood sample prior to injecting the
female with either LPS or PBS in order to link the mainte-
nance of several aspects of the innate immune function, which
is generally non-specific and serves as an initial line of de-
fence against invading pathogens, with potential deployment
costs. We expected a negative effect of the LPS challenge on
reproductive performance, and we hypothesized that the indi-
vidual immune characteristics of each female, that is variation
in baseline immune indices, are responsible for individual
differences in the (fitness) consequences of our immune
challenge.

Materials and methods

Study sites and data sampling

This study was performed during the breeding season of
2013 at three established great tit populations around
Antwerp, Belgium (Hoboken: N 51 10 10, E 4 20 44.4 and
N 51 9 48.3, E 4 20 48.9; Wilrijk: N 51 9 56.3, E 4 22 36.7).
All study sites are deciduous park areas located in urbanized
areas, which differ in their levels of pollution (Janssens et al.
2001). Experimental groups were therefore equally distributed
among sites, and potential side effects were additionally sta-
tistically tested. Yet, we found no differences in female base-
line immune indices among populations (HA: P=0.21; HL:
P=0.32; Hp: P=0.06) and no significant differences in the
response to the immune challenge among locations (=three-
way interactions between time (pre or post), field site and
immune indices (for more details please see below): HA:
χ² = 4.03, df=2, P=0.13; HL: χ² =2.12, df=2, P=0.35; Hp:
χ² = 2.96, df=2, P=0.23). Great tits living within these dif-
ferent populations breed in nest boxes with approximately 30
to 60 nest boxes (12.5×15×25 cm, entrance hole diameter:
3 cm, opens at the top) per study site. Nest boxes were
checked every other day to determine laying date, clutch size,
start of incubation, and exact hatch day. Breeding females
(N=53) were captured on their nest, when sleeping, between
21:00 hours and midnight when chicks were 9 days old (hatch
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day=day 1, average brood size=7 nestlings). We collected a
blood sample (∼150 μL) from the brachial vein using a
Microvette CB 300 lithium-heparin tube (Sarstedt) from each
female. Subsequently, females were injected in the pectoral
muscle with either 0.05 mL of a 500 μg/kg body mass lipo-
polysaccharide solution (LPS) or with 0.05 mL of a
phosphate-buffered saline solution (PBS). The stock solution
of 500 μg/kg was based on an average weight of 17 g, based
on the body mass of previously captured females; thus, every
bird received 8.5 μg of LPS. An injection with LPS induces an
inflammatory response as it non-specifically activates a wide
range of cells such as heterophils and B and T lymphocytes
within a few hours after injection. The initial inflammatory
response starts an immune cascade and results in the produc-
tion of specific antibodies for LPS (Poxton 1995; Bonneaud
et al. 2003; Fang et al. 2004; Abbas and Lichtman 2010). We
injected females in the evening to be sure that the first acute
effects of the immune response took place when the female
was on the nest at night. Consequently, by the next morning,
the females’ immune responses will be in some sort of transi-
tion phase between the first inflammatory response and the
start-up of the acquired immune response (carry over effect
of the acute response). By using this approach, any induced
acute sickness behaviour (e.g. fever (Gray et al. 2013)) will be
terminated by the time females start feeding their nestlings the
next morning, while there will still be an ongoing start-up of
other immune responses. After manipulation, we marked fe-
males on the head using white typing correction fluid (Tipp-
ex) and returned them to their nest box. Nest entrances were
blocked for a few minutes to prevent females from escaping
directly after they were returned. Collected blood was stored
under cool conditions and centrifuged at 7000 rpm for 10 min
after returning to the lab that same evening. Resulting plasma
samples were stored at −80 °C until use in further immuno-
logical assays. Generally, all blood was sampled immediately
after taking the females out of the nest to minimize the poten-
tial effects of stress on baseline immune functions (Matson
et al. 2006; Millet et al. 2007; Buehler et al. 2008).

We recorded parental feeding rates of both females and
males using infrared cameras (Pakatak PAK-MIR5, Essex,
UK) when nestlings were 9 days old (morning before
injection = pre-injection feeding rates) and when nestlings
were 10 days old (morning after injection = post-injection
feeding rates, Fig. 1). Cameras were installed on the day prior
to the morning of recording to make sure that birds had some

time to adapt to the altered appearance of their nest box. So,
the pre-camera was placed on the nest box at day 8 and pro-
grammed to start recording the morning of day 9. The same
method was used for the post-recording where the camera was
placed on the nest box at day 9 to start recording the morning
of day 10. For every nest, we analysed 3 h of parental feeding
rates pre-injection (from 07:00 to 10:00 hours) and 3-h post-
injection (from 07:00 to 10:00 hours) by scoring the number
of visits to the nest for both females and males using The
Observer XT 10 software (Noldus). This software provides,
based on the entered feeding scores, a feeding rate for every
individual expressed as the feeding rate per minute. To mini-
mize observer bias, blinded methods were used for the analy-
sis of feeding behaviour.

Nestling body mass was regularly evaluated by weighing
the chicks (with an accuracy of 0.1 g) at day 9 (pre-injection),
day 10, day 12 and day 14 (Figs. 1 and 2). On day 12, chicks
(N=316) were also ringed with a uniquely coded metal ring.
Due to our alternating injection scheme, there is an equal
distribution of PBS and LPS-injected females per field site.
In total, we manipulated females belonging to 53 different
nests of which 26 were assigned to an LPS treatment and 27
which were assigned to a PBS treatment. Four nests were
excluded from analysis due to technical problems with nest
box cameras (2 LPS, 2 PBS), while one extra nest (PBS) was
excluded since we were unable to collect enough blood from
the female. One female (LPS) died during the experiment, and
data belonging to this nest were therefore excluded. For this
reason, further analyses were based on 23 LPS-injected fe-
males and 24 PBS-injected females. In both groups, we had
one female feeding the nestlings without the help of her part-
ner. We experienced no nest abandonment after capture and
immune challenges.

Immunological assays

Haemolysis-haemagglutination assay

To assess the levels of natural antibodies and complement
activity, we used the haemolysis-haemagglutination assay as
developed by Matson et al. (2005) with some minor alter-
ations (Vermeulen et al. 2015). This assay is based on the
interaction of great tit plasma and rabbit red blood cells which
results in agglutination and natural antibody-mediated com-
plement activation. Agglutination scores (HA) represent the
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Fig. 1 Schematic overview of the
study design
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interaction between natural antibodies in the plasma and anti-
gens present in the rabbit blood, whereas lysis scores (HL)
represent the activity of the complement system. Titers for
agglutination and lysis were blindly scored from digitized
images as the negative log2 of the last plasma dilution at which
agglutination or lysis occurred. Half scores were assigned to
wells which showed intermediate agglutination or lysis. All
samples were scored twice on different days. We used
Spearman’s rank correlations to quantify repeatability be-
tween the two agglutination scores (ρ=0.88, P<0.0001) and
between the two lysis scores (ρ=0.99, P<0.0001).

Haptoglobin assay

Plasma haptoglobin concentrations (mg/mL) were quantified
using the manufacturer’s instructions provided with the com-
mercially available colorimetric assay (PHASE Haptoglobin
assay, Tridelta Development Ltd). We performed this analysis
last, therefore, due to shortage of plasma, the results for
haptoglobin are based on 14 LPS-injected females and 10
PBS-injected females.

Statistical analysis

To assess which parameters influenced nestling body mass,
we constructed a linear mixed model containing body mass
as dependent variable, field site, age (d9, d10, d12 and d14)
and treatment (LPS or PBS) as fixed factors, individual and
nest as random factors (with individual nested in nest and nest
nested in field site) and brood size was included as a covariate.
The model also contained the interaction terms field site by
treatment, treatment by age and brood size by age.

To establish which parent feeds on average the most before
the treatment (natural conditions), we conducted a paired t
test. To investigate whether the effects of our treatment

differed between the sexes, we used a linear mixed model
containing feeding rate as a dependent variable, field site,
treatment (LPS or PBS), time (pre or post) and sex (male or
female) as fixed factors (with all possible interactions between
time, sex and treatment), treatment day was included as a
covariate, nest as a random factor and individual as a random
factor (with individual nested in nest and in field site). Since
we found that there was a significant three-way interaction
(time by treatment by sex), we wanted to examine in more
detail whether there were significant differences in pre- and
post-treatment feeding rates for females and males. Therefore,
we used linear mixed models for both sexes separately. We
used (female or male) feeding rate as a dependent variable,
field site, treatment (LPS or PBS) and time (pre or post) as
fixed factors (with the interaction time by treatment), treat-
ment day was included as a covariate and individual as a
random factor (with individual nested in field site).
Relationships between female immunity and female feeding
rates (for the complete dataset and for the dataset excluding
females feeding without males) were investigated using
Spearman’s rank correlations following normality checks.

To establish whether the change in feeding rate following a
LPS treatment was correlated with baseline immunity of the
females, we used Pearson correlations (HA and HL) or
Spearman rank correlations (Hp) depending on model as-
sumptions. To see if we could use our data on female immu-
nity and feeding rates to make a prediction on how the female
would react to a challenge, we constructed linear mixed
models to investigate the time by immunity interaction with
feeding rate as a dependent variable, field site and time (pre or
post) as fixed factors, brood size and immunity (HA, HL or
Hp) as covariates and individual as a random factor (with
individual nested in field site).

Mixed models were constructed using the lmer function
imbedded in the package lme4 in R (Bates et al. 2013) starting
from a model containing all independent variables of interest
and their interactions. Subsequently, we used the backward
elimination procedure for model reduction. We used the max-
imum likelihood method since we tested fixed effects, their
interactions and covariables. Decisions to keep parameters in
the model were based on a significance level of 5 %. Model
assumptions were checked using Q-Q plots and Shapiro-Wilk
normality tests. All statistical analyses were performed in R
2.15.3 (R development core team 2013-03-01 release; www.r-
project.org).

Results

Influence of female immunization on nestling body mass

There was no significant field site by treatment interaction
(χ² = 3.01, df=2, P=0.22) or brood size by age interaction
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Fig. 2 Mean body mass ± SE of nestlings of females injected with
phosphate-buffered saline (PBS) or lipopolysaccharide (LPS) on day 9,
day 10, day 12 and day 14. Body mass on day 9 was determined before
the treatment of their mothers, while bodymass for day 10, 12 and 14was
determined after the treatment of their mothers
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(χ² = 1.61, df=3, P=0.66). We found no evidence that the
treatment of the mother had an effect on nestling body mass
(treatment by age interaction χ² = 3.09, df = 3, P = 0.38;
Fig. 2). Further, we found no effect of brood size (χ² = 1.66,
df=1, P=0.20) or treatment (χ² = 2.51, df=1, P=0.12) on
nestling body mass. Field site had an effect on nestling body
mass (χ² =17.68, df=2, P<0.001), and as expected, age also
influenced the body mass of nestlings (χ² = 1679.9, df=3,
P<0.0001). Female immunization did not affect fledging suc-
cess as we did not find any dead chicks in the nests during a
nest box check at day 25, suggesting that all nestlings had
fledged.

Effects of the immune challenge on parental feeding rates

Prior to treatment, male (0.38 ± 0.02 average feeding
rate per minute ± SE) great tits had higher feeding rates
compared to female (0.25 ± 0.02 average feeding rate per
minute ± SE) great tits (t= 5.5, df = 44, P < 0.0001). In
our first model, we found a significant three-way inter-
action (time by treatment by sex χ² = 8.13, df = 1,
P= 0.004). We repeated the analysis for each sex sepa-
rately, which showed that the change in female feeding
rates between pre- and post-treatment tended to differ
for immunized females and sham-treated (PBS) females
(time by treatment interaction χ² = 3.00, df= 1, P= 0.08;
Fig. 3a). LPS-injected females decreased their feeding
rate by 3.1 % after the injection, whereas PBS-injected
females increased their feeding rate by 14.9 %. The
change between pre- and post-treatment feeding rates
also differed for males according to the treatment of
their female partner (time by treatment interaction
χ² = 5.39, df = 1, P = 0.02; Fig. 3b). Males of PBS-
injected females decreased their feeding rate by 6.3 %,
whereas males of LPS-injected females increased their
feeding rate by 11.0 %.

Relationship between immunity and provisioning
in females

All correlation coefficients for the relationships between base-
line immune indices and female pre-treatment feeding rates
were negative, but only the negative correlation between hap-
toglobin and pre-treatment feeding rate was statistically sig-
nificant (Spearman rank correlation coefficients: HA:
rs=−0.15, P=0.33; HL: rs=−0.17, P=0.25; Hp: rs =−0.42,
P=0.04; Fig. 4a). We repeated the analyses while excluding
the two females who were feeding their nestlings without the
help of a male (Spearman rank correlation coefficients: HA:
rs=−0.06, P=0.70; HL: rs=−0.15, P=0.32; Hp: rs =−0.48,
P=0.02; Fig. 4b).

Variation in baseline immunity as a possible predictor

The change in feeding rate following LPS injection was not
correlated with females baseline innate immunity prior to in-
jection (HA: rp=0.18, P=0.42; HL: rp=0.15, P=0.50; Hp:
rs=0.42, P=0.13). Similarly, when taking a different statisti-
cal approach, baseline immunity appeared not to be suitable to
make predictions on how females react to a challenge in terms
of a change in feeding rate, since we found no significant time
by immunity interaction (time by HA interaction χ² = 0, df=1,
P=1.00; time by HL interaction χ² = 0.01, df=1, P=0.91;
time by Hp interaction χ² = 0.21, df=1, P=0.65).

Discussion

In this study, we explored whether variation in baseline innate
immune indices contributes to individual differences in the
consequences of an immune challenge. We found a negative
relationship between innate immunity and female feeding
rates pre-treatment only for one out of three parameters
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studied. There was no evidence that baseline immunity affect-
ed the way females reacted to an immune challenge in terms of
changes in parental behaviour, although there was substantial
variation in female innate immunity.

Effects of the immune challenge on parental feeding rates

Once immunized, treated females tended to feed their young
less frequently compared to control females. The observed
reduction in feeding rate of females injected with LPS has thus
to be interpreted cautiously but supports the idea that mount-
ing an immune response carries a cost in the currency of pa-
rental effort as shown in previous studies (Ilmonen et al. 2000;
Raberg et al. 2000; Bonneaud et al. 2003). However, species
vary in their responses. For example, injected female blue tits
(Cyanistes caeruleus) and pied flycatchers (Ficedula
hypoleuca) decreased their feeding effort and had lower repro-
ductive output than control females (Ilmonen et al. 2000;
Raberg et al. 2000), whereas a study on female European
starlings (Sturnus vulgaris) found that an experimentally en-
hanced immune function did not depress reproductive output

(Williams et al. 1999). However, it is possible that a trade-off
becomes more visible when an individual has to simulta-
neously enhance its investment in both reproduction and im-
munity (Siikamäki et al. 1997; Bonneaud et al. 2003). In the
case of our study, females reared their own un-manipulated
broods, so their workload remained unaltered (equal to normal
conditions).

We do not have a clear explanation as to why control fe-
males increased their parental care on a daily basis. It may
relate to the stress of handling and sampling, and this effect
may have been masked by the immune challenge in treated
females. However, this remains speculative, and wewill there-
fore not discuss this in more detail. But the fact that the sex-
specific feeding patterns were complementary renders it un-
likely that the overall levels of demand increased.

Males of which the female reduced her feeding rate after
being injected with an endotoxin responded to this change in
their partner’s behaviour by compensating. This corresponds
with a comparable study showing that male great tits indeed
increase their feeding investment to ensure the success of their
offspring (Christe et al. 1996). Our results are also in line with
a study in house sparrows (Passer domesticus), showing that
males of LPS-injected females tended to increase their feeding
rates to compensate for the reduction in female feeding effort
(Bonneaud et al. 2003). Yet, in the case of blue tits and pied
flycatchers, males of diphtheria-tetanus vaccinated females
did not compensate for the reduced feeding rates of their mates
(Ilmonen et al. 2000; Raberg et al. 2000). However, these
latter studies are in contrast to the general pattern in birds,
which is to partially compensate for reduced partner effort
(reviewed in Harrison et al. 2009). Yet, it should be noted that
also the type of manipulation used can mediate the response of
parents (Harrison et al. 2009). For example in our case, males
with LPS-injected females were capable to compensate for a
decreased partner feeding rate. Whereas great tit males of
which the female was handicapped (by clipping a number of
feathers) did not compensate but even tended to decrease their
feeding rates, while females with a handicapped partner fully
compensated (Sanz et al. 2000). In both cases, males are able
to recognize and respond (either by reducing their feeding
rates or by compensating) to a change in their females’ state.
The fact that males compensated for the reduced feeding effort
of their females probably explains why we did not find any
effect of treatment on nestling body mass, in contrast to com-
parable studies on pied flycatchers and blue tits (Ilmonen et al.
2000; Raberg et al. 2000).

Relationship between immunity and provisioning
in females

The correlations between female provisioning and female
baseline immune parameters were negative for all innate im-
mune parameters measured here, but only the relationship
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with the acute phase protein haptoglobin was statistically sig-
nificant. This significant relationship existed for both females
feeding with their partner as for females feeding without the
help of their male. However, it remains elusive why such
relationship was restricted to Hp, and the results have thus to
be interpreted cautiously. Unfortunately, thus far, no other
study has focused on natural variation in immunity in relation
to parental provisioning, which limits the comparison with
earlier studies and other species. Most studies to date have
examined the link between life-history decisions and immune
defences in birds for example via brood size manipulations or
injections activating the immune system (Deerenberg et al.
1997; Nordling et al. 1998; Ilmonen et al. 2000; Raberg
et al. 2000; Bonneaud et al. 2003; Verhulst et al. 2005). But,
only very few have studied natural variation in immunity to
examine the trade-off between reproduction and other impor-
tant fitness components (Merilä and Andersson 1999) or the
capacity of baseline immunity to predict subsequent immune
responses (Matson et al. 2012). To our knowledge, this study
is the first to investigate correlations between baseline innate
immunity and provisioning in un-manipulated free-living
birds. However, care must be taken when interpreting these
results since the relationships found in this study show only
weak support for the existence of a trade-off. Further, we
would like to highlight that the birds used in this study were
presumably infested with their natural parasites (e.g. hen fleas,
Ixodes ricinus, mites, bacteria) since we performed our re-
search under natural conditions. The presence of these natural
parasites might have partially contributed to the variation in
baseline immune levels we observed. Thus, the possibility of
natural parasites causing variation should be kept in mind
when interpreting the results of this study.

Variation in baseline immunity as a possible predictor

Baseline immune indices have previously been used as a pre-
dictor of local recruitment, establishment success, dispersal
ability and long-term survival (e.g. Saino et al. 1997; Møller
and Cassey 2004; Møller et al. 2004; Møller and Saino 2004;
Cichon and Dubiec 2005; Moreno et al. 2005). However, the
capacity of baseline immune parameters to predict subsequent
immune responses is as yet unknown (Matson et al. 2012). In
this study, we explored if several innate immune measures
(NAbs, complement activity and haptoglobin concentrations)
were able to predict the consequences of an immune chal-
lenge, here measured in terms of changes in parental effort.
However, we found no evidence that baseline immunity al-
tered the way how females reacted to our immune challenge.
As pointed out above, there is variation in the response of
birds to an immune challenge (Williams et al. 1999; Ilmonen
et al. 2000; Raberg et al. 2000; Bonneaud et al. 2003), and we
hypothesized that this variation might at least partly be due to
variation in baseline immunity (Cichon and Dubiec 2005).

However, our results show that having a high standing level
of immunity does not necessarily mean that an individual will
pay different fitness costs in response to an immune challenge.
Innate immunity might be a potential mechanism to compen-
sate for a suboptimal major histocompatibility complex diver-
sity (Kurtz et al. 2004), indicating the relevance of investigat-
ing different immune traits simultaneously. Yet, here, the
adaptive value of elevated baseline immunity, as well as the
causes and consequences of variation in baseline immunity,
remains unclear.

Conclusions

Our results provide only weak support for the existence of a
trade-off between investment in reproduction and investment
in immunity in female birds during the period of parental care.
Interestingly, males compensated for the change in female
feeding behaviour, and we consequently did not observe any
changes in offspring development or survival. Further, we
showed that variation neither in NAbs nor in complement
activity nor in haptoglobin concentrations predicted variation
in the consequences of an immune challenge, even though
there was substantial variation in female innate immune
indices.
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