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Abstract Social network analysis is increasingly applied to
understand the evolution of animal sociality. Identifying eco-
logical and evolutionary drivers of complex social structures
requires inferring how social networks change over time. In
most observational studies, sampling errors may affect the
apparent network structures. Here, we argue that existing ap-
proaches tend not to control sufficiently for some types of
sampling errors when social networks change over time.
Specifically, we argue that two different types of changes
may occur in social networks, heterogeneous and homoge-
neous changes, and that understanding network dynamics re-
quires distinguishing between these two different types of
changes, which are not mutually exclusive. Heterogeneous
changes occur if relationships change differentially, e.g., if
some relationships are terminated but others remain intact.
Homogeneous changes occur if all relationships are propor-
tionally affected in the same way, e.g., if grooming rates de-
cline similarly across all dyads. Homogeneous declines in the
strength of relationships can strongly reduce the probability of
observing weak relationships, producing the appearance of
heterogeneous network changes. Using simulations, we con-
firm that failing to differentiate homogeneous and heteroge-
neous changes can potentially lead to false conclusions about
network dynamics. We also show that bootstrap tests fail to
distinguish between homogeneous and heterogencous
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changes. As a solution to this problem, we show that an ap-
propriate randomization test can infer whether heterogeneous
changes occurred. Finally, we illustrate the utility of using the
randomization test by performing an example analysis using
an empirical data set on wild baboons.
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Introduction

Social network analysis is increasingly used to study the struc-
tures of animal societies (Croft et al. 2008; Wey et al. 2008;
Whitehead 2008; Krause et al. 2009; Sueur et al. 2011). While
most studies of social networks in animal behavior have fo-
cused on describing static network structures, there is an in-
creasing interest in studying how social networks change over
time and what determines the stability of social networks
(Wittemyer et al. 2005; Flack et al. 2006; Hansen et al.
2009; Ansmann et al. 2012; Blonder et al. 2012; Cantor
et al. 2012; Foster et al. 2012; Brent et al. 2013; Gero et al.
2013; Hobson et al. 2013; Boogert et al. 2014;
Pinter-Wollman et al. 2014; Wilson et al. 2014). Indeed, in-
ferring changes in social network structures has the potential
to provide crucial insights into how social dynamics change
over time, for instance, in response to seasonal changes
(Wittemyer et al. 2005 ; Henzi et al. 2009; Brent et al. 2013)
or in response to disturbances such as the removal of impor-
tant individuals (Flack et al. 2006; Barrett et al. 2012).

In most observational studies, only a subset of the social
interactions that characterize social networks will actually be
observed and recorded. This may be because the duration of a
given study is too short to see interactions that are rare, or it
may be because interactions occur when observers are not
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observing the group. In either case, particularly weak social
relationships are disproportionately likely to remain unrecord-
ed. While this is an obvious problem in field studies, the same
problem also occurs in captive studies unless all animals can
be observed for the whole time during which social
interactions occur. As a consequence, the observed in-
teractions provide only an approximation of the interac-
tions that actually occurred, and the resulting social net-
works that are inferred are likely to provide an incom-
plete representation of the actual networks (Farine and
Whitehead 2015).

It is widely acknowledged that, to ensure that inferences
about the structure of social relationships are robust, it is vital
to include an assessment of sampling errors in the analysis of
observed social networks (Bejder et al. 1998; Borgatti et al.
2002; Whitehead et al. 2005; Lusseau et al. 2008; Whitehead
2008; James et al. 2009; Croft et al. 2011; Voelkl et al. 2011).
However, our examination of the literature indicates that most
studies do not generally consider one potential source of sam-
pling error which, if not recognized, can lead to incorrect
inferences about changes in social networks. Here, we present
an approach that takes into account this type of sampling error.

Specifically, we argue that in analyzing changes in social
networks that occur, for instance, after a social disturbance, it
is important to differentiate between two different possible
types of changes, which we refer to as homogeneous and
heterogeneous changes. Homogeneous changes are those in
which all relationships change in the same way while the
overall pattern of strong and weak relationships remains un-
changed (Fig. 1). As an example, a group-wide decrease in
interaction rates that affects all dyads in a similar manner
would qualify as a homogeneous change. In contrast, hetero-
geneous changes in relationships are those that affect different
relationships in different ways (Fig. 1). For instance, some
relationships become weaker or are terminated while other
relationships remain unchanged. In other words, heteroge-
neous changes are changes that result in a “rewiring” of the
social relationship network. Both types of change may occur
simultaneously. For example, all relationships in a network
might become proportionally weaker (a homogeneous
change) and, in this process in which all ties weaken,
some relationships are additionally terminated (a hetero-
geneous change).

To further illustrate the differences between both types of
changes, we suggest a conceptual distinction between (1) the
pattern of variation among relationships in a network and (2)
the rate with which these relationships are expressed behav-
iorally. The pattern of variation among relationships describes
how each dyad behaves relative to other dyads; some dyads
have strong and some have weak relationships so that, for
instance, the grooming rate between individuals 4 and B is
twice the grooming rate between individuals 4 and C. The
behavioral expression of this pattern in a given timeframe then
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results in instances of observed social behaviors, which would
be for instance the number of grooming events between indi-
viduals 4 and B and between individuals 4 and C. Following
this distinction, changes in relationships can occur (1) in the
pattern of variation among relationships in a network or (2) in
the rate with which these relationships are expressed behav-
iorally. Heterogeneous changes to refer to the first case (e.g., if
the grooming rate between individuals 4 and B changes only
moderately while the grooming rate between individuals 4
and C is terminated) and homogeneous changes refer to the
second case (e.g., if the grooming rate between all individuals
in a group are changed by the same factor in a multi-
plicative way).

Importantly, sampling errors (which might be produced, for
instance, by any limit on sampling effort) may cause homo-
geneous changes to resemble heterogeneous changes. To il-
lustrate this problem, we use a simple example: if all relation-
ships in a network become proportionally weaker in a homo-
geneous manner (for instance because of a seasonal change in
food supply), and if weak relationships are unlikely to be
observed, then the total number of unobserved relationships
would increase as a result of the homogeneous change. The
increased number of unobserved relationships would then
lead to a decrease in the mean degree in the observed network
(e.g., a decrease in the mean number of interaction partners).
A similar decrease in mean degree could be also caused by a
heterogeneous change, that is, by a situation in which
some relationships were truly terminated whereas others
remain stable.

Which type of change occurs or dominates could have
profoundly different implications for the interpretation of the
observed social dynamics. Specifically, our interpretation of
the effect of a social disturbance on a network will vary de-
pending on whether we detect a global (homogeneous) change
in interaction levels across the network after that disturbance,
or a “rewiring” of the network after that disturbance. While it
is possible that both effects co-occur, it might be often the case
that one effect is much stronger and dominates the observed
social dynamics.

The main aim of this study is thus to raise the
awareness that different kinds of changes in social rela-
tionships can appear to have similar effects on network
structures and that it is important to distinguish between
these types of changes. To achieve this aim, we present
simulation experiments based on data from wild ba-
boons to illustrate that homogeneous and heterogeneous
changes can indeed lead to similar apparent changes in
observed social networks. In addition, we show that one
commonly used test for the analysis of changes in so-
cial network structures, the bootstrap test (e.g., Lusseau
et al. 2008; Henzi et al. 2009; Brent et al. 2013), fails
to distinguish between homogeneous and heterogeneous
changes. We then show that an appropriate
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Fig. 1 Illustration of how heterogeneous and homogeneous changes can
affect observed social network structures. Circles represent individuals. In
(a), (c), and (e), edge thickness indicates magnitude of true interaction
rates. In (b), (d), and (f), edges indicate whether interactions among two
individuals have been observed. Numbers indicate mean degree, i.e., the
mean number of grooming partners per individual. a, b Baseline scenario:
low interaction rates are likely to result in undetected relationships. ¢, d
Example of a homogeneous change in the baseline scenario: all
interaction rates decrease equally, which increases the number of
relationships with low interaction rates. Consequently, in this case, the
number of dyads for which interactions are observed decreases. Note that
although no “true” zero interaction rates occur as a consequence of

randomization test can be used instead of, or in addition
to, the bootstrap, to infer whether heterogeneous chang-
es occurred. In contrast to the bootstrap test, which
generates new datasets by randomly selecting observa-
tions with replacement, a randomization test in our case
involves shuffling of observations between time periods,
with constraints (see “Methods” section for details).
After describing our proposed application of a random-
ization test, we perform an example analysis to investi-
gate the effects of the dispersal of the alpha male on the
grooming network among adult female baboons. The
application of these two different tests illustrates the
importance of distinguishing between heterogenecous
and homogeneous network changes.

The simulation experiments that we conducted were
designed to provide proofs of principles for our main
arguments. For that purpose, we focused initially on a
few network measures and the simple cases in which
either a homogeneous or a heterogeneous change oc-
curs. We present additional analyses in the
Supplementary materials in which we extended this ba-
sic approach by (1) considering additional network mea-
sures and (2) simulating the simultaneous occurrence of
homogenous and heterogeneous changes.

Observed network

3.6 (b) 2

3.6 (d) 1.2

1.6 (f) 1.2

3 ¢

homogeneous changes (¢), observer error (e.g., simply failing to
observe every interaction between all subjects) could produce apparent
zero interaction rates (d). e, f Example of a heterogeneous change in the
baseline scenario: several interaction rates are strongly decreased or set to
zero, which also decreases the number of dyads for which interactions are
observed. Taken together, this example illustrates how homogeneous and
heterogeneous changes can have similar effects on observed networks
and associated network measures such as mean degree. Importantly,
inferred changes in the observed network correctly approximate the true
changes in interaction rates in the case of a heterogeneous change, but not
in the case of a homogeneous change

Methods
Simulation of homogeneous and heterogeneous changes

All simulations followed the same conceptual framework. We
used empirically observed grooming interaction rates a, as a
baseline that characterized social relationships in a group of
individuals at time x (see details of empirical data collection
below). Solely for the purposes of our simulations, we as-
sumed these observed grooming rates a, to be the true,
error-free grooming rates (Fig. 1a). This baseline measure of
true grooming rates was then used in simulations in which we
imposed either homogeneous or heterogeneous changes,
which resulted in modified interaction rates a, that character-
ized social relationships at time y (represented in Fig. 1 as
transitions from panel a to panel ¢, and from panel a to panel
e). Finally, we simulated how interactions rates specified by a,
and a, resulted in observations of interactions o, and o,, (rep-
resented in Fig. 1 as transitions from panel ¢ to panel d, and
from panel e to panel f). Simulated observations were then
used to construct social networks and assess how the homo-
geneous versus heterogeneous changes we imposed affected
different network measures (see details below). In addition,
pairs of observed interactions o, and o, were used as input
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to the bootstrap and randomization tests described in the
“Differentiating heterogeneous from homogeneous
changes” section.

Baseline interaction rates a, were derived from grooming
data collected between January 2008 and June 2008 by the
Amboseli Baboon Research Project on one group of yellow
baboons, which at that time consisted of 56 individuals. Data
on grooming between all possible pairs of individuals were
collected ad libitum and during 10-min focal samples
(Altmann 1974). Focal samples were conducted in random
order on all adult females and juveniles in a given social
group. This approach insured that observers continually
moved to new locations within the group in a random order,
observing all animals on a regular rotating basis. Thus, our
procedure for data collection eliminated the possibility that
observers spent more time watching particular subsets of the
social group, or moved in a biased manner through the group
detecting only the most dramatic events.

Based on a total of 1933 grooming events for all dyads in
the group during this 6-month window, we calculated
grooming rates a, ; among all individuals i and j for this time
period (note—these 1933 events involve only a subset of pos-
sible dyads; not all dyads engage in grooming behavior, and as
with any observational study some grooming events are inev-
itably not recorded). Using a relatively large time window of
6 months facilitates detecting weak relationships, which is
particularly important for accurately modeling the effect of
homogeneous changes. A potential drawback of the large time
window is that we ignore potential changes in social relation-
ships that might have occurred during this time window.
However, this problem seems to be of minor importance for
demonstrating the potential effects of homogeneous and het-
erogeneous changes.

To simulate heterogeneous network changes, we simulated
the complete removal of some grooming relationships
(representing an extreme case of heterogeneous changes out
of many possible scenarios, represented in Fig. 1 as the tran-
sition from panel a to panel e). Relationship removals were
implemented by randomly selecting a proportion p of all non-
zero rates in a, and setting them to zero. To simulate homo-
geneous changes, all baseline grooming rates a, were multi-
plied by a factor ¢ (represented in Fig. 1 as the transition from
panel a to panel ¢). For both time periods, observations o;; for
all dyads of individuals i and j were simulated by drawing a
random number from a Poisson distribution with A=a;; for
each a;; (represented in Fig. 1 as the transitions from panel ¢
to panel d, and from panel e to panel f). This assumption is, for
instance, well justified in cases where observational data are
collected ad libitum (Altmann 1974) and all group members
are equally visible to the observer.

Drawing observations o,, from a distribution captures two
distinct stochastic processes: (1) the behavioral expression of
grooming events, i.e., whether and how many grooming
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events take place, and (2) the observation of these grooming
events, i.e., whether and how many of the occurred grooming
events are observed. As a consequence as values of a, de-
crease as a result of homogeneous change from a, towards
0, the value of o, becomes increasingly likely to be 0 (i.e.,
no grooming interactions are observed) even though the value
a, never itself reaches 0 when a, is greater than 0. This sim-
ulates a real-life situation where rare interactions, although
present, may never be observed or a situation in which inter-
action rates become so small that interactions are rarely
expressed in the considered time interval.

In simulating heterogeneous changes, we varied the pro-
portion of removed grooming relationships p from 0 to 0.5 in
increments of 0.05. In simulations of homogeneous changes,
we varied the factor ¢ from 0.5 to 1 in increments of 0.05 to
simulate relationships that were homogeneously weakened by
varying degrees. In all cases, we conducted 500 independent
simulations for each condition.

After each simulation was complete, we constructed an
undirected binary network from the simulated grooming ob-
servations; in this network, edge weights for all dyads without
any grooming interaction were set to 0, and weights for all
dyads with at least one interaction were set to 1. The package
igraph (Csardi and Nepusz 20006) in the statistical software R
(R Core Team 2014) was used to calculate for each network
two binary network measures: the mean degree (which mea-
sures the average number of interaction partners) and the global
clustering coefficient (which is a measure of “cliquishness”). In
addition, we calculated network entropy, a weighted network
measure. Network entropy measures network-wide heterogene-
ity in interactions by taking into account interaction frequency
and directionality. Given a set of observed interactions o, and
the corresponding proportions of grooming given pg;; from i
andj for all pairs of individuals where i groomed j at least once,
we calculated entropy H(o) as follows:

H(o) == pg, log(pe.,) (1)

alli, j

In additional analyses, presented in the Electronic supple-
mentary material, we also investigated how homogeneous and
heterogeneous changes in the network affect weighted clus-
tering coefficients.

Differentiating heterogeneous from homogeneous changes

We compared the performance of a bootstrap test with the
performance of a randomization test that allowed us to infer
heterogeneous changes in network structures. As input to
these tests, we used paired simulated observations of social
interactions o, and o,, which were derived from unmanipulat-
ed baseline interaction rates a, and manipulated interactions
rates a,. For each pair of networks, we used the bootstrap test
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and the randomization test to determine whether mean degree,
global clustering coefficient, or entropy significantly changed
from simulated observation period x to period y.

The bootstrap test tests the data against the null hypothesis
that an observed change in a network measure occurred en-
tirely because of random sampling errors (i.e., the null hypoth-
esis assumes that no real change occurred). To this end, null
distributions are generated for each observed set of grooming
events o, and o,. These distributions describe the expected
variation in considered network measures because of random
sampling errors.

We implemented the generation of these distributions by
(1) resampling single grooming events with replacement from
the raw observation data, i.e., observed sets of grooming
events o, and o,, (while keeping the total number of observed
grooming events constant between networks), (2) constructing
unweighted and weighted networks from the sampled data,
and (3) calculating all three network measures (mean degree,
global clustering coefficient and entropy). We generated 1000
samples for each time period (based on o, and o,), which
allowed estimating 95 % confidence intervals for each net-
work measure for each time period. A change in a network
measure between the two time periods was assumed to be
significant if the confidence intervals did not overlap.

The randomization test that we used here tests the data
against the null hypothesis that an observed change in a net-
work measure occurred either because of random sampling
errors or because of systematic sampling errors caused by
homogeneous changes (i.c., the null hypothesis assumes that
no heterogencous change occurred, but that homogeneous
changes could have occurred). To this end, a null distribution
is generated that describes the change in a given network
measure that is expected either because of homogeneous
changes or because of random sampling errors. The random-
ization test becomes significant if it is sufficiently unlikely that
the observed change in a network measure was generated by
this expected distribution. Note, because this test controls for
potential homogeneous changes, heterogeneous changes can
be detected irrespectively of whether homogeneous
changes occurred.

We implemented this test by first performing randomiza-
tions on the raw observation data. For a single randomization,
observations of single grooming events were randomized be-
tween the two sets of observed grooming events o, and o, at
time periods x and time y while retaining the original number
of observations for each time period. More specifically, each
data point in the input data set corresponds to a single obser-
vation of a pairwise grooming interaction. In addition to the
information about who groomed whom, each data point con-
tains information on the respective time period (x or y) in
which the observation was made. During the randomization
procedure, the assigned time period was randomized among
all data points (i.e., each data point was reassigned to a time

period without changing the total number of data points that
are assigned to each period). This procedure is based on the
assumption that the variation in interaction frequencies among
individuals are identical in both observation periods (i.e., no
heterogeneous change occurred from time x to time y) but that
absolute number of interactions might differ as a result of
homogeneous changes (which would result in different total
numbers of observations at time y relative to time x). After
each randomization, unweighted and weighted networks are
constructed from the randomized data and network measures
are calculated from these networks.

We performed 1000 randomizations and used 0.025 and
0.975 quantiles to estimate 95 % confidence intervals of ex-
pected changes. A change in a network measure between the
two time periods was assumed to be significant if the observed
change was outside the 95 % confidence interval of expected
changes. We further investigated the tests described above
using a large number of artificially created social networks
in which we (1) varied network size and other network prop-
erties and (2) investigated cases in which homogeneous and
heterogeneous changes occurred simultaneously (see
Electronic supplementary material). In addition, we provide
the R code that implements the randomization test (see
Electronic supplementary material).

Note that the randomization approach we used, which in-
volved retaining the original number of observations for each
time period, is of key importance for the functioning of this
method, but it also imposes some constraints. Retaining the
original numbers of observations for each time period implies
that mean interaction frequencies in each time period remain
unchanged. This property ensures that the randomization test
is able to estimate expected changes in network measures if
homogeneous changes occur. However, another consequence
of retaining the original numbers of observations for each time
period is that it will not be possible to detect changes in group-
level mean strength (also sometimes referred to as weighted
degree), particularly if dyad-specific interaction frequencies
are used as edge weights (as we have done here). That is, if
one retains the original numbers of observations for each time
period, randomizations do not affect interaction frequencies
(which are equivalent to group-level mean strength) and there-
fore cannot generate meaningful null distributions for expect-
ed changes of this measure. For this reason, we also chose not
to include investigations of mean strength in our analysis.

Example analysis: effects of the dispersal of an alpha male

To further illustrate the importance of considering homoge-
neous and heterogeneous changes, we applied the bootstrap
test and the randomization test to investigate how grooming
networks of adult female baboons changed following the dis-
persal of an alpha male. The specific dispersal event that we
investigated occurred in December 2005 in one of Amboseli
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study groups, which contained 13 adult females at this time. In
our analysis, we compared grooming data collected within
30 days before and 30 days after the dispersal event. We ap-
plied the bootstrap and the randomization test using mean
degree, global clustering coefficient, and network entropy as
test statistics. For the bootstrap test, we generated 1000 sam-
ples to estimate 95 % confidence intervals for each network
measure for each time period, and for the randomization test
we performed 1000 randomizations to estimate 95 % confi-
dence intervals.

Results

As we predicted, both a simulated homogeneous change and a
simulated heterogeneous change tended to decrease the mean
degree in a social network (Fig. 2a, d). Importantly, we also
found the same effect for the global clustering coefficient
(Fig. 2b, e), network entropy (Fig. 2c, f), and weighted

clustering coefficients (see Electronic supplementary
material). This result shows that homogeneous changes
can systematically affect not only mean degree but also
other network measures, including weighted network
measures such as entropy and weighted clustering
coefficients.

We next examined the proportion of cases in which the
difference between baseline and modified grooming patterns
produced statistically significant changes in network structure.
Specifically, we asked whether increasingly large declines in
overall grooming rates (in simulations of homogeneous
changes) or increasingly large numbers of terminated relation-
ships (in simulations of heterogeneous changes) produced in-
creasingly larger fractions of cases in which the network struc-
ture changed significantly (Fig. 3). We asked this question for
three different network measures (mean degree, global clus-
tering coefficient, and entropy), changing in response to two
different types of change (simulated heterogeneous and simu-
lated homogeneous changes).

Homogeneous changes
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Fig. 2 Homogeneous changes (a, b, ¢) and heterogeneous changes (d, e,
f) can result in similar apparent changes in network measures, leading to
potentially incorrect inferences about how relationships have changed
over time. Dots indicate the mean network measures of networks based
on true interaction rates (a,). Boxplots indicate network measures (max,
75th percentile, median, 25th percentile, minimum) of networks based on
simulated observations of interaction rates (o,). In (a), (b), and (c), our
simulations reduced all interaction rates to the same extent, but sampling
error produced changes that appear similar to heterogeneous changes, the
simulations for which are shown in (d), (e), and (f). Importantly, only in
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Percent relationships terminated

Percent relationships terminated

in simulations in simulations

the cases of heterogeneous changes, but not in cases of homogeneous
change, inferred changes in the observed network structures correctly
approximate the true changes in interaction rates. This effect is not only
true for the straightforward case of mean degree (a, d), but it also applies
to global clustering coefficient (b, €) and entropy (¢, f). Note that the
percent changes in heterogeneous and homogenous changes are not
directly comparable, but (a) shows how decreasing grooming rates
relate to a decrease in mean degree. This decrease in mean degree is
caused by a decrease in the number of observed relationships, which
directly reflects the increase in unobserved relationships
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In three of these six contexts, specifically those in which
we simulated homogeneous changes, the results from the
bootstrap tests differed strongly from those of the randomiza-
tion tests. Specifically, as overall grooming rates decreased,
the bootstrap test reported strong increases in proportion of
significant results (Fig. 3a—c). In contrast, for the randomiza-
tion test the proportion of significant results did not increase
with increasing homogeneous changes and never exceeded
the expected type I error rate (Fig. 3a—c).

In the case of simulated heterogeneous changes, both the
randomization and the bootstrap tests performed in a similar
way: the proportion of significant results increased with in-
creasing heterogeneous changes (Fig. 3d—f). This result shows
that although these tests strongly differ in their reaction to
homogeneous changes (Fig. 3a—c), both tests are able to detect
heterogeneous changes with comparable success (Fig. 3d—f).

In other words, the bootstrap test reported changes in mean
degree, global clustering coefficient, and entropy even when
such changes did not occur, implying that it could not distin-
guish between changes in network measures caused by homo-
geneous changes from those caused by heterogeneous chang-
es. The randomization test provides a solution to this problem
as it controls for changes in network measures caused by

homogeneous changes. These findings were confirmed by
additional analyses with artificially created networks in which
we vary network size and other network properties (see
Electronic supplementary material). Our additional analyses
furthermore confirmed that the randomization test can detect
heterogeneous changes in the presence of homogeneous
changes, even in cases in which homogeneous and heteroge-
neous changes have similar effects on observed network struc-
tures (see Electronic supplementary material).

Results from our example analysis further illustrate the
differences between the bootstrap and the randomization test
and the utility of using the randomization test instead or in
addition to the bootstrap test. With the application of the boot-
strap test, the mean degree and network entropy in the female
network significantly decreased following the dispersal of the
alpha male (Fig. 4a, c), but no significant change was detected
for the global clustering coefficient (Fig. 4b). An additional
analysis revealed that individual grooming rates also de-
creased after the dispersal event (Fig. 4d). This information
about individual grooming rates is ignored by the bootstrap
test. In contrast, the randomization test automatically accounts
for changes in grooming rates when calculating the distribu-
tion of expected changes in network measures. The
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Fig.3 Effects of simulated homogeneous changes (a, b, ¢) and simulated
heterogeneous changes (d, e, f) on the proportion of significant changes
reported in three network measures: mean degree (a, d), global clustering
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coefficient (b, e), and entropy (¢, f). Gray squares indicate results using a
bootstrap test; black circles indicate results using the randomization test.
The dotted line indicates the expected type I error rate
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Fig. 4 The bootstrap test (a, b, c) reports significant changes in the
grooming networks of adult female baboons after the dispersal of an
alpha male in Amboseli, Kenya, while the randomization test (d, e, f)
does not. Black bars and white bars (a, b, ¢) show the distributions of
bootstrapped values for network measures before and after the dispersal
event, respectively; gray bars indicate where the two distributions
overlap. Changes in mean degree and network entropy were reported to
be significant using the bootstrap test; the change in global clustering
coefficient was not significant. Panel (d) illustrates that individual
grooming rates decreased after the dispersal event. In contrast to the
bootstrap test, the randomization test takes this change in grooming
rates into account when testing for a change in a network measure.

application of the randomization test revealed no significant
changes in the female network after male dispersal
(Fig. 4e—g). The differences between the results of the
two tests indicate that the significant changes detected
by the bootstrap test were mainly driven by a homogeneous
decrease in grooming rates. Based on this finding, we can
furthermore conclude that heterogeneous changes in the struc-
ture of grooming preferences among adult female baboons did
not occur, or had no or only a minor influence on the observed
changes in network measures. In other words, it seems that
following the dispersal of the alpha male females groomed
each other less, without changing their preferences whom to
groom. Note, however, that this finding was specific to the
investigated dispersal event and does not represent a pattern
that generally occurs across events in which high ranking
males disperse or die (Franz et al. 2015).
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Results from the randomization tests (e, f, g) illustrate, for each network
measure, the distribution of expected changes under the null hypothesis of
no heterogeneous changes. The black vertical lines show the observed
changes in the corresponding network measure. In all three cases, the
observed change falls well within the distribution of the expected
change, which illustrates why the randomization test found no support
for the hypothesis that these network measures were affected by
heterogeneous changes in social relationships. This finding indicates
that the significant changes detected by the bootstrap test (a, ¢) were
actually the result of a homogeneous decrease in grooming rates (d),
instead of being the result of changes in the structure of grooming
preferences among adult female baboons

Discussion

Here, we emphasized the importance of distinguishing be-
tween heterogeneous and homogeneous changes in social re-
lationships as distinct causes of structural changes in social
networks (Fig. 1). We have confirmed that heterogeneous
and homogeneous changes in relationships can affect ob-
served social network structures in similar ways (Fig. 2).
Further, we have shown this is not only true for the straight-
forward case of mean network degree, but it also applies to
other binary and weighted network measures such as global
clustering coefficient, network entropy, and weighted cluster-
ing coefficients (Fig. 2, Electronic supplementary material).
We might have expected that the use of weighted network
measures would reduce or even completely prevent the sys-
tematic influence of homogeneous changes because weighted
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network measures use more fine-grained information on inter-
action or association frequencies than unweighted network
measures. However, information on edge weights cannot be
recovered if no interactions or associations have been ob-
served. For that reason, binary and weighted network mea-
sures are affected by the same fundamental problem: homog-
enous changes can alter the probability that any observations
(or observations above a certain threshold) are obtained for
weak relationships.

This systematic effect of homogeneous changes has far
reaching consequences for interpreting results of social net-
work analyses. For instance, commonly applied bootstrap
tests are able to infer whether changes in social relationships
occurred, but are not able to infer the nature of this change,
i.e., whether homogeneous or heterogeneous changes oc-
curred (Fig. 3). This limits the inferences that can be drawn
from studies that apply bootstrap tests or other tests that do not
allow distinguishing between homogeneous and heteroge-
neous changes.

Our example analysis illustrates this problem in the context
of the potentially disruptive effects of dispersal by an alpha
male in a primate group (Fig. 4). The differences between the
results of the two applied tests are mainly explained by a
general decrease in grooming rates (Fig. 4d). Taken together,
these results show that the changes in network measures de-
tected by the bootstrap test are mainly a side effect of a ho-
mogenous change in grooming rates; any additional heteroge-
neous changes in overall preferences of whom to groom must
have been absent or relatively weak.

Similar issues to those illustrated by this example analysis
might exist in other studies that analyzed temporal dynamics
in social networks. For instance, Flack and colleagues (Flack
et al. 2005, 2006) conducted a well-known and particularly
innovative study of social relationships in which they tested
how a specific conflict intervention behavior referred to as
“policing” affected the stability of social behavior and social
networks in a captive group of pigtailed macaques (Macaca
nemestrina). They temporarily removed high ranking males,
which were identified as the most important “policers,” and
investigated how social network structures changed after the
“knockouts” of these individuals. In Flack et al. (2005), the
researchers reported that the “knockouts” of key “policers”
led to an average increase in association rates and a decrease in
average grooming rates (Flack et al. 2005). In a subsequent
network analysis, Flack et al. (2006) also reported a decrease
in mean degree in the grooming network after the knockouts
and an increase in the global clustering coefficient in the as-
sociation network (these effects refer to changes in social net-
works that only contain the same subset of non-knockout in-
dividuals before and after the knockout). These changes were
interpreted as indicators of a less open, integrated society after
the knockouts and Flack et al. (2006) concluded that “policing”
behavior is important for maintaining stable primate

societies. However, Flack et al. (2006) did not investigate
whether the observed changes in network structures were
caused by homogeneous or heterogeneous changes in social
relationships. Heterogeneous changes seem to be an obvious
explanation. However, homogeneous changes are a plausible
alternative in this case. Specifically, increases in average as-
sociation rates and decreases in average grooming rates
(reported in Flack et al. 2005) are consistent with the possibil-
ity that homogeneous changes caused the observed increase in
association clustering coefficient and decrease in mean
grooming degree (Fig. 2).

Heterogeneous and homogenous changes would have fun-
damentally different implications in this case. For instance, ifa
heterogeneous change occurred (with or without a simulta-
neous homogeneous change), then a change in the overall
interaction patterns would be an effect that occurred in
addition to changes in average association and average
grooming rates. In contrast, if only a homogeneous change
occurred then the pattern of variation in relationships among
dyads would have remained identical and the changes in ob-
served social network structures would be a side effect of
changes in association and grooming rates. As a consequence,
if networks experience homogeneous as opposed to heteroge-
neous changes, the network seems likely to rebound more
quickly from a perturbation. Similar issues can also arise in
studies on the influence of seasonal changes on social net-
works (e.g., Henzi et al. 2009; Brent et al. 2013) or in studies
of natural knockouts where knockouts effects could be con-
flated with seasonal effects (Barrett et al. 2012).

A potential solution to this problem could be to intensify
observations to a point where even the weakest relationships
have a very high detection probability. In this case, homoge-
neous changes would not easily be confused with heteroge-
neous ones. However, in many cases, this will not be feasible,
particularly in captive studies that occur within short
timeframes, or in wild studies that allow only limited obser-
vation effort. As a solution to this problem, we have shown
that a randomization test can control for potential homoge-
neous changes (Figs. 3 and 4, Electronic supplementary
material). However, while the randomization test allows the
detection of heterogeneous changes, this test does not allow
any inference of whether homogeneous changes also
took place.

A potential approach that might allow the combined quan-
tification of homogeneous and heterogeneous changes would
be the use of random graph models (Robins et al. 2007) and
actor-based models (Snijders et al. 2010), which explicitly
model relationships dynamics. However, these approaches
do not yet consider observation errors. Neither do they con-
sider that relationships dynamics can be affected by different
kinds of changes, which means that random graph models do
not yet allow researchers to differentiate between homoge-
neous and heterogeneous changes.
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In our analyses, we focused on three network measures that
measure properties of the global network structure. Whether
and to what extent a network measure is affected by homog-
enous changes in any specific case is difficult to predict.
Nonetheless, we recommend the use of the applied randomi-
zation test, instead or in addition to a bootstrap test, to control
for potential homogeneous effects. As shown in our applica-
tion using network entropy, our test can be applied to any
network measure including weighted and directed measures.
For reasons of practicality, we focused in our simulations on
one extreme case of heterogeneous changes: the complete
termination of randomly selected relationships. It is important
to note that the randomization test we used is not restricted to
detecting this special kind of heterogeneous changes. The test
itself is not based on any assumption about specific heteroge-
neous changes. Instead, the test will indicate a significant
change if any kind of heterogeneous change (including less
extreme, more gradual changes) led to a pronounced enough
change in the investigated network measure.

To apply the randomization test we used here, two impor-
tant assumptions need to be fulfilled: (1) networks of the same
set of individuals need to be compared, and if sets of individ-
uals change over time then only subsets of consistently present
individuals can be compared (e.g., see Flack et al. 2006) and
(2) all individuals must be equally well sampled. If the latter
condition is not fulfilled, e.g., in because association data is
analyzed, the randomization procedure might be adapted ac-
cording to the sampling protocol (e.g., Whitehead 2008). As
noted above, a more general approach would be desirable that
allows relaxing these assumptions and that can quantify
the separate contributions of homogeneous and hetero-
geneous changes.
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