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Abstract Social animals that bring resources to a central
place have commonly been used to test the predictions of
optimal foraging models. Such animals are amenable to test
because they do not themselves reproduce, and so we might
expect them to be selected to maximise somemeasure of input
of food to the colony. Several currencies have been proposed
to predict behaviour, such as net rate, efficiency, and the ratio
of the mortality rate to energy gain rate. Observations on so-
cial animals, especially bees, show mixed support for each
currency. Here, we examine how these currencies can be unit-
ed by considering the expected lifetime input of energy to the
colony in a representative study of patch residence time. This
currency explains partial loads because it leads to the predic-
tion that the energy that a forager delivers to the colony over
its lifetime is maximised by returning to the colony after a
critical amount has been collected, even if energy is gained
at a constant rate. We show that the extent to which foraging
carries a greater mortality risk than travelling controls whether
this currency makes similar predictions to net rate or to effi-
ciency. We assess the evidence that bee behaviour actually
maximises this currency and argue that mortality risk at re-
source sites is likely to be a critical determinant of foraging
strategies in central-place foragers.

Keywords Partial loads . Pollination . Optimal foraging
theory . Worker behaviour . Marginal value theorem .

Predation risk . Flower-dwelling predators

Introduction

Models of foraging behaviour are generally based solely on
energetic gains and losses (Pyke 1980; Hodges 1981; Pyke
1982; Schmid-Hempel et al. 1985). Optimal foraging theory
has tended to assume that animals maximise net rate of gain
(Stephens and Krebs 1986), but observations of animals often
show deviations from the predictions of these models
(Charlton and Houston 2010). A useful approach for assessing
the validity of foraging currencies involves predicting when a
foraging animal should leave a resource patch and travel else-
where. The marginal value theorem (MVT; Charnov 1976) is
concerned with when a forager should leave depleting patches
of food if it is to maximise its long-term rate of gain. The
theorem states that it is optimal to leave a patch when the
marginal rate of gain on a patch falls to the overall rate of gain
for the environment. Several models that have been applied to
bees are variants of the MVT (e.g. Pyke 1980; Hodges 1981).
However, Schmid-Hempel et al. (1985) and Kacelnik et al.
(1986) assess when a bee should return to the nest and show
that efficiency (the net rate of energetic gain per energy spent)
but not net rate of gain predicts observations on bees in an
experimental arena. Social animals, such as bees, may appear
to maximise efficiency because workers from colonies of so-
cial insects solely gather resources, and so might act to max-
imise their lifetime input to the colony from a limited individ-
ual budget (Neukirch 1982).

Given that foraging insects are subject to various sources of
mortality while foraging (Dukas 2001; Dukas and Morse
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2003; Heiling et al. 2004; Reader et al. 2006), such models
may not be adequate for predicting foraging decisions
(Houston et al. 1988). For growing animals, a common cur-
rency is the ratio of the mortality rate to energy gain rate of
Gilliam (Gilliam 1982; Werner and Gilliam 1984). Clark and
Dukas (1994) adapted this currency to compare foraging op-
tions that differ in mortality and gain. Their model can be
summarised as follows. If option i is used, then Mi denotes
the probability of death per trip and Ei denotes the energy gain
per trip. It is assumed that a bee keeps foraging until it dies. If
Fi is the lifetime profit if option i is used, then Fi equals the
expected number of trips multiplied by energy per trip, i.e.

Fi ¼ 1−Mi

Mi
Ei ð1Þ

Equation (1) allows us to predict the option that a bee
should choose. Clark and Dukas point out that for very low

mortalities, the bee should maximise Ei
Mi
—or equivalently min-

imise Mi
Ei
—the ratio of the mortality rate to energy gain rate.

This currency has also been used to predict the distribution of
colonial foragers across resources (Dukas and Edelstein-
Keshet 1998).

In order to further assess the importance of including the
risk of mortality in models of foraging behaviour, it is critical
that we generate predictions that can be compared to observa-
tion. Several studies have focussed on the duration of foraging
trips. In this paper, we include mortality and find the behav-
iour that maximises a bee’s expected lifetime delivery of en-
ergy to the colony (hereafter referred to as ‘lifetime profit’).
We use the maximisation of lifetime profit to predict the du-
ration of foraging trips, the optimal load size, and the relation-
ship between body size and foraging decisions, when mortal-
ity is taken in to account. If lifetime profit is a more appropri-
ate currency, it will also be necessary to understand cases
where foraging behaviour appears to be consistent with
maximising net rate and/or efficiency (Charlton and Houston
2010), and we provide a testable explanation. Although the
currency may apply to many animals, for convenience, we
refer to the foraging social insect as a bee.

The model

We assume that the bee can choose between several foraging
areas, where each area contains only flowers with a constant
reward and mortality risk. If bees are assumed to be flower-
constant, these areas do not have to be spatially separated. A
trip involves three stages: travelling from the nest to foraging
area, foraging for time t, and travelling back to the nest.

General case

Let τ be the travel time between the nest and the foraging area,
L(t) be the energy content of the bee’s load as a function of
foraging time t, and μ be the rate of mortality while travelling
between nest and resource. We denote the ratio of the rate of
mortality while foraging to the rate of mortality when travel-
ling by α, where α>1 indicates that foraging is more danger-
ous than travelling. The bee’s rule is to keep foraging until
time t has been spent in the foraging area and then return to the
nest.

If a bee aims to spend a time t in the foraging area, then her
probability of surviving a trip is

S tð Þ ¼ exp − μτ þ αμtð Þð Þ: ð2Þ

It follows that her expected lifetime profit is

V tð Þ ¼ S tð Þ
1−S tð ÞL tð Þ; ð3aÞ

which is similar to the assumption of Clark and Dukas (1994),
but focussing on survival rather than mortality rate. Given
Eq. (2), we can rewrite Eq. (3a) as

V tð Þ ¼ L tð Þ
exp μτ þ αμtð Þ−1: ð3bÞ

If the mortality rates μ and α are small, then

eμτþαμt≈1þ μτ þ αμt; ð4Þ

so for convenience, we can work with

V tð Þ ¼ L tð Þ
μ τ þ αtð Þ: ð5Þ

Note that Eq. (5) is theMVTmodified bymortality risk (cf.
Houston and McNamara 1986; Gilliam 1990).

In a large patch, especially one exploited by many foragers,
the rate of gain may be effectively constant, and so we can
define

L tð Þ ¼ bt: ð6Þ

We can find the optimal value of t from the condition
V ′(t)=0 and Eq. (3b), which gives

1−e− μτþαμt*ð Þ ¼ αμt*: ð7Þ
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This equation gives us the value t* of t that maximises
expected lifetime profit. It can be seen thatαμt* is an invariant
(cf. Charnov 1993) that depends on μτ but not on the rate b.
This means the gross rate of gain does not influence the opti-
mal foraging time. The equation also tells us that the mortality
per trip if the bee adopts the optimal time t* is μαt*. We
cannot isolate μαt*, but can get a solution for μτ

μτ ¼ ln
exp −μαt*ð Þ
1−μαt*

� �
: ð8Þ

If the animal adopts the optimal foraging duration t* then
the resulting lifetime profit is V(t*). It follows from Eqs. (5)
and (6) that

V t*ð Þ ¼ b

μα
S t*ð Þ ð9aÞ

or equivalently

V t*ð Þ ¼ b

μα
−bt*: ð9bÞ

A forager that starts in the foraging area and forages there until
it dies has an expected lifespan of 1

μα, and hence, b
μα is the ex-

pected energy that it collects. Thus, Eq. (9b) means that a forager
that returns to the nest after time t* delivers a lifetime profit which
is less than this by the optimal (i.e. partial) load size. In general,

V t*ð Þ ¼ L0 t*ð Þ
μα

−L t*ð Þ: ð10Þ

Note that although τ does not appear in these equations, it
has an effect through t*. In Appendix A, we include energy
costs of foraging and travelling to give the expected lifetime
net energy gain.

In the previous model, the bee does not keep track of indi-
vidual visits to flowers. In Appendix B, we explore a model
where the bee visits a certain number of flowers and find that
this does not affect our predictions: bees should return to the
nest with a partial load. Next, we explore the validity of this
foraging currency and make quantitative predictions by ex-
ploring a particular functional form, parameterised from ob-
servations of flowers and bumblebees (Table 1).

Bee-based parameterisation

Observations have shown that the relationships between mass
and energy use during flying and walking follow power laws,
with exponents that are around 0.6 (Ellis and Delaphane
2009). In the following, we assume that relationships between
mass and energy use are linear (i.e. exponent of unity) because
this allows us to solve the model analytically and gives

approximately correct results. Below, we show, by way of
numerical analyses, that our results are not qualitatively al-
tered by this simplifying assumption. We parameterise the
mass-energy equations so that for a 100-mg bee, the costs
are as predicted by the power law, meaning that we underes-
timate costs of less massive bees and overestimate the costs of
more massive bees. In line with the size variation among
workers of bumblebees (Goulson et al 2002), we make pre-
dictions for body sizes from 50 to 200 mg, in order to maxi-
mise the potential for testing of our predictions within species,
thereby avoiding confounding differences between species.

If the rate of energy expenditure per milligramme of mass
carried is m Joules per milligram per second, then for a bee
weighing S milligrams, the cost flying out unladen is τmS. We
assume that the bee collects nectar at a rate of J milligrams per
second when on flowers and spends a proportion of the time p
on flowers while in the flower patch. Observations suggest that
bees pay an energetic cost of carrying the load (Feuerbacher et al
2003; Wolf et al 1989), but not as great per unit mass as for the
body. If the proportional cost of carrying the load compared to
body mass is k (k<1), then since the total amount of mass col-
lected is Jtp, the cost of flying back is τm(S+kJtp). The mean

metabolic cost during foraging is therefore m S þ kJpt
2

� �
. Now,

the net energy delivered is given by

G tð Þ ¼ Jcpt−m 2τ þ t 1−p 1−wð Þ½ �f g S þ kJpt

2

� �
ð11Þ

where c is the concentration of energy in nectar and w is the
relative metabolic energy use when alighted on flowers com-
pared to flying. The expected number of trips is

T tð Þ≈ 1

μ 2τ þ αtð Þ : ð12Þ

where μ is the mortality rate when travelling and α is the ratio
of the risk while foraging compared to flying. The lifetime
profit is F(t)=G(t)×T(t).

Comparison to other currencies

We show in Appendix C that the magnitude of α controls
whether maximising expected lifetime profit makes predic-
tions that are similar to maximising net rate or to efficiency.
Specifically, whenα is unity (foraging is equally as dangerous
as travelling), lifetime profit is equivalent to net rate; if α is
large, then maximising lifetime profit makes similar predic-
tions to maximising efficiency. See Fig. 1 for the optimal

patch times (t*) and relative returning metabolic rate SþkJpt
S

� �
for each currency for several α values.

Schmid-Hempel et al. (1985) predicted the number of
flowers that should be visited as a function of the distance
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between flowers in their experimental setup if honeybees
maximise net rate or efficiency. Here, we predict this relation-
ship by exploring the response of t* to the value of p because p
will decrease when flowers are more distant from each other
(provided the duration of individual flower visits does not
change). Our predictions agree with theirs in that net rate
predicts very high (>2 h) patch durations (Fig. 2). When
maximising net rate, t* increases with the energy concentra-
tion of nectar. Maximisation of efficiency leads to much
shorter t*, and interestingly, our predictions are not sensitive
to energy concentration (c does not appear in Eq. C6).
However, maximising efficiency leads to predictions of
shorter patch durations than was observed (Schmid-Hempel
et al. 1985). Maximisation of lifetime profit predicts longer
patch durations than maximisation of efficiency (and there is a
further increase when energy concentration is high). These
predictions therefore more closely match the observations.

Effect of body size

Studies of energy use and foraging in bees have provided data
on the effects of body size S and thus a way to test this model.
In Appendix D, we show that when maximising net rate, larg-
er individuals should bring back smaller loads than small in-
dividuals. By contrast, when maximising efficiency, larger
individuals should bring larger loads than small individuals.
In both cases, increasing the proportion of time on flowers p
(e.g. flower density) and increasing gain rate J will both in-
crease the load size of large bees relative to small bees (Fig. 3).
When maximising lifetime profit, larger individuals should
bring back larger loads than small individuals, but here, we

predict an interaction between J and p in predicting the rela-
tive size of the loads of larger bees.

As can be anticipated from the above results, the magnitude
of α controls whether optimal load increases with body size:
optimal load decreases with body size when α is small, and
increases with body size when α is large (Fig. 4b), because t*
is insensitive to Swhenα is small and increases with Swhenα
is large (Fig. 4a). The expected number of trips declines with
α because overall mortality is increased. The relative returning
metabolic rate is greater for smaller α, especially for small
bees (Fig. 4d).

Additional considerations

There are several known effects of body size on foraging in
bees that may affect our predictions. In Appendix E, we con-
sider how including these in the equations affect our results in
Figs. 2, 3, and 4. Note that including these complexities makes
the equations intractable so we solve numerically using the
parameter values in Table 1.

First, we consider the possibility that large size reduces the
mortality rate (Rodriguez-Girones and Bosch 2012) with
slope β such that Eq. (12) becomes

T tð Þ≈ 1

μ 2τ þ α 1−βSð Þ þ 1f gt½ � ð13Þ

Even when 200-mg bees are 50 % less vulnerable than 50-
mg bees (β=0.003), our predictions are not qualitatively
changed (Appendix C1, Fig. E1a, E2a, E3a). Indeed, this
assumption actually exaggerates the effect of α on the rela-
tionship between size and optimal load (cf. Fig. 4a, E3a).

Table 1 Parameters in the model, their symbols, units and baseline values, and the source literature

Parameter Symbol Units Value Reference

Time spent in flower patch t Seconds – Mean trip time around 30 min in Goulson et al (2002):
t=1800

Flight time to flower patch τ Seconds 60 Bumblebees fly 4 ms−1 and forage up to 750 m from
colony in Carvell et al (2012): maximum of 188 s

Rate of nectar uptake J Microliters per second 0.04 Pleasants (1981); Ellis and Delaphane (2009)

Energy content of nectar c Joules per microlitre
of nectar

7.04 Concentration of sucrose (40 %)×joules per mg sucrose
(17.6); Ellis and Delaphane (2009).

Rate of energy expenditure
while flying

m Joules per milligram
per second

6×10−5 Wolf et al (1989); Ellis and Delaphane (2009)

Mortality rate μ Seconds−1 10−7 Dukas (2008)

Relative predation risk on flowers α Dimensionless 10 Dukas (2008); Reader et al. (2006)

Relative cost of walking w Dimensionless 0.5 Wolf et al. (1989); Seeley (1994)

Proportion foraging time on flowers p Dimensionless 0.5 Mean time on flowers vs. in flight
(Ellis and Delaphane 2009)

Body mass S Milligrams 100, range 50–250 Wolf et al. (1989); Goulson et al (2002)

Relative cost of carrying load k Joules per milligram
per second

0.15, 0.53 Feuerbacher et al. (2003)
Wolf et al. (1989).
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We also consider the possibility that uptake rate of nectar is
greater for large bees (Morse 1978), and so Eq. (11) becomes

G tð Þ ¼ Jcpt 1þ S

200

� �

−m 2τ þ t 1−p 1−wð Þ½ �f g S þ
1þ S

200

� �
kJpt

2

0
BB@

1
CCA
ð14Þ

This assumption leads to a positive relationship between S
and L* for all α for three currencies (i.e. including net rate,
Fig. E3b), and larger bees are predicted to carry larger loads
at all times (Fig. E2b), but net rate still predicts unrealistically
long foraging trips (cf. Fig. E1b and data in Goulson et al 2002).

Bees of different size may go to different patches. We as-
sume that the colony suppresses resources nearby such that
the gain rate is greater for distant patches and thus, there is a
trade-off between gain rate and travel costs. That is, τ may be
optimised to conditions because foraging distance is under
behavioural control so Eq. (11) becomes

G t; τð Þ ¼ Jctp
1−e−0:04τ

4
− 2τ þ tpð Þ mS þ

kJtp
1−e−0:04τ

4
2

0
BB@

1
CCA
ð15Þ

Fig. 1 Relationship between a travel time τ and optimal time in patch t*
and b returning relative metabolic rate (compared to unloaded) as a
function of relative cost of carrying load k. In both panels, we show
results for three currencies: lifetime profit F for four values of α (shown
next to lines), net rate R (squares), and efficiency E (circles). Note that
two of the lines for F are obscured by the lines for the other currencies.
Whenα is unity, the strategymaximising F is the strategymaximising net
rate. Asα tends towards infinity, the strategy maximisingF tends towards
the strategy maximising efficiency. Other parameters take the values in
Table 1

Fig. 2 Total time at resources (t*p) as a function of the proportion of
patch time on flowers p for three foraging currencies: net rate R (squares),
efficiency E (circles), and lifetime profit F (triangles) for two values of
energy concentration c (open symbols: c=7.04 J per microlitre; closed
symbols: c=14.08 J per microlitre). Note that only one line of circles is
visible because maximisation of efficiency is not sensitive to c. Other
parameter values as shown in Table 1

Fig. 3 Relative optimal load sizes L* of large (S=200 mg) to small (S=
100 mg) individuals as a function of the gain rate of resources J (x-axis)
for dense and dispersed resources (closed symbols p=0.25; open symbols
p=0.75) for three currencies: net rate R (squares), efficiency E (circles),
and lifetime profit F (triangles). Positive values indicate that larger
individuals carry larger loads. In all cases, doubling bee size less than
doubles the optimal load. Other parameter values as shown in Table 1
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and we solve simultaneously for τ and t. Note that the param-
eter values used in Eq. (15) were chosen so as to rescale the
other parameters to match the main model (Eq. 11, Table 1).
Allowing optimised travel time leads to even longer trips pre-
dicted by maximisation of net rate (Fig. E1c), and efficiency
predicts an increase of patch time as p decreases. We again
predict even stronger effects of α on the relationship between
S and L* (Fig. E3c).

Finally, we check that our assumption that the relationships
between mass and costs are straight lines does not lead to

erroneous predictions. Taking values from Ellis and
Delaphane (2009), Eq. (11) becomes

G tð Þ ¼ Jcpt−0:00514 τ þ 1−pð Þt
2

� �
S0:629 þ S þ kJptð Þ0:629
h i

−0:00444tpS0:492

ð16Þ

Including this realism does not affect our predictions about
relative loads of small and large bees (Figs. E2d and E3d);
therefore, our simplifying assumption of linear scaling does
not qualitatively affect most of our predictions. However, this
realism does lead to a non-linear effect of p on time on flowers
(Fig. E1d); thus, even more clearly matching the observations
of Schmid-Hempel et al (1985).

Discussion

Explanations of the foraging behaviour of social insects can be
based on the advantage to the colony that results from the
behaviour of a single individual or the interaction between
individuals. Here, we have used the first of these approaches
to predict when a central place forager should return to the nest
and found support for a currency of lifetime profit. This cur-
rency might be most appropriate as non-reproductives will be
selected to maximise their individual profitability to their col-
ony, which means trading off energy profit against mortality
risk (Houston et al 1988). This is an example of a general
approach that captures animal behaviour as behavioural strat-
egies that trade-off the gain of energy against the risk of mor-
tality (Houston and McNamara 1999). The risk of mortality
affects the behavioural strategies that all animals use to max-
imise their fitness (Lima 1998). Social insects maximise their
fitness by providing resources to reproductive individuals, of-
ten at the end of a colony cycle, and so their foraging strategies
have been selected to maximise colony growth rate up to the
point of reproduction (Macevicz and Oster 1976), which leads
to significantly different predictions than are made when
maximising simple foraging currencies (Houston et al 1988).

We have shown that lifetime profit can explain the mixed
support for different simpler currencies (net rate of gain and
energetic efficiency) observed in experiments. Specifically,
the relative risk at the resource compared to travelling deter-
mines whether we predict that animals should behave as
though they are maximising net rate or energetic efficiency.
In addition, if energetic costs are negligible compared to the
rate of energy gain, then our currency reduces to the rate of
gain to rate of mortality ratio, and so is consistent with
Gilliam’s rule as applied to bees by Dukas and Edelstein-
Keshet (1998) in predicting spatial distribution of colonial
foragers. Houston (2009) used data from foraging eastern

Fig. 4 Effect of bodymass S on t*, resulting load L*, expected number of
trips T* and returning metabolic rate relative to unloaded rate, for four
values of α shown on the lines. α qualitatively affects the predicted
relationship between S and L*. Other parameter values as shown in
Table 1
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chipmunks (Barette and Giraldeau 2008) to approximate a
value for α of 20, which would mean the chipmunks might
appear to maximise efficiency.

The bees in Schmid-Hempel et al (1985) tended to have
longer patch durations than predicted by the maximisation of
efficiency, suggesting that they were behaving as though they
are adapted to ‘expect’ predation risk on flowers to be larger—
but not greatly so—than the predation rate in flight. There is
plenty of evidence that predation risk at flowers affects bee
foraging decisions. For instance, predation affects choice of
foraging mode (Clark and Dukas 1994): if mortality has a
greater impact than the loss of the worker, as is the case for
solitary species, then foragers should be more wary.
Bumblebees split attention to detect predation and avoid
flowers where they had previously been subject to a simula-
tion attack (Ings and Chittka 2009). Honeybees consider dan-
ger at flowers in the waggle dance (Abbott and Dukas 2009)
and avoid locations associated with predation risk (Higginson
et al 2007; Jones and Dornhaus 2011). All this illustrates that
the currency of efficiency or net rate cannot hope to
capture the complexities of colony-level decisions. A
complication is that plasticity in behaviour may result
in colony-size effects on worker lifespan (Rueppell et al
2009), since worker survival may be more important for
small colonies leading to behaviour that reduces mortal-
ity at the expense of resource gain.

There are various reasons why a bee should return to the
nest. The simplest explanation is that it has a full load. This is
not a general explanation because bees sometimes return be-
fore their crop is full, i.e. they return with a partial load (Nuñez
1982; Schmid-Hempel et al 1985; Kacelnik et al 1986).
Previous explanations of why a bee might return before its
crop is full are based on energetic costs and information.
The former sort of explanation is exemplified by Schmid-
Hempel et al. (1985) and Kacelnik et al. (1986), who incor-
porate mass-dependent flight costs in a model of optimal for-
aging by honeybees and show that a bee’s load maximises the
energetic efficiency of a trip. Varju and Nuñez (1991) adopt
the latter approach, arguing that it is important for honeybees
to return to the nest in order to participate in the transfer of
information about foraging opportunities; for further discus-
sion, see Schmid-Hempel (1993) and Varju and Nuñez (1993).
Each of these explanations can predict partial loads even when
nectar is gained at a constant rate (e.g. Schmid-Hempel et al.
1985; Kacelnik et al. 1986; Dornhaus et al. 2006). Of course,
both energetic costs and information could have an influence
in some cases, but information is unlikely to be important
except in honeybees because other social foragers generally
show much less sophisticated recruitment. Here, we have pre-
sented a new argument for partial loads based on mortality.
Our explanation is based on the advantage that accrues to a
single forager, and does not require mass-dependent flight
costs or the transfer of information.

We have assumed, in line with many models of optimal
foraging, that the forager has perfect information about its
environment. In fact, foragers can learn about predation risk
during foraging, and in the absence of cues, the fact that an
animal has not yet been attacked provides information about
predation risk (Welton et al 2003). This suggests that if preda-
tion risk on a patch is uncertain, the perceived risk will de-
crease as the time spent in a patch increases. Given our results,
this means that animals should increasingly behave as though
maximising net rate, and so stay longer on patches too.
Nonacs (2001) incorporated such a decrease in predation risk
into of the MVT. It is, however, difficult to compare his work
with ours because he considers a state-dependent model in
which the forager can die as a result of starvation. A compli-
cation is that patch-based predators often take time to attack
and there are cues of their presence (e.g. flower-dwelling spi-
ders: Reader et al 2006; Higginson et al 2007), so heightened
risk may actually cause visits to become shorter so as to avoid
giving predators time to attack.

Testing of our assumptions requires data on the predation
rates of animals when foraging compared to travelling. Many
predators hunt bees on flowers, and it is intuitive that bees are
easier to catch when alighted on flowers. Generally, animals
that are gathering food must trade-off efficient food gathering
against being vigilant for predators (Ings and Chittka 2008;
Llandres et al 2012). This is especially true of bees that insert
their head, and so their eyes, into flowers. However, there are
many predators that take bees in flight, both invertebrates (e.g.
bee wolves, Dukas 2005) and birds (e.g. flycatchers, Davies
1997; Avery et al 1988; Krebs and Avery 1985). Non-flying
central-place foragers may face higher mortality during trav-
elling than within patches, such as ants (Nonacs and Dill
1991). Thus, in some cases, α might be smaller than unity.
Testing of the currency of lifetime profit could focus on the
effect of body size on load size. For instance, the lifetime
profit currency predicts that patch distance will affect the re-
lationship between nectar availability and the relative load size
of larger bees. For dense flower patches, increasing nectar
uptake rate should result in a smaller effect of body size on
load size, but if flowers are more sparse, larger bees should
spend increasingly longer in patches as the nectar uptake rate
increases. This interaction is not predicted by other currencies.
One additional way to distinguish efficiency from lifetime
profit is by assessing the effect of nectar concentration on trip
duration, since we predict that a strategy maximising lifetime
profit will be much more sensitive to concentration than a
strategy maximising efficiency.

Clearly, lifetime profit is still an approximation of the se-
lective pressures that operate on social foragers even in the
absence of other concerns, such as information and selfish
reproduction. For instance, it has been proposed that the flight
machinery of insects is somehow limited (Neukirch 1982) and
previously, we have both suggested that the currency of flying
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insects should account for this (Higginson and Gilbert 2004;
Houston and McNamara 2014). In such a case, foragers may
maximise the lifetime profit given two sources of mortality:
predation and the wearing out of the flight system (Higginson
and Gilbert 2004). Efficiency will sometimes be close to this
measure but includes energy cost when not in flight, so effi-
ciency may again be consistent with behaviour if energy use
when alighted on flowers is negligible compared to energy use
in flight. We suggest that an ever more realistic currency will
incorporate both these factors, such as by the concept of dam-
age (Houston and McNamara 1999; 2014). Such an approach
would be based on the concept of the value of the animal’s life
(McNamara and Houston 1986), which (all else being equal)
declines as the expected remaining lifespan decreases and so
is likely to predict changes in behaviour as foragers age (e.g.
Higginson and Barnard 2004). In social species, the value of
the forager’s life will depend on the state of the colony, in
terms of food stocks and number of workers, and so exten-
sions of our model may enable us to predict the aforemen-
tioned colony size effects on worker behaviour and lifespan
(Rueppell et al 2009).

Consideration of lifetime profit as a foraging currency sug-
gests several possible important impacts of predators on pol-
lination systems. Predators may increase outbreeding in polli-
nated plants by causing shorter foraging bouts, between which
bees remove pollen. Thus, if bees have evolved to respond to
the risk of predation in their foraging decisions, predator dis-
tribution could have cascading impacts on pollination systems
and thereby plant populations (Dukas 2005). We propose that
future developments of food web models must include this
possibility, along with plasticity in pollinator behaviour.
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Appendix A: mass-independent energetic costs

Here, we show how energetic costs can be included in the
currency of expected lifetime energy gain. Assume that energy
is spent at a constant rate mt while accumulating load and at
rate mτ when travelling. Then, net energy delivered is

N tð Þ ¼ L tð Þ−mtt−mτ τ : ðA1Þ

We now maximise the expected lifetime net energy
delivered

Fn tð Þ ¼ S tð Þ
1−S tð ÞN tð Þ: ðA2Þ

From Fn
0
tð Þ ¼ 0

1−exp − αt þ βτð Þð Þ ¼ αN tð Þ
.
N 0 tð Þ; ðA3Þ

cf. Eq. (10). If L(t)=bt, then N(t)=bnt−mττ, where bn=b−mt.
Then,

Fn t*ð Þ ¼ bn
α
S t*ð Þ ðA4Þ

cf. Eq. (11a)or

Fn t*ð Þ ¼ bn
α
− bnt*−mτ τð Þ; ðA5aÞ

F t*ð Þ ¼ b−mt

α
− b−mtð Þt*−mτ τ½ � ðA5bÞ

cf. Eq. (11b).

Appendix B: discrete flower visits

Foraging is represented as a series of visits to flowers. All
flowers are the same, i.e. they provide the same energy and
impose the same risks. How many flowers should be visited?
The bee’s behavioural rule is to keep foraging until n flowers
have been visited. If it is still alive after these visits, it returns
to nest. In contrast to Clark and Dukas (1994), we work with
survival rather than mortality. Let S(n)=probability of surviv-
ing a trip in which bee returns after n flowers are visited. Then,

S nð Þ ¼ SτS
n
f S

n−1
t ðB1Þ

where Sτ is the probability of surviving the round trip travel
time, Sf is the probability of surviving a visit to a flower, and St
is the probability of surviving the journey from one flower to
another. The expected number of trips is

T nð Þ ¼ S nð Þ
1−S nð Þ: ðB2Þ

The expected lifetime energy delivered is

V nð Þ ¼ S nð ÞnHG

1−S nð Þ ; ðB3Þ
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where HG is the gross energy gain per flower. Note that the
optimal value of n (i.e. the value that maximises V(n)) does not
depend on HG but is relevant if we compare flower types.So
far, we have looked at gross amount of energy collected. To
extend the analysis to net energy delivered, we define ct as the
energy spent on the journey from one flower to another and cτ
as the energy spent during the round trip travel time. Then, net
amount of energy A(n) if n flowers are visited is given by

A nð Þ ¼ nH−cτ− n−1ð Þct ðB4Þ

where H=net gain per flower. The critical condition for a
switch from it being optimal to return after visiting n flowers
and it being optimal to return after visiting n+1 flowers is

T nð ÞA nð Þ ¼ T nþ 1ð ÞA nþ 1ð Þ ðB5Þ

or

S nð ÞA nð Þ
1−S nð Þ ¼ S nþ 1ð ÞA nþ 1ð Þ

1−S nþ 1ð Þ : ðB6Þ

From their definitions,

S nþ 1ð Þ ¼ S f StS nð Þ ðB7Þ

and

A nþ 1ð Þ ¼ A nð Þ þ H−ctÞ þ ct z S nð Þ−1ð Þ þ n−1ð Þ 1−zð Þð Þ
n 1−zð Þ þ z S nð Þ−1ð Þ

ðB9Þ

where z=SfSt. As n→∞, Ĥ(n)→ct
If costs are equal, i.e. ct=cτ=c, then Ĥ(n)=c for all n. This

condition is not realistic. In general, ct will be much smaller
than cτ. For example, bumblebees often spend between 1 and
5 s travelling between flowers (Heinrich 1976; Cartar 1991),
whereas total trip durations may be greater than 1 h (Heinrich
1976; Westphal et al. 2006). Although travel time must be less
than these times, it is clear that travel time can be much greater
than 5 s in natural settings (Dramstad 1996; Cresswell et al.
2000). If t is so much smaller than τ that it can be ignored, we
get

bH nð Þ ¼ cτ 1−zð Þ
n 1−zð Þ þ z S nð Þ−1ð Þ: ðB10Þ

Note that S(n)−1=−μ(n), where μ(n) is the probabil-
ity that a bee does not survive a trip in which it returns

after n flowers are visited. Let X be the expected num-
ber of flowers that will be visited by a forager that has
reached its first flower and carries on visiting flowers
until it dies. It follows that X=z/(1−z) and so

bH nð Þ ¼ cτ
n−μ nð ÞX : ðB11Þ

Appendix C: mass-dependent energy costs

Lifetime profit to the colony is F(t)=G(t)×T(t) and so from
Eqs. (11) and (12) we get

F tð Þ ¼
Jcpt−m 2τ þ t 1−p 1−wð Þ½ �f g S þ kJpt

2

� �
μ 2τ þ αtð Þ : ðC1Þ

Here, we wish to compare the predictions from this curren-
cy to those from maximisation of net rate or efficiency. Under
our model, the net rate of gain is

R tð Þ ¼
Jcpt−m 2τ þ t 1−p 1−wð Þ½ �f g S þ kJpt

2

� �
2τ þ t

; ðC2Þ

and efficiency is

E tð Þ ¼
Jcpt−m 2τ þ t 1−p 1−wð Þ½ �f g S þ kJpt

2

� �

m 2τ þ t 1−p 1−wð Þ½ �f g S þ kJpt

2

� � : ðC3Þ

Given this, we can find the optimal t for each currency:

t*F ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ Jkpmτ−αSmð Þ pw−p−αþ 1ð Þ þ αcJp½ �p

α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jκpm pw−pþ 1ð Þp −

2τ
α
;

ðC4Þ

t*R ¼ �2
ffiffiffi
τ

p
Jkmpτ−Smð Þ pw−pð Þ þ cJp½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jκpm pw−pþ 1ð Þp −2τ ; ðC5Þ

t*E ¼ �2
ffiffiffiffiffiffi
τS

pffiffiffiffiffiffiffiffi
Jkp

p
pw−pþ 1ð Þ: ðC6Þ
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It is easy to see that if α=1, t*F=t*R. As α gets very large,
t*F is dominated by α2; hence, t*F≈t*E for largeα. Thus, the
magnitude of α controls whether F(t*) behaves like R(t*) or
E(t*),

Appendix D: effects of body size

We are interested in how optimal foraging time and load
change with body size, i.e. dt*dS and dL*

dS . To assess this, we find
the value of S at which the optimal load size is maximised (S*):

S* dL*
dS ¼0

			 ¼ Jp

9mQα Q−α
o
 � −α2 5mkτ þ 3cð Þ þ 9cα Q−1

�
3


 �
þ mkτ α Q−10ð Þ þ 4Q2 þ Q−5

 �þ 4
ffiffiffiffi
H

ph i
ðD1Þ

where Q=1−p(1−w) and H=mkτ(pw−p−α)2[mkτ(pw−p
−α)2+3cα2]

When α=1, maximisation of net rate is equivalent to
maximising net gain to mortality rate, and so we know that
S*R=S*F|α=1, which is positive if

τ >

c 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkτ pw−pð Þ2 mkτ pw−pð Þ2 þ 3c

h ir
−4 pw−pþ 1ð Þ2−pwþ p−2

� �
8pw−8pþ 9ð Þ w−1ð Þpmk : ðD2Þ

Because m is very small, the right hand side is a very large
number and the maximisation of load occurs at a negative
body size, and somaximisation of rateRwould lead to smaller
loads being carried by larger individuals across the whole
range of possible body sizes.

For maximisation of efficiency, the value of S at which the
optimal load size is maximised (S*) is

S*E ¼
pJ 5mkτ þ 3c� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2k2m2 þ 3τcκm

p
 �
9m pw−pþ 1ð Þ ðD3Þ

which is positive if τ < c
mκ.

Since m is very small, the right hand side is a very large
number and so maximisation of efficiency would usually lead
to greater loads carried by larger individuals.

The equation for S*F is highly complex and so we consider
the stationary points where L′(S)=0 to assess its behaviour at
small positive values (i.e. in the range of bee masses, see
references in Table 1). Solving for α gives only imaginary
solutions, but numerical explorations showed that S*F
switches from negative when α is small to positive when α
is large.
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