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Abstract Many organisms have been reported to have move-
ment patterns that are well approximated as Lévy walks. This
is typically because distributions of straight line distances
between consecutive significant turns inmovement paths have
heavy power law tails. This diagnostic tool has been called
into question because there is currently no standard, unambig-
uous way to identify significant turns. Even if such a way
could be found, statistical analyses based on significant turns
cannot account for actual movements made between turns and
as a consequence cannot distinguish between true Lévy walks
and other fractal random walks such as Lévy modulated
correlated random walks where organisms randomly meander
rather than move in straight lines between consecutive reori-
entation events. Here, I show that structure functions (i.e.
moments of net displacements made across fixed time inter-
vals) can distinguish between different kinds of Lévy walks
and between Lévy walks and random walks with a few scales
such as composite correlated random walks and correlated
random walks. Distinguishing between these processes will
lead to a better understanding of how and why animals per-
form Lévy walks and help bridge the apparent divide between
correlated random walks and Lévy walks. Structure functions
do not require turn identification and instead take account of
entire movement paths. Using this diagnostic tool, I bolster
previous claims that honeybees use a movement strategy that
can be approximated by Lévy walks when searching for their
hive. I also show how structure functions can be used to
establish the extent of self-similar behaviour in meandering
Lévy walks.

Keywords Lévywalks .Fractalclocks .Compositecorrelated
randomwalks .Movement patterns . Foraging

Introduction

The correlated random walk paradigm is the dominant con-
ceptual framework for the modelling of non-orientated move-
ment pattern data (Turchin 1998). It is founded on Brownian
motion and the notion that bouts of near unidirectional mo-
tions (often called steps) have a characteristic size.
Nonetheless, some organisms appear to have movement pat-
terns that fall outside of the paradigm, as they are better
represented by Lévy walks (LW) (Korobkova et al. 2004;
Reynolds et al. 2007a, b; de Jager et al. 2011; Harris et al.
2012; Humphries et al. 2012, 2013). Lévy walks, named after
the French mathematician Paul Lévy, arose in a purely math-
ematical context in the first half of the last century (Lévy
1937). They first entered the biological literature when
Shlesinger and Klafter (1986) proposed that they can be
observed in the movement patterns of foraging ants, and in
subsequent biological and ecological literature, they are often
called Lévy flights. LW comprise clusters of many short steps
with longer steps between them. This pattern is repeated
across all scales with the resultant clusters creating fractal
patterns that have no characteristic scale. Because there is no
characteristic scale, the overall length of a LW is dominated by
the longest step and the step length variance grows over time
but nonetheless remains finite even when unbounded by bio-
logical and ecological considerations (Reynolds and Rhodes
2009). When bounded, the minimum and maximum trunca-
tion scales introduce characteristic scales which make move-
ment patterns scale finite. But unlike other finite-scale move-
ment patterns, variability around the characteristic scales is
huge and self-similar. Truncated LW do, however, become
Gaussian (i.e. non-scale free) at large scales by virtue of the
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central limit theorem. The hallmark of a LW is a distribution of
step lengths with a heavy power law tail: p(l)∼l−μwith 1<μ≤
3, where l is the step length and μ is the power law (Lévy)
exponent (here ‘∼’ means distributed as). Initial evidence for
LW in wandering albatrosses (Viswanathan et al. 1996) to-
gether with the realisation that these movement patterns can
be advantageous in random search scenarios (Viswanathan
et al. 1999) led to an explosion of interest in LW as models
of animal movement patterns. The superdiffusive movements
are theoretically adaptive in heterogeneous and unpredictable
environments where they can enhance resource encounter
rates over Brownian and ballistic movements when the targets
of the search are not rejected or depleted once visited but
instead can be profitably revisited. This applies when targets
replenish over time or tend to occur in clusters because they
are patchily distributed. LW became contentious when it was
found that they had been wrongly attributed to the wandering
albatross and many other species through the employment of
inappropriate statistical techniques and through misinterpreta-
tions of the data (Edwards et al. 2007). The situation changed
again when Sims et al. (2008) presented strong evidence for
LW in a diverse range of marine predator. This evidence began
to shift the debate from do animals perform LW to when do
they and why (Buchanan 2008). This shift has gained impetus
from a steady accumulation of seemingly compelling evi-
dence that many organisms including T cells, Escherichia
coli, mussels, honeybees and once again in wandering alba-
trosses have movement patterns that can be approximated by
LW (Korobkova et al. 2004; Reynolds et al. 2007a, b; de Jager
et al. 2011; Harris et al. 2012; Humphries et al. 2012, 2013).
Nonetheless, LWare at best an approximation to actual move-
ments, and this has prompted the question ‘How “non-like
Lévy-like” do the data have to be for them not to be consid-
ered as “Lévy-like” anymore?’ (Buchanan 2008). The ques-
tion is usually addressed by an analysis of the step length
distribution, a step length being the straight line distance
between two consecutive significant turns. The tail of the
distribution is then typically compared with a power law and
a null model, such as an exponential. When the tail of the step
length distribution is better represented by a power law with 1
<μ≤3, then the movement patterns are considered to be better
represented by Lévy walks and less well by correlated random
walks. Conversely, when the tail of the step length distribution
is better approximated by an exponential distribution, then the
movement patterns are better represented by correlated ran-
dom walks (CRW). Hyper-exponential tails would be indica-
tive of composite correlated random walks (CCRW), i.e.
multiphasic walks (Benhamou 2007) which can also be
interpreted as self-similar walks, akin to truncated LW when
multiple scales are involved (Reynolds 2014). The results of
such analyses can be bolstered by the application of other
techniques, e.g. a time series analysis (a.k.a. detrended fluctu-
ation analysis), spectral analyses and first digit analyses (a

generalisation of Benford’s Law (1938)), which can distin-
guish between self-similar movement patterns and movement
patterns with a few scales (Viswanathan et al. 1996; Reynolds
2012). All of these techniques rely on the determination of
turning points in movement paths. In some cases, this deter-
mination is straightforward because movements are inherently
discrete with reorientation events occurring abruptly or during
pauses (Korobkova et al. 2004; Reynolds and Frye 2007;
Reynolds et al. 2007a, b; Harris et al. 2012), but in other
cases, turn designation has been problematic (Codling and
Plank 2011). This is because turn identification methods typ-
ically use an arbitrary threshold angle and/or because turns
can occur gradually over time. Turn identification is, however,
less problematic if movement pattern data is first projected
onto a set of principal axes (Sims et al. 2008; Humphries et al.
2013). This is because in one dimension, turns are unambig-
uous and occur where the direction of travel changes sign and
because the self-similar properties of LW are preserved under
the projection. Consequently, if the distributions of the move-
ment lengths in both the x- and y-directions each have a power
law tail and are characterised by the same Lévy (power law)
exponent, then the two-dimensional movement pattern can be
represented by a Levy flight (see Sims et al. 2008; Humphries
et al. 2013). But even when evidence for step lengths having
LW characteristics is compelling, the question about how non-
Lévy-like are they remains open. This is because such analy-
ses take no account of actual movements made between
significant turns. These movements could, in principle, be
perfect straight line as in a true LW but are more likely to be
meanderings as in fractal clock random walks (Lévy modu-
lated correlated random walks, Lévy intermittency)
(Bartumeus and Levin 2008). Distinguishing between these
processes will lead to a better understanding of how and why
animals perform LW and help bridge the apparent divide
between correlated random walks and LW.

Here, I show that ‘structure functions’ can distinguish be-
tween LW, fractal clock random walks, CRW and CCRW,
thereby dispensing with the need to identify turns. A structure
function of ‘order’ n is just the nth-order moment of the net
displacements made in a given time interval. The first and
second-order structure functions correspond to net displace-
ments and squared net displacements, quantities that are being
used extensively in the context of animal movement analysis
(Barraquand and Benhamou 2008; Bunnefeld et al. 2011).
Higher-order structure functions provide additional information
about the movement pattern data because they are more sensi-
tive to the presence of rarely occurring movement bouts. The
new work represents the next step in a progression of rigorous
methods that have been developed to distinguish between LW
and competing models, such as Brownian walks (Edwards et al.
2007), and more strongly competing or more mechanistic
models such as composite correlated random walks
(Benhamou 2007; Reynolds 2012). Structure functions have
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been used to reveal complex multi-fractal, non-Lévy-like scaling
in the movement patterns of aquatic crustaceans (Schmitt and
Seuront 2001; Dur et al. 2011; Seuront 2010; Seuront and
Stanley 2014). Reynolds and Frye (2007) used structure func-
tions to reveal Lévy-like scaling in the flight patterns of
Drosophila fruit flies. Seuront and Stanley (2014) subsequently
used structure functions to distinguish between different models
of movement pattern, including Brownian motion, persistent/
anti-persistent random walks, LW and multi-fractal walks.
Reynolds and Frye (2007) and Seuront and Stanley (2014) were
not faced with the challenge of distinguishing between LWand
alternative strongly competing models of movement patterns
with self-similar characteristics.

Structure functions and the identification of LW
in movement pattern data

Structure functions are the moments 〈|ΔXτ|
q〉 of the net dis-

placements |ΔXτ|=[(x(t+τ)−x(t))2+(y(t+τ)−y(t))2]1/2 made
within fixed time intervals, τ, where x(t) and y(t) are the
coordinates of an individual at time, t. The angular brackets
denote an average along a trajectory. Averaging can also be
performed over trajectories if several trajectories are available.
Here, without loss of generality, attention is focused on two-
dimensional movement patterns. Klafter et al. (1987) showed
that a power law relationship of the form 〈|ΔXτ|〉∝τα with α=
1 is indicative of LW with μ<2 whilst that with α=2−μ/2 is
indicative of LW with μ>2. These scaling relations hold true
irrespective of the dimensionality of the movement pattern.
Here, I posit that the scaling relation extends to higher mo-
ments so that 〈|ΔXτ|

q〉∝τα*q. This ansatz is supported by the
results of numerical simulations shown later. It is consistent
with the results of Dhar et al. (2013) who determined the exact
form of 〈|ΔXτ|

2〉 for 2<μ<3. Dhar et al. (2013) showed that
〈|ΔXτ|

2〉∝τα*2. This scaling behaviour should not be confused
with the bilinear scaling that characterises Lévy flights, as
defined in the mathematical literature. In the mathematical
literature, the term Lévy flights refers to discrete random jump
processes rather than to continuous random walk processes as
in the biological and ecological literature. These mathematical
Lévy flights are characterised by α=1/(μ−1) for q<μ−1 and
by α=1/q for q≥μ−1 (Chechkin and Gonchar 2000; Nakao
2000). Notice that the second-order structure function (the
mean-squared position) for a true Levy flight grows linearly
in time and therefore has a 'normally diffusive' characteristic.
Correlated random walks (CRW), composite correlated ran-
dom walks (CCRW) and other random walks with a few
scales are characterised by α=1/2. Short-term correlations in
the data may cause the initial slope of a plot of log〈|ΔXτ|

q〉/
logτ to differ from 1/2, although it will still approach 1/2 at
longer times.Movement patterns produced by any walkwith a
few scales must eventually become Brownian (and so

characterised byα=1/2) by virtue of the central limit theorem.
This theorem does not apply when movements are self-simi-
lar. The α=1/2, Brownian-like scaling is markedly different
from the α=1, ballistic-like scaling, associated with optimal
LW searching (Viswanathan et al. 1999). Consequently, struc-
ture functions have the potential to cleanly discriminate be-
tween random walks with a few scales and LW with and
without truncation. When, as in the case of the copepod
Temora longicornis (Schmitt and Seuront 2001), movement
patterns cannot be characterised by a single value of α, the
movement pattern is said to be ‘multi-fractal’. Higher-order
structure functions with q>1 can therefore discriminate be-
tween LW and multi-fractal walks. Note, however, that accu-
rate computation of high-order structure functions requires
relatively large data sets and is not possible if data are scarce.

Application of structure function analyses to movement
pattern data for honeybees and Drosophila

The aforementioned power law scaling 〈|ΔXτ|
q〉 is, however,

only obtained asymptotically and is not realised fully by
truncated LW that can be captured in movement pattern data.
This is illustrated in Fig. 1a which shows structure functions
characterising movement pattern data for honeybees
attempting to locate their hive (Reynolds et al. 2007a).
Reynolds et al. (2007a) reported on the flight paths of bees
that had been captured at a feeder, artificially displaced and
then released. The bees were fitted with transponders and then
tracked using a harmonic radar. The tracks showed that the
bees initially tended to make long looping flights away from
the release point, as though they were searching systematical-
ly for their hive. Analyses were based upon 60 recorded flight
patterns. Fifty-six flights terminated in the immediate vicinity
of the hive. Flight durations ranged from 128 to 7286 s. Flight
lengths ranged from 341 to 14,187 m and had a mean of
2153 m. The structure functions for these flights show power
law scaling over about one decade, from the 3-s data sampling
interval to about 60 s. Least squares regressions of log〈|ΔXτ|

q〉
on logτ for q=1, 2and3 yield a consistent estimate for the
scaling exponent, α≈0.7. The estimates for α*q correspond-
ing to q=1, 2 and 3 are, with 95% confidence intervals, 0.69±
0.01, 1.42.±0.02 and 2.16±0.03, and in each case, R2=0.99.
Scaling to this precision is also evident in analyses using just
ten randomly selected flight patterns. For longer time inter-
vals, plots of log〈|ΔXτ|

q〉/logτ differ from α=0.7 and plateau.
Movements are therefore superdiffusive but not ballistic (in
which case α=1). These behaviours are consistent with trun-
cated μ≈2 LW produced in numerical simulations (Fig. 1b).
They are markedly different from the expectations for move-
ment patterns with a few scales (Fig. 1a, b) and markedly
different from the expectations for LW with Lévy exponents,
μ, significantly different from 2 (Fig. 1c). To account correctly
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for the effects of truncation on scaling, the lengths of the
simulated LW were taken to be equal to the average length
of the bee flight patterns. And the shortest step length in the
simulated LW was taken to be 5 m, the shortest flight length
that could be resolved by the harmonic radar. Above the
truncation scale, observed and simulated movement patterns
are seen to depart from the expectations for LW and acquire
Brownian-like characteristics consistent with expectations
from the central limit theorem. The close correspondence
between the empirical movement pattern data and the simula-
tion data indicates that the honeybee flight patterns can bewell
approximated by truncated LW with μ≈2 but not by random
walks with a few scales such as CRW and CCRW. This is
consistent with the results of previous analyses using a variety
of techniques including maximum likelihood methods, time
series analyses of turning points, spectral and ‘first digit’
analyses, and fractal scaling analyses (Reynolds et al. 2007a;
Reynolds 2012). These techniques required the determination
of turning points. Closely analogous results were obtained for
starvedDrosophila flying within a circular experimental arena
of diameter 1 m (Reynolds and Frye 2007). These analyses are
based upon the flight trajectories of 11 individuals. Flight
durations ranged from approximately 5.3 to 67.8 s. For time
intervals between the recording interval 1/30 s and the time
taken by the flies to cross the arena, which is about and 1 s,

structure functions displayed power law scaling that was
characterised by α=0.9±0.01 (R2=0.99). At longer times,
the structure functions plateaued because movements were
confined. These empirical observations are reproduced in
numerical simulations by LWwith μ=2.2 that undergo perfect
reflection at the walls of the arena.

The analyses of the honeybee and Drosophila data show
how the utility structure functions and set out how they can be
used in practice, taking into account sample size, path duration
and sampling intensity. It is crucial to compare structure
functions derived from empirical data with those derived from
a comparable data set of synthetic Lévy walks. The goodness
of fit between the empirical data and expectations for LW
could, for example, be quantified using an R2 statistic. If the
resulting p value is greater than 0.1, then LW are a plausible
model of the movement pattern data; otherwise, LW can be
rejected. p values can be calculated following a standard
approach advocated by Clauset et al. (2009). In this approach,
a large number of synthetic data sets are created, structure
functions are found each of these data sets and each of these
structure functions is fitted to its own power law model. The
R2 statistic is then found for each structure function relative to
its own model. The proportion of these R2 statistics that is
smaller than the R2 statistic of the empirical data is the p value.
For the case of the honeybee flight patterns, p=0.42.

Fig. 1 Structure function
analysis of honeybee flight
pattern data showing behaviour
consistent with the presence of
truncated LW with μ=2. a
Structure functions for empirical
data (solid lines). Data has been
ensemble averaged over 60
different flight patterns. b
Structure functions for simulated
truncated LW with μ=2.2 (solid
lines). As with the empirical data,
the duration of the longest step is
100 s. Power-scaling behaviour
corresponding to α=0.7 is
indicated for q=1, 2 and 3 (dotted
lines). Shown for comparison are
the distinctly different short-
(short dashed lines) and long-
time (long dashed lines) scaling
behaviours expected for finite-
scale movement patterns such as
CRW and CCRW. c The power-
scaling parameter α as a function
for the Lévy exponent μ for
truncated LW produced in
numerical simulations
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Distinguishing between LW and more complex
mechanistic models

Composite correlated random walks

Composite correlated random walks can be confounded with
LWs when, as is often the case, the tail of the step length
distribution is compared with a power law and an exponential
distribution using maximum likelihood methods (Reynolds
2012). As an illustrative case, Reynolds (2012) showed that
with maximum likelihood methods, a CCRW in which step
lengths are drawn at random from a bi-exponential distribu-
tion, one exponential for relatively short movements with
mean length 15 (arbitrary length units) used with a 0.9 prob-
ability and the other for relatively long movements with mean
length 74 used with a 0.1 probability, is always mistaken for a
LW with μ=2. The two patterns of movement can, however,
be distinguished using power spectral and first significant
digit analyses, approaches which require turn designation
(Reynolds 2012). They can also be distinguished using struc-
ture functions (Fig. 2). The structure functions are indicative
of ballistic (straight line) movements at short times, and
Brownian movements at long times, and so are consistent
with general expectations for random walks with a few scales
but unlike the expectations for a realisable LW (Fig. 2). This
becomes ever more evident as the order of the structure
function increases (Fig. 2).

Fractal clock random walks

At the start of each walking bout in a fractal clock random
walk, a new bout duration is extracted from a distribution with
a heavy power law tail, and a new direction of travel, θ(t), is
selected at random from a uniform distribution ranging

between 00 and 3600 (Bartumeus and Levin 2008). At each
tick of the clock, i.e. at each unit time interval, Δt, the walker
moves forward with uniform speed. The direction travel is
then incremented by a random amount φ(t+Δt) so that the
next step is made in the direction θ(t+Δt)=θ(t)+φ(t+Δt) and
so that the walker meanders between the fractal-timed reori-
entation events where the direction of travel changes abruptly
so that directional persistence is lost entirely. Structure func-
tion analysis reveals that movement patterns closely resemble
LW at short times but that scale-free behaviour is lost at long
times, i.e. meandering results in truncated LW even when the
fractal clock produces ticks of arbitrarily long duration
(Fig. 3). This is simply because relatively short bouts will
produce relatively straight steps as in LW whilst relatively
long bouts (spanning many meandering cycles) will produce
irregular steps with numerous turns.

Discussion

In recent years there has been an accumulation of evidence
that the movement patterns of many organisms can be approx-
imated by LW, i.e. by a movement pattern that is self-similar
across a range scales (Korobkova et al. 2004; Reynolds et al.
2007a, b; Sims et al. 2008; de Jager et al. 2011; Harris et al.
2012; Humphries et al. 2012, 2013). This evidence comes
principally from distributions of straight line distances trav-
elled between consecutive significant turns that, to good ap-
proximation, have heavy power law tails. Step length distri-
butions with thin (exponential) tails are the hallmark of finite-
scale movement patterns like CRW and some CCRW.
Designation of turning points is, however, often arbitrary
and reflects measurement resolution rather than a naturally

Fig. 2 Structure function analysis of a CCRW (solid lines) which max-
imum likelihood methods misidentify as being a LW with μ=2. The
structure functions are consistent with the expectations for movement
patterns with a few scales, i.e. ballistic movements at short times and
Brownian movements at long times (dashed lines), and markedly differ-
ent from the expectations (α=0.7) for a LW with μ=2 (dotted lines)

Fig. 3 Structure function analysis of a fractal-timed random walk (solid
lines) putatively corresponding to at LW with μ=2. The walkers move
with speed in arbitrary space-time units. Changes in the direction of travel
made at each tick of the fractal clock are randomly and uniformly
distributed between −450 and 450. Power-scaling behaviour correspond-
ing to α=0.76 indicative of a truncated LW is indicated (dotted line)
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occurring pattern (Codling and Plank 2011). Even whenmuch
of this ambiguity is removed, as in the ‘projection’ approach
advocated by Humphries et al. (2013), analyses based solely
on turning points cannot account for movements made be-
tween turns and so cannot discriminate between different
kinds of LW. Here, it was shown how structure functions
which dispense with turning point designation can be used
to discriminate between self-similar movement patterns and
movement patterns with a few scales. The utility of the meth-
od was illustrated by its application to telemetry data for
honeybees searching for their hive (Reynolds et al. 2007a).
The structure function analyses revealed that the honeybee
flight patterns can be approximated by LW with μ≈2 and are
distinctly different from movement patterns with a few scales
(Fig. 1a, b). It was further demonstrated by examining simu-
lation data for a bi-modal CCRW that was tuned to resemble a
LWover a range of scales (Fig. 2). As more and more modes
are added, a CCRW can be tuned tomake its resemblance with
LW even more precise (Reynolds 2014), and in this case,
structure functions along with other diagnostic tools may not
be able to distinguish between a true LWand its realisation as
a CCRW. But in these situations, LWand CCRWwould not be
competing models of the movement pattern data. Instead, the
LW could be viewed as simple integrative models whilst the
CCRW with their added complexity would provide more
mechanistic descriptions of movement patterns revealing
how organisms approximate LW. The fine-tuning does, after
all, require selection pressures for Lévy-like movement pat-
terns (Reynolds 2014).Without such fine-tuning (selection for
Lévy characteristics), the resemblance would be an unex-
plained occurrence.

Representations of movement pattern data in terms of LW
will always be approximate, in part because movement bouts
can not be perfect straight line movements but will instead
exhibit some degree of meandering. Bartumeus and Levin
(2008) showed how such meandering can be encapsulated
by fractal clock random walks (e.g. Lévy modulated correlat-
ed random walks, Lévy intermittency) where organisms ran-
domly meander rather than move in straight lines between
consecutive reorientation events. Meandering introduces a
truncation scale below which movement patterns are self-
similar and above which they behave as random walks with
a few scales. Meandering thereby modifies resource encounter
rates and so can have important ramifications for the interpre-
tation of self-similar movement pattern in terms of advanta-
geous foraging behaviours (Bartumeus and Levin 2008).
Identification of this truncation scale is also of importance
when attempting to extrapolate from observational scales to
expectations at larger scales. Here, it was shown that this
truncation scale can be extracted from structure function anal-
yses of entire movement patterns. Identifying this range of
scales cannot be achieved by statistical techniques such as
maximum likelihood methods that focus attention exclusively

on turning points and individual steps. It can only be deter-
mined from whole-path analyses. Previously, this could be
assessed using the time series analysis adopted by
Viswanathan et al. (1996), but this diagnostic requires the
determination of biological significant turns.

This ability to distinguish between different self-similar
processes addresses directly a major challenge in movement
ecology, namely to ‘understand how reorientation mecha-
nisms are integrated into the set of traits enabling the execu-
tion of movement and how navigation capacity and/or internal
states of the animal can control and modify reorientation
patterns based on different external stimuli’ and to ‘help to
discriminate between different causes for Lévy patterns in
animal movement’ (Bartumeus and Levin 2008). In this re-
gard, it would be interesting to use structure functions to
examine the extent to which marine predators with self-
similar movement patterns are true LW (Sims et al. 2008).
The extensive study of Sims et al. (2008) provides the stron-
gest evidence obtained so far for self-similar movement pat-
terns and so warrants further analysis.
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