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Abstract Honeybees (Apis mellifera) are regularly
faced with the task of navigating back to their hives
from remote food sources. They have evolved several
methods to do this, including compass-directed “vector”
flights and the use of landmarks. If these hive-centered
mechanisms are disrupted, bees revert to searching for
the hive, using an optimal Lévy flight searching strat-
egy. The same strategy is adopted when a food source
at a known location ceases to be available. Here, we
show that the programming for this Lévy strategy does
not need to be very sophisticated or clever on the bee’s
part, as Lévy flight patterns can be derived from the
Weber–Fechner law in a bee’s odometer. Odometry
errors of a different kind occur in desert ants
(Cataglyphis spp., Melophorus bagoti). The searching
behaviors of these ants are very similar in overall
structure to that of honeybees but do not display any
Lévy flight characteristics. We suggest that errors in the
estimation of distance can be implicitly involved in
shaping the structure of systematic search behavior
and should not be regarded as merely deficiencies in
the odometer.
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Introduction

Many animals have evolved the ability to return to previ-
ously visited locations (Healy 1998). For central place for-
agers, this ability is of utmost importance, as they need to
return to their nest, burrow, or den on a regular basis.
Accomplishing this feat requires accurate navigation and
orientation skills, which have been extensively studied in
central place-foraging insects such as bees and ants (Collett
et al. 1998; Collett and Collett 2002; Wehner 2003; Cheng
et al. 2009). Unavoidably, the accuracy of all navigational
mechanisms is limited. However, not all “errors” in animal
behavior need necessarily be viewed as impediments to
accuracy. Absolute accuracy may not even be desirable in
changing and often unpredictable environments. Instead,
behaviors that show some degree of variation may often
be much more useful, as they allow the animal to adapt to
its environment (Staddon 1983). Errors in themselves could
also play a meaningful role in shaping and organizing be-
haviors. We suggest that the errors of distance estimation in
navigating insects are implicitly involved in shaping the
structure of their systematic search behavior.

A wide range of animals has the ability to estimate
travelled distances by odometry (Wolf 2011). Flying insects
such as the honeybee Apis mellifera gauge distance by
integrating the image motion experienced by the eye en
route, the optic flow (Esch and Burns 1995), especially in
the lateral and ventral fields of view (Srinivasan et al. 1997).
This visually driven odometer is relatively robust to varia-
tions in the texture and luminance of the visual environment
(Si et al. 2003) and to wind direction (Srinivasan et al. 1996,
1997). Insects that walk on the surface of the earth seem to
make little use of optic flow but rely on proprioceptive cues
instead (Ronacher and Wehner 1995; Ronacher et al. 2000).
In desert ants, distance is measured by a stride integrator
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(Wittlinger et al. 2006) which accounts for variations in
stride length (Wittlinger et al. 2007) or other irregularities
(Steck et al. 2009), and even functions accurately in three
dimensions (Wohlgemuth et al. 2001; Grah et al. 2005).

The process of odometry is prone to errors. Flying hon-
eybees that had been trained to visit a feeding station at a
certain distance from the hive searched at the correct dis-
tance in subsequent tests when the feeder was removed
(Srinivasan et al. 1997), but the error of this distance esti-
mate was found to increase with the distance travelled.
Furthermore, these errors increased linearly with the training
distance; in other words, they are proportional to training
distance and thus obey the Weber–Fechner law (Cheng et al.
1999). Weber’s law (Weber 1846) was originally formulated
to account for some aspects of human perception and psy-
chophysics. There, a just noticeable difference in some
perceptual measure, such as the weight of a lifted object,
is a constant proportion of the standard measure against
which a second measure is compared. Thus in odometry, if
50 m can just be distinguished from 55 m, then the differ-
ential threshold is 5 m. If the distance is doubled, then the
differential threshold is also doubled to 10 m, so that 110 m
can be distinguished from 100 m. In these examples, the
distance needs to increase by 10 % for someone to be able to
reliably detect the increase. In modern formulations, the
standard deviation of a set of measures of one parameter
varies linearly with the mean of the measured parameter
(e.g., Cheng 1992; Cheng et al. 1999). In desert ants
Cataglyphis fortis, the picture is different in odometry: after
being trained to forage at a certain distance from the nest,
these ants in subsequent tests tended to underestimate the
distance travelled. The farther they travelled, the more did
they underestimate the distance. The errors of these esti-
mates also increased nonlinearly with training distance, i.e.,
they “leveled off” at large distances (Sommer and Wehner
2004).

It has been known for 80 years that if bees’ homebound
journeys are artificially disrupted, they adopt what appear to
be looping, searching flights, and usually manage to
(eventually) find their hives (Wolf 1927). The search begins
at the location where the bees initially expect to find the hive
and is comprised of loops of ever-increasing size that start
and end at this location and are directed in different azi-
muthal directions. This strategy ensures that the area where
the target is expected to lie is searched most intensively.
Analysis of honeybee flight data has revealed that the dis-
tribution of distances moved between turns, “loop lengths,”
has an inverse-square power law tail, consistent with the
execution of the best possible “Lévy loop” searching strat-
egy; this is seen in both food searches and hive searches
(Reynolds et al. 2007a, b; Reynolds 2008, 2012a). Other
Lévy loop searching strategies with differently distributed
loop lengths are less effective.

Lévy movement patterns first entered the biological lit-
erature when Shlesinger and Klafter (1986) proposed that
they can be observed in the movement patterns of foraging
ants. They are a random walk in which the step lengths have
a probability distribution with a “heavy” power law tail.
Then, around 10 years ago, it was shown that step length
distributions with inverse-square power law tails can be
advantageous in random search scenarios (Viswanathan et
al. 1999), prompting the “Lévy flight foraging hypothesis.”
This hypothesis states that since Lévy movement patterns
can optimize search efficiencies, natural selection should
have led to adaptations for Lévy movement patterns.
According to this hypothesis, organizational levels (physio-
logical, sensorial) that are plastic and acted upon by selec-
tion pressure may tune up Lévy movement patterns
(Bartumeus 2007).

The searching behavior of desert ants (Cataglyphis spp.,
Melophorus bagoti) is very similar in overall structure to
that of honeybees, with the search path made up of loops of
increasing size, centered on the expected target location
(Wehner and Srinivasan 1981; Schultheiss and Cheng
2011). However, for M. bagoti ants, the distribution of
movement lengths does not display any Lévy-like charac-
teristics. Instead, the distribution of distances moved be-
tween turns is well described by a single exponential when
the ants are searching for a food source or the nest in the
familiar visual surround (Schultheiss and Cheng 2013;
Schultheiss et al. 2013) and a mixture of two exponentials
when they are searching for the nest in an unfamiliar envi-
ronment (Schultheiss and Cheng 2011). Exponential distri-
butions also capture the searching patterns of “follower”
Temnothorax albipennis ants that become separated from
their “leaders” during tandem runs that recruit ants to
sources of food or to better nest sites (Franks et al. 2010).

The strategies of both bees and ants are clearly less
reliable than an equidistant (Archimedian) spiral search
pattern. Such a spiral search could, however, work only if
the navigation of bees and ants was precise enough and their
visual detection ability was reliable enough, to ensure that
all areas are explored and that no intervening regions escape
scrutiny. Should the nest be missed, there would be no
chance of encountering it a second time because the search
path is an ever-expanding spiral. Relying on a spiral search
pattern would therefore be disastrous where navigational
and detection systems are less than ideal, and even then,
this method could be used only for short searches before the
inevitable cumulative navigational error became too large to
allow a true spiral to be maintained. Switching from spiral to
random looping search paths has been observed in the desert
isopod Hemilepistus reaumuri when it gets lost after an
excursion from its burrow (Hoffmann 1983) and in males
of the two-spotted ladybird beetle Adalia bipunctata after
encountering a conspecific female (Hemptinne et al. 1996);
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a spiral search has also been suggested as a part of the
looping search behavior of Cataglyphis desert ants returning
to their nest (Müller and Wehner 1994).

Thus, when bees and ants are searching for similar goals
(a food source or the nest), their movements can be very
similar in appearance. Yet, they employ very different
search strategies, with bees’ searches but not ants’ searches
showing Lévy characteristics. The key to understanding
these movement patterns lies in the elucidation of mecha-
nisms underlying the observed patterns. “Without an under-
standing of mechanisms, one must evaluate each new stress
on each new system de novo, without any scientific basis for
extrapolation; with such understanding, one has the founda-
tion for understanding” (Levin 1992, p. 1944). This senti-
ment was recently echoed by Stumpf and Porter (2012) who
rightly noted that “a statistically sound power law is no
evidence of universality without a concrete underlying the-
ory to support it.” Here, we provide theoretical evidence that
Lévy looping flights in honeybees may have arisen because
errors in their estimation of distance are proportional to
distance itself. Distance errors of a different kind occur in
the Australian ant M. bagoti, from which Lévy flight pat-
terns cannot be derived.

Methods

Experimental procedures

The flight patterns of individual bees made over several
hundred meters were recorded using a harmonic radar (Riley
et al. 1996). The flight observations were made over a
carefully selected (Chittka and Geiger 1995), large area of
mown pastureland, approximately 1×1.5 km, where the
terrain was unusually flat and free from obstacles that would
have obscured the radar’s field of view. The radar was set up
on the southern edge of the arena, so that it overlooked the
hive, and three release points were set up 200 to 250 m from
it (Menzel et al. 2005). Honeybees were trained to a feeder
that was moved around the hive on a radius of 10 m at 2–3
revolutions per day. This movement suppressed the estab-
lishment of vector flights along any fixed compass direction
to and from the feeder. Individual honeybees were caught
when they left the feeder, fitted with a harmonic radar
transponder (Riley and Smith 2002), and carried in an
opaque tube to one of the three release points. The bees,
which had no opportunity to use their path integration
capabilities during this displacement, were then released,
and subsequent flight trajectories were recorded using har-
monic radar (for experimental details see Menzel et al.
2005). Some brightly colored tents were also placed in the
arena to act as artificial landmarks, for separate navigation
experiments (Menzel et al. 2005). There were no other large

landmarks in the field, but features on the horizon would
have provided landmarks that a honeybee’s eye could re-
solve (Giurfa et al. 1996; Giurfa and Menzel 1997).

A path was created from records of the bee’s position that
was normally made every 3 s. However, if the bee flew
through an area of radar “shadow” or climbed temporarily
above the horizontally scanning radar beam, the missing
interval was spanned by joining the last recorded position
to the first one to be acquired after the interval. Analyses
were based upon 86 recorded flight patterns. Fifty-six flights
terminated in the immediate vicinity of the hive. Flight
durations ranged from 128 to 7,286 s. Flight lengths ranged
from 341 to 14,187 m and had a mean of 2,153 m.

Analysis method for the honeybee search flights

After release with a transponder, the bees engaged in long,
looping flights indicative of searching. We used the follow-
ing criteria to describe the shape of these flights. A bee was
described as “arcing” when the radar track showed her
flying within 10 m of the release point and seemingly
pivoting around the release point. Loops are defined as
sections of a track where the bee flew away from the release
point and then returned to the location of the release point
but did not land (Fig. 1). The length of a loop was taken to
be the straight line distance between the center of search and
the furthest reach of the loop.

The Akaike information criterion (Burnham and Anderson
2004) was used to test whether the harmonic radar data
provided more evidence for the distributions of loop lengths
having power law

p1ðlÞ ¼ μ� 1ð Þaμ�1l�μ; l � a

or negative exponential tails

p2ðlÞ ¼ 1 e�1 l�að Þ; l � a:

A power law tail is the hallmark of Lévy movement
patterns. The power law exponent,μ , and the exponential
decay rate, 1 , were determined using log-maximum

Fig. 1 An example flight path of a honeybee after being displaced and
then released. The furthest reaches of the loops are indicated (black circle)

Behav Ecol Sociobiol (2013) 67:1219–1226 1221



likelihood methods (Clauset et al. 2009). The start of the tail
of the distributions a � 10mð Þ was ascertained by visual
inspection of the survival function (the complement of the
cumulative distribution function). To construct the survival
function, the simulation data for the loop lengths lif gwere
first ranked from largest to smallest i ¼ l . . . nf g. The prob-
ability that a loop length is greater than or equal to li (the
survival function) was then estimated as i=n.

Results

Weber–Fechner law in the bee’s odometer and Lévy flights

To good approximation, the average absolute difference be-
tween the lengths of nth and n+1th loops, lnþ1 � lnj jh i , is
proportional to the length of the nth loop, ln (Fig. 2a; r=0.76,
p<0.01). This could be a consequence of honeybees attempting
to reproduce a loop of length ln (known from the return flight to
the nest) and subsequently producing an outward flight of
length lnþ1 because of errors in distance estimation. Under this
interpretation, errors in lnþ1 are proportional to the “training
distance” ln and therefore obey the Weber–Fechner law
(Fechner 1860; Weber 1846). The Akaike weight for a power
law distribution of loop lengths is 1.00 which indicates that a
power law distribution is convincingly favored over the alter-
native exponential model of the data. The maximum likeli-
hood estimate for the power law exponent μ ¼ 1:88, which is
close to the optimal value μ ¼ 2. The maximum likelihood
power law provides a good fit to the loop length data (Fig. 2b).

Mathematical analysis

Lévy flight patterns can be derived from the Weber–Fechner
law

We now present a simple mathematical argument which
shows how Lévy flight patterns can be derived from the

Weber–Fechner law in a bee’s odometer, which implies that
lnþ1, is a random multiple, ηnþ1, of ln, i.e.,

lnþ1 ¼ ηnþ1ln ð1Þ

where ηnþ1are independent and identically distributed ran-
dom variables with some distribution, f ηð Þ.

The analysis is straightforward and draws on Gabaix
(1999) who sought to understand power law distributions
of city sizes. Let lin be the length of the nth flight made by the
ith bee (in a population of N bees) and then normalize each

of these lengths by dividing them by
PN
i¼1

linso that
PN
i¼1

lin ¼ 1

at each stage n. The average normalized flight length is thus
a constant and this requires that the average growth rate

ηh i ¼
Z1

0

ηf ηð Þdη ¼ 1: ð2Þ

Now let P ln > Lð Þ be the probability of ln > L. It follows
that

P lnþ1 > Lð Þ ¼ P ηnþ1ln > L
� � ¼

Z1

0

P ln > L=ηnþ1

� �
f ηnþ1

� �
dηnþ1:

ð3Þ

At steady state, when the distribution of loop lengths
is independent of the loop index, n, so that, P ln > Lð Þ ¼
P l > Lð Þ, Eq. (3) becomes

P l > Lð Þ ¼
Z1

0

P l > L=ηð Þf ηð Þdη: ð4Þ

This equation is satisfied by Zipf’s law

P l > Lð Þ ¼ η=L ð5Þ
Fig. 2 a The average absolute
difference between the lengths
of nth and n+1th loops,
lnþ1 � lnj jh i, as a function of

loop length ln(black circle) and
the linear least squares
regression (solid line). b
Distribution of loop lengths
(solid line), the best-fit inverse
power law tail (dashed line),
and the best fit exponential tail
(dotted line) determined by the
maximum likelihood method
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since ηh i ¼ 1 . Zipf’s law corresponds to a loop length
distribution with an inverse-square power law tail.

This result is supported by data from numerical sim-
ulations in which lnþ1 ¼ max 1; ηnþ1ln

� �
where ηnþ1 are

independent and identically distributed random variables
drawn from an exponential distribution with mean 1
(Fig. 3). The imposition of a minimum loop length
(here with length 1) is necessary for the establishment
of a steady state. If the minimum loop length was not
present, there is no steady state, and the loop length
distribution would just be a log-normal distribution,
where most loops would have infinitesimal length
(Gabaix 1999). Simulation data were collected for
1,000 different realizations of the loop lengths with50
� n � 10 . If, as hypothesized, these data are scale
invariant, then it can be characterized in terms of the

geometric average l
�
¼ QN

i¼1
li

� �1=N

¼ exp 1
N

P
ln li

� � �
exp ln lh ið Þ where ln lh i ¼ 1

N

PN
i¼1

ln li is the logarithmic

average. This is because the geometric average “normal-
izes” the ranges being averaged, so that no range dom-
inates the weighting. The maximally non-committal
(most parsimonious, “maximally general”) distribution
that is consistent with this characterization is obtained
by maximizing Shannon’s entropy subject to the con-
straint that the model distribution be normalized (have
probabilities that sum to unity) and has the prescribed
geometric average (Kapur 1989). This constrained max-
imization of Shannon’s entropy yields a truncated in-
verse power law (Pareto) distribution of loop lengths

P1ðlÞ / l�μ; b � l � a ð6Þ
where a (see below) and b (length of the longest
simulated flight loop) mark the start and end of scale-

invariant behavior and μ � 1� 1
ln a� ln lh i (valid when

b >> a) is Hill’s (1975) maximum likelihood estimator
for a power law exponent (Kapur 1989). Any other
distribution would require making an alternative hy-
pothesis about how best to characterize the data or
invoking characteristics that complement the use of
the geometric average. For example, the most parsimo-
nious distribution associated with the alternative hy-
pothesis that the simulation data are not scale
invariant and so characterized by the arithmetic aver-

age, lh i ¼ 1
N

PN
i¼1

li, is a truncated exponential distribution

P2ðlÞ / e�ll; b � l � a ð7Þ

where l � 1
lh i�a (valid when b >> a) is the maximum

likelihood estimator for an exponential decay rate (Kapur
1989). The entropic method of Kapur (1989) has not appeared
previously in the analysis of movement pattern data. It is
reminiscent of log-likelihood methods that produce the same
maximum likelihood estimators forμ and lwhen Eqs. (6) and
(7) are posited as candidate model distributions. In the entro-
pic method, these distributions are not posited but are instead
derived from assumptions about how best to characterize
average behaviors. A plot of the survival function (the com-
plement of the cumulative distribution function),P l > Lð Þ ,
was used to ascertain, by visual inspection, the start of power
law scaling that is indicative of scale invariance a � 10ð Þ and
the goodness of fits of the deduced distributions, Eqs. 6 and 7,
to the simulation data.

The simulation data are very well represented by the
power law distribution, Eq. 6, but poorly represented by
the alternative exponential distribution, Eqn. 7 (Fig. 3). This
illustrates that the simulation data can be characterized
almost entirely by its geometric average and as a conse-
quence is scale invariant. The maximum likelihood estimate
for the power law exponent, μ ¼ 2:0 , is consistent with
Zipf’s law and so with the emergence of an optimal Lévy
flight searching strategy (Reynolds 2008).

Discussion

Initial evidence for Lévy movement patterns in the wander-
ing albatross (Viswanathan et al. 1996) prompted the sug-
gestion that the adoption of Lévy movement patterns might
be widespread in the animal kingdom. The analysis and
interpretation of animal movement data is not, however,
wholly straightforward and some of the analyses claiming
Lévy behavior in the intervening decade have recently been
called into question (Edwards et al. 2007; Edwards 2011).
Most notably, Edwards et al. (2007) found that the study of
Viswanathan et al. (1996) was seriously flawed and

Fig. 3 Distribution of simulated loop lengths (solid line), the best fit
inverse power law tail (dashed line), and the best fit exponential tail
(dotted line) determined by the maximum likelihood method
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suggested that Lévy movements had been wrongly attribut-
ed to the wandering albatross; a suggestion that now appears
to be overstated (Humphries et al. 2012, Reynolds 2012a,
2012b, Miramontes et al. 2012). Nonetheless, recent studies
have provided seemingly compelling evidence that Lévy
processes approximate well the movement patterns of a
diverse range of marine predator, honeybees, T cells, and
bacteria (Escherichia coli), and in most of these cases, they
have been attributed to the execution of innate, evolved
optimal searching strategies (Korobkova et al. 2004;
Reynolds et al. 2007a, b; Sims et al. 2008; Harris et al.
2012), suggesting convergent evolution across taxa. The key
to prediction and understanding does, however, lie in the
identification of the underlying mechanisms that give rise to
the movement patterns (Levin 1992, Stumpf and Porter
2012). Mechanisms have been identified that account for
the freely roaming Lévy movement patterns of T cells, E.
coli, and the wandering albatross (Tu and Grinstein 2005;
Reynolds 2010; Reynolds 2012b). Here, we identified a
candidate mechanism for the occurrence of Lévy loop pat-
terns in honeybees. This is significant because honeybee
foragers are ideal for testing clear-cut predictions of optimal
searching theory as they are not distracted by sex or territo-
rial defense and have few predators, and as a consequence,
their movement patterns can be almost exclusively associ-
ated with searching. Our analysis stemmed from the ob-
served proportionate growth in loop lengths which were
attributed to honeybees attempting unsuccessfully to repro-
duce loop lengths because of errors in distance estimation.
This interpretation of the honeybee flight pattern data has
resonance with the observations of Cheng et al. (1999).
These authors trained honeybees to fly a specific distance
down a tunnel for a reward. After training, the honeybees
were tested with the reward absent. On these tests, the bees
flew to or just past the expected place of reward, then turned
around and flew back. After some distance, they turned back
again, and some continued turning back and forth a number
of times. Cheng et al. (1999) measured the errors (i.e., the
standard deviation across trials of the positions of the first
and second turns) in distance estimation as a function of
training distance. These errors were proportional to the
training distance, thus obeying the Weber–Fechner law
(Fechner 1860;Weber 1846). Nonetheless, theWeber–Fechner
law is not necessarily an internal characteristic of the bee’s
odometer but could be the result of some external environmen-
tal stimulation to any of the bee’s (multiple) sensory systems
which impact the odometer function or some external force on
the bee (such as wind). Whatever is the source of the Weber–
Fechner law in the bee’s odometry, we are suggesting that the
bees have evolved to co-opt the property in generating Lévy
search patterns.

Proportionate growth rates are not confined to honeybees.
They also characterize the development of cities (Gibrat 1931)

and this is a necessary and sufficient condition for Zipf’s law
for cities (Zipf 1949); the striking observation that the number
of cities with populations greater than S is proportional to 1/S
and so are characterized by a Zipfian distribution, one of a
related family of discrete inverse power law probability dis-
tributions (Gabaix 1999). Here, we adapted the analysis of
Gabaix (1999) to show that Lévy looping in the searching
flight patterns of honeybees does not require sophisticated
neurological processing as it could be a natural consequence
of errors in distance estimation being proportional to distance
measured, at all scales. This result is a direct consequence of
scale invariance and can be arrived at intuitively. Because the
loop length growth process, Eq. 1, is the same at all scales, the
final distribution of loop lengths should be scale invariant.
This forces the distribution of loop lengths to follow a power
law. This scale invariance is not observed in Cataglyphis ants
as the variance of the ants’ distance estimates initially increases
with the distances travelled but tends to level off at the largest
training distance (Sommer and Wehner 2004). In this case, the
loop lengths can be exponentially distributed, in accordance
with the observations of Schultheiss and Cheng (2011, 2013),
albeit for a different species of desert ant.

The Weber–Fechner law minimizes the maximal relative
error in distance estimation and consequently could be the
result of natural selection (Portugal and Svaiter 2011). How-
ever, it is currently not understood why errors of distance
estimation in honeybees, but not those seen in desert ants,
follow the Weber–Fechner law. Conceivably, there exist
sensorial and physiological processes that can tune up di-
rectly for Lévy flight search strategies. In navigation, forag-
ing ants walk whereas foraging bees fly. This difference
might have led to the evolution of the different cognitive
strategies by which bees and ants estimate distances. In
odometry, ants and bees might have been subjected to very
different ecological and sensorial constraints. Walking ants
are in direct physical contact with the substrate, where
proprioceptive cues (in the form of the stride integrator)
provide a sufficiently accurate measure of their movements
relative to the substrate. Flying bees on the other hand are
moving through air, where any proprioceptive measures
such as energy expenditure or the count of wing beats are
susceptible to outside influences such as wind; they would
not provide accurate measures of the bee’s movement in
relation to the substrate. Here, integration of the experienced
optic flow is used instead (Srinivasan et al. 1997). But why
these differences in the principal means of odometry should
lead to the absence vs. the presence of the Weber–Fechner
law is unclear. Both are counting-like processes in which
neurally based quantities, representing counts of steps or
amount of optic flow, need to be integrated to estimate the
accumulated total. In rodents, this kind of counting-like
process typically follows the Weber–Fechner law (Meck
and Church 1983). Similarly, interval timing processes in
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vertebrate animals also typically follow the Weber–Fechner
law (Cheng and Crystal 2008). In another form of spatial
search, in pigeons looking for hidden food experimentally
placed at a constant distance from a wall, the scatter in the
searching (standard deviation) also varies linearly with the
distance that the birds were attempting to measure (Cheng
1990).

The presence or absence of Lévy properties in insect
searching behavior may also depend on properties of the
environment. In our case, even though the searching behav-
ior of both bees and ants was investigated in comparable
contexts (searching for single targets, i.e., a food source and
the nest), the visual environments were quite different: the
bees’ searches were performed in an open field, while the
ants’ searches were performed in a fairly cluttered environ-
ment. Thus, these environments differed considerably in the
amount of visual information they provide for orientation,
and it is possible that bees and ants will employ different
search strategies in different visual environments. Both the
ecological conditions and the evolutionary history of these
search patterns warrant further investigation.
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