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Abstract A central goal of behavioral ecology is to quan-
tify and explain variation in behavior. While much previous
work has focused on the differences in mean behavior across
groups or treatments, we present a complementary approach
studying changes in the distribution of the response variable.
This is important because changes in the edges of a distri-
bution may be more informative than changes in the mean if
behavior at the edges of a distribution better reflects behav-
ioral constraints. Quantile regression estimates the rate of
change of conditional quantiles of a response variable and
thus allows the study of changes in any part of its distribu-
tion. Although quantile regression is gaining popularity in
the ecological literature, it is strikingly unused in behavioral
ecology. Here, we demonstrate the usefulness of this method
by analyzing the relationship between the starting distance
(SD) at which an observer approach a focal animal and its
flight initiation distance (FID, the distance between the
observer and the animal when it decides to flee). In partic-
ular, we used a simple model of flight initiation distance to
show that in most situations ordinary least-square regression
cannot be used to analyse the SD–FID relationship. Quantile
regression conducted on the lowest quantiles appears more
robust and we applied this approach to data from four bird

species. Overall, changes in the lowest FID values appeared
to be the most informative to determine if a species displays
a “flush early” strategy, a strategy which has been hypoth-
esized to be a general rule. We hope this example will bring
quantile regression to the attention of behavioral ecologists
as a valuable tool to add to their statistical toolbox.

Keywords Anti-predator behavior . Birds . Escape
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Introduction

A central goal of behavioral ecology is to measure and explain
the variability of animal behavior within levels of organiza-
tions, from individuals to species and higher taxonomic levels.
As researchers, we usually do so by conducting analyses that
investigate differences inmean behavior across groups, such as
sex or species, or treatments, such as the presence or absence of
predators. Such analyses statistically account for the variability
within groups or treatments to estimate their effects and allow
inferences to a larger population (e.g., Carrete and Tella 2011,
more generally, see Bart et al. 1999; Martin and Bateson 2007).
Direct comparisons of variability across groups or treatments
are generally evaluated by calculating a coefficient of variation
or similar statistic (e.g., Carrete and Tella 2011). A shortcoming
of this traditional approach is that it fails to address the actual
location (i.e., the actual values) of the distribution, which is of
interest in many cases.

Thus, another approach is to treat the distribution of the
response variable, or a specific portion of the distribution, as
the object of interest. How edges of the distribution (i.e., the
most extreme behaviors) change across groups or treatments
may, for instance, be particularly informative. These bounds
could provide insights into the costs of expressing behaviors

Communicated by L. Z. Garamszegi

S. Chamaillé-Jammes (*)
Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS,
1919 route de Mende,
34293 Montpellier, France
e-mail: simon.chamaille@cefe.cnrs.fr

D. T. Blumstein
Department of Ecology and Evolutionary Biology,
University of California,
621 Young Drive South,
Los Angeles, CA 90095-1606, USA

Behav Ecol Sociobiol (2012) 66:985–992
DOI 10.1007/s00265-012-1354-z



because very costly behaviors should be rare in populations.
For instance, only the minimum intensity of an anti-predator
behavior may increase with predation risk because the highest
intensity may already be constrained by the costs associated
with a trade-off with foraging (or other) activities. Other
portions of the distribution may also be of interest. For in-
stance, conservation biologists and wildlife managers may be
most interested in identifying thresholds beyond which some
behavior of interest [e.g., flight initiation distance (FID)] is
expressed (Blumstein and Fernández-Juricic 2010).

Quantile regression is a method to study change in one or
several portion(s) of a response variables’ distribution.
Technically, it allows the estimation of the rate of change
in conditional quantiles of a response variable in a linear
model (see below). For instance, it can be used to study how
edges of data cloud, approximated, for instance, by the 0.1st
and 0.9th quantile, change across groups or along a contin-
uous explanatory variable. Importantly, and powerfully, oth-
er quantiles of interest can be estimated. Quantile regression
overcomes problems with the estimation of regression mod-
els that have nonconstant variance (i.e., heteroscedasticity),
and the method is robust to response outliers.

Quantile regression is strikingly absent from the toolbox of
behavioral ecologists: a February 2012 GoogleScholar search
for “quantile regression” in articles published in Animal Behav-
iour, Behavioral Ecology, and Behavioral Ecology and Socio-
biology returned only two hits, whereas it is increasingly used
in other domains of ecology (over 50 hits returned in Ecology,
Journal of Animal Ecology, and Journal of Ecology). Our
intention here is to introduce behavioral ecologists to this
method in the context of a specific case study. Quantile regres-
sion might help us better understand how animals adjust their
FID—the distance at which an animal flees an approaching
predator or threat (Ydenberg and Dill 1986). Blumstein (2003)
reported that FID increased with the starting distance (SD) of
the experimenter in 64 out of 68 bird species. He suggested that
animals flee earlier to avoid the increasing cost of monitoring
the approaching threat when the distance at which the threat has
been detected increases (Blumstein et al. 2003). Since then, a
positive relationship between SD and FID has been found in
many other studies and taxa (e.g., Cooper 2005; Geist et al.
2005; Stankowich and Coss 2006; Cooper et al. 2009). This
finding suggests that SD must be incorporated in analyses of
FID and that a general rule of anti-predator behavior might be
“flush early and avoid the rush” (Blumstein 2010).

This generality can, however, be questioned (Dumont,
Pasquaretta, Réale, Bogliani, and von Hardenberg, unpub-
lished manuscript). A draw of FID values from, for instance,
a random uniform distribution subject to the constraint that
FID ≤ SD (because, by definition, escape cannot occur
before the experiment starts) will almost invariably produce
higher FID values at higher SD and generate a spurious
positive relationship between FID and SD (Fig. 1). Thus,

evidence for a positive statistical relationship between FID
and SD should not lead one to assume a direct influence of
SD on FID. Also, nonrandom distribution of FID values
with SD may have SD–FID regression slopes that may not
differ from those produced by some random model (an
example is shown Fig. 1). Quantile regression is a method
that can solve this problem by comparing slopes of specific
quantiles (Fig. 1). It also allows the direct testing of the
hypothesis that if flushing early is beneficial (lowering
monitoring costs and increasing the likelihood of success
of escape), we predict that the distance at which most
individuals have fled (such as the 0.1st FID quantile) would
increase with SD more than if the FID data were drawn from
a null model not including an effect of SD on FID.

Here, we first present a model for FID which can serves as
a null model to test hypotheses about the SD–FID relation-
ship, then discuss how quantile regression may ease such
testing, and finally conduct a quantile regression analyses on
real SD–FID data to demonstrate its use in this specific con-
text. We conclude by discussing the overlooked opportunities
that quantile regression offers to behavioral ecologists.

Methods

Quantile regressions

Classical ordinary least-squares (OLS) regression estimates
the rate of change in the mean of a response variable,

Fig. 1 Examples of hypothetical relationships between starting dis-
tance (SD) and flight initiation distance (FID). Black squares represent
FID data drawn from a random uniform distribution, under the con-
straint that FID ≤ SD. White dots represent nonrandom FID data.
Sample size is 80 for both random and nonrandom data. The slopes
of the SD–FID relationships estimated by ordinary least-square regres-
sion were almost identical for both random and nonrandom FID data
(continuous and dotted line, respectively). However, 0.1st and 0.9th
quantile regression lines differ widely between random and nonrandom
FID data (continuous and dotted lines, respectively). The 1:1 line is
shown (continuous, bold)
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conditional on one or several predictor variables. It is usu-
ally expressed as E(y|X), which means that the expectation
of y is conditional on predictor X (see Sokal and Rohlf
1995). Quantile regression extends this estimation to any
part of the response distribution, expressed formally as any
conditional quantile Qy(τ|X). This conditional quantile is
defined so that a proportion τ (or equally 100τ %) of the
values of the response variable are less or equal to the
regression quantile estimate at the X value. Because of this
definition, quantile regression is insensitive to outliers as
long as they remain above or below a regression quantile
estimate. An important property of quantile regression is
that it does not require any assumptions about the distribu-
tion of the regression residuals. The regression quantiles are
estimated by minimizing the sum of weighted absolute
values of residuals (Koenker 2005).

Quantiles are ordered quantities and thus quantile regres-
sion lines should logically not cross over the range of values
of the independent variable, but this is not always enforced
by the most common estimation process [the Koenker–Bas-
sett algorithm (Koenker 2005)]. Crossing, however, does
not always occur, and if quantiles are not poorly estimated,
crossing is rarely severe and is often restricted to near the
extreme values of the range of the predictor (see Neocleous
and Portnoy 2008 for further discussion). Recently, algo-
rithms ensuring no-crossing have been developed (Wu and
Liu 2009; Bondell et al. 2010), but they may have draw-
backs. For instance, quantile estimates may change slightly
depending on how many quantiles are estimated. Thus, in
most applications the stable estimations—with regard to the
number of quantiles used—provided by the Koenker–
Bassett algorithm might be favored, whereas noncrossing
algorithms may be particularly important when estimating
the predicted quantiles of the response variable at a specific
value of the predictor. More formal mathematical treatments
of quantile regression are provided by Koenker (2005) and
by Lingxin and Naiman (2007). Cade and Noon (2003)
make special efforts to present this method in the context
of ecological research and particularly focus on studies
designed to identify limiting factors.

Developing a model of FID

In order to better understand how to test for the existence of
a SD–FID relationship, we first developed a simple model
of FID, which encompasses two rules underlying the behav-
ior of the targeted animals. First, they escape when the
distance between the experimenter and the animal is reduced
to a distance d at which safety is compromised (see Bone-
nfant and Kramer 1996; Cárdenas et al. 2005) and/or mon-
itoring costs are considered too high to bear (Blumstein et
al. 2003; Blumstein 2010). This distance can be fixed or
dynamically adjusted to the early detection of a threat (i.e.,

increase with SD). For simplicity, we here assumed that
individual distances d are drawn from a log-normal distri-
bution—which ensures that all values are positive—with
mean d 0 dmin + βSD and with a variance σ, right-
truncated at SD because, by definition, the experiment cen-
sors the observed distribution of FID values at SD. This
distribution is written TLN(dmin + βSD, σ, SD). Second,
until the experimenter reaches distance d, animals leave the
place they are at following a random Poisson process of
constant average rate l (originally in s-1, but can be
expressed in m-1 assuming a constant speed during the
FID experimental approach). The distribution of the distan-
ces traveled by the experimenter before these natural depar-
tures occur therefore follows an exponential distribution of
rate l, right-truncated at SD for the reason described above.
This distribution is written TEXP(l, SD). The rate l
accounts for the natural mobility of the animal when con-
ducting its activities undisturbed. It is later referred to as the
natural rate of leaving and enters FID if escape is mistakenly
recorded as such, but is actually a leaving decision unrelated
to the presence of the experimenter. We can imagine that
there is variation in the likelihood of an animal naturally
leaving: a roosting animal may be unlikely to leave without
disturbance, while an actively foraging animal may indeed
move away on its own.

Our approach therefore defines two potential distances at
which the animal leaves, one when the animal only reacts to
the experimental approach and one when it does not react to
the experimental approach but leave naturally. FID equals
whichever distance is the largest:

FID ¼ max TLN dmin þ bSD;σ; SDð Þ; SD� TEXP l; SDð Þ½ �

Note that TEXP(l, SD) is undefined for l00 (i.e., when
the animal leave during the time of the experiment approach
only because of the threat), and under such conditions, FID
is simply FID 0 max(TLN(dmin + βSD, σ, SD).

An important aspect of this model is that all data for
which SD < dmin lie on the 1:1 line (FID equals SD), which
generates a nonlinearity in the SD–FID relationship, while
simultaneously providing no information on the effect of SD
on FID, because it occurs for any value of β. Although
nonlinear (e.g., piecewise) regressions could be used, this
approach is beyond the scope of this paper and we here
simply studied the slope of SD–FID relationship on data for
which SD > dmin.

Using this model, we used simulations to explore the
expectations for the slopes of the SD–FID relationship when
assessed using OLS and quantile regression. We studied
increasing values of l and β. Note that when β00, the
model produces slopes of the SD–FID under the null hy-
pothesis that SD does not affect FID. We then suggest the
best way to test observed values against this null model and
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conducted these analyses on FID data collected on four bird
species.

FID data

Here, we present a quantile regression analysis of the FIDs
of four species of birds—California thrasher (Toxostoma
redivivum), western scrub jay (Aphelocoma californica),
California towee (Melozone crissalis), and silver gull
(Chroicocephalus novaehollandiae). Gulls were studied
around Botany Bay, near Sydney, Australia, while the other
three species were studied in southern California chaparral
habitats. Following Blumstein (2003), individuals were di-
rectly approached by a solitary human observer walking at
0.5 m/s until they flew or walked off. Birds on nests were
not disturbed, and by design, we focused on individuals that
were initially resting or foraging. For these analyses, we
focus on the distance the experimental approach was initi-
ated (SD—the distance at which the bird was first detected
by the observer) and the distance flight was first initiated
(FID). We acknowledge (as do Blumstein 2010; Dumont et
al. unpublished manuscript) that using the alert distance—
the distance an animal becomes alert to the approaching
human—would be better so as to reduce the likelihood of
including movements unrelated to escape behavior (see also
Cooper 2008). However, using alert distance rather than SD
does not completely eliminate the possibility that animals
became aware of the approaching human (by looking only,
which may be unnoticeable by the experimenter) before they
actually displayed an obvious alert behavior. For instance,
habituated animals may be aware of approaching humans
while maintaining their current foraging activities and may
only engage in escape behavior when the human is quite
close. Furthermore, identifying alert behavior may be diffi-
cult, prone to error, or impossible in some species, and it
might be more prudent, in some cases, to rely on the better-
measured SD.

Statistical analyses

For each species’ FID dataset, we first estimated dmin, the
threshold distance at which animals always escape. In real-
world data, dmin is unlikely to be exactly defined and thus
needs to be approximated. We estimated dmin as the distance
below which FID was always at least 90 % of SD. Our
results were qualitatively robust to the choice of this thresh-
old. Using data for which SD > dmin, we then estimated the
change in the mean FID value with increasing SD by fitting
classical OLS regression. The 95 % confidence intervals
(95 % CI) were based on standard errors accounting for
heteroscedasticity in the data based on HC3 correction for
covariance matrices (Long and Ervin 2000). We also fitted
quantile regressions using both the traditional Koenker–

Bassett algorithm (Koenker 2005) and a recent noncrossing
algorithm (Bondell et al. 2010). They produced similar
quantitative results, and those from the Koenker–Bassett
algorithm are presented here. Slopes were constrained to
be between 0 and 1. We obtained 95 % CI for quantile slope
estimates using a bootstrap approach. In our datasets, FID
was always lower than SD, and therefore FID estimates
were not censored by SD. As noted by a reviewer, if this
is not the case, one could benefit from using censored
quantile regression.

Tools to perform quantile regressions are readily avail-
able in many statistical packages; we used the quantreg
package (v. 4.67; Koenker 2011) for the R statistical soft-
ware (v. 2.14.0; R Core Development Team 2011).

Results and discussion

Figure 2 shows how the natural rate of leaving (l) is a
critical determinant of the slope of the FID–SD relationship.
As animals become more likely to leave while being exper-
imentally approached, FID values become closer to SD
values and thus the slope increases toward the value of 1.
This supports the intuitive idea that conducting FID experi-
ments is difficult on species that do not remain in place
because many false escapes will be recorded. We note that
this potential confounding effect, even independently of any
effect of SD, in across-species SD–FID comparisons has so
far been overlooked. The figure also shows that when there
is no effect of SD on FID, the slope estimates from OLS
regression are zero only under two conditions: First, there is
no variability in d. This occurs because introducing variabil-
ity in d via a log normal distribution creates a left-skewed
distribution of FID values, generating positive slope of the
SD–FID relationship. Second, and more importantly, ani-
mals only leave when disturbed by the experimental ap-
proach. Only when this is ascertained one could use
standard inference from OLS regression (i.e., test against
the null hypothesis of a slope of 0) to analyze the FID–SD
relationship. Even minor departures from these conditions
quickly lead to significant slopes. Finally, and most impor-
tantly, the figure shows that for both OLS and quantile
regressions, similar slopes may arise from two situations.
The first is when SD does not affect the distance d at which
animal escape and the animal leaves at a given rate lambda.
The second is when d increases with SD, but until the
experimenter reaches this distance, the animal has a lower
likelihood of leaving. Thus, without prior information on the
natural rate of leaving, one cannot properly quantify the
relationship between SD on FID.

When the value of l is exactly known and the distribution
of dmin known, it is possible to test the null hypothesis that
SD does not affect FID by checking whether or not the 95 %
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confidence interval of the OLS slope estimate from the data
includes the expected value of the slope from the null
model. It will, however, be complex (and costly) to conduct
these estimations reliably, and this approach is therefore
likely to be impractical and error-prone.

When the value of l is not exactly known, one needs to first
assume that the likelihood of the animal leaving before the
experimenter reach distance dmin is negligible. Under this
assumption, the more robust test appears to be testing whether
the slope estimated on the lowest quantiles differs significant-
ly from zero. Indeed, the SD–FID slope estimated on the
lowest quantiles increase with l more slowly than the OLS
slope and is not sensitive to the variability of dmin. Lowest
quantiles will provide more robust test—their SD–FID slope
remains zero for higher l (Fig. 2). The accuracy of their
estimation is however lower (see below), and as a rule-of-
thumb, we would recommend using the 0.1st quantile. Inter-
estingly, both for OLS and quantile regression on any quantile,
a SD–FID slope not significantly different from zero always
allows us to reject the hypothesis of an effect of SD on FID.

Note that using alert distance rather than SD does not
solve the above problems. Animals may well have detected
a potential threat at a reasonable distance without triggering
an escape decision, and the movement observed by the
experimenter may be linked to a leaving decision unrelated
to the experiment (e.g., naturally changing foraging
patches). Using only FID data for which departure was
undoubtedly related to the approaching experimenter (for
instance, when the animal runs away in the direction oppo-
site to the experimenter) is likely to be too conservative: an
animal may decide to flee the approaching threat without
engaging at first in such costly escape behavior. This will
bias the analysis toward understanding the effect of SD on
extreme escape behavior only.

In our bird data, the OLS slopes of SD–FID relationships
differed significantly from 0 for all species [California to-
whee: 0.34 (95 %CI: 0.43–0.52); silver gull: 0.07 (95 %CI:
0.11–0.15); California thrasher: 0.54 (95 %CI: 0.68–0.83)];
western scrub jay: 0.27 (95 %CI: 0.44–0.61); see also
Fig. 3]. However, we have no prior information on l and

Fig. 2 An example of how the SD–FID slopes estimated by ordinary
least-square (dotted) and 0.05th, 0.1st and 0.9th quantile regressions
(continuous) change with the natural rate of leaving (l) and the in-
creasing effect of SD on FID. FID is modeled as FID 0 max[d 0 TLN
(dmin + βSD, σ, SD), TEXP(l, SD)]. See “Developing a model of FID”
for details. Panel a: FID is not affected by SD (β00), and there is no

variability in d (σ00). Panel b: FID increases with SD (β00.3), and
there is no variability in d (σ00). Panel c: FID is not affected by SD
(β00), and there is variability in d [σ0log(2)]. Panel d FID increases
with SD (β00.3), and there is variability in d [σ0log(2)]. Slopes
shown are averages of 20 simulation replicates
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thus cannot know the expected value of these slopes under
the null hypothesis that SD does not affect FID. Thus, we
are strictly unable to test against a proper null model that
includes the probability of leaving. If, however, we assume
that individuals left for no other reason than because we
approached them, the 0.1st FID quantile slope estimated for
California towhees and for silver gulls was almost zero [0.11
(95 %CI: 0.07–0.20) and 0.04 (95 %CI: 0.02–0.07), respec-
tively; Fig. 3c, d, g, h], and we did not reject the null
hypothesis that SD did not affect FID for these species. By
contrast, the 0.1st FID quantile slope was positive for Cal-
ifornia thrashers [0.33 (95 %: 0.15–0.55); Fig. 3a, e] and
western scrub jays [0.29 (95 %: 0.19–0.37); Fig. 3b, f],
which were characterized by a lack of small FID values at
large SD.

The use of quantile regressions on upper quantiles also
brings additional valuable information. For instance, Fig. 2
suggests that when the value of the 0.9th quantile slope is
significantly below 1.0 l has a low value. In our data, the
slope of the 0.9th FID quantile was low for silver gulls,
which suggested a low natural rate of leaving. This is not

surprising given that approximately 90 % of the gulls tested
were roosting at the start of the experimental FID approach,
and thus had little motivation to engage in moves unrelated
to escape.

This work shows that investigating changes across the
entire distribution of the response variable, rather than the
mean only, is important. First, quantile regression allowed
the detection of nonrandomness in the FID data distribution
when OLS regression would have failed. Second, the use of
quantile regression is more consistent with the prediction
that to detect if individuals flush early, the lowest part (i.e.,
the lowest quantiles) of the FID distribution is the most
informative. As stated in the introduction, OLS regression
may not be able to differentiate between FID data that may
differ in the changes of the lowest quantiles (note, for
instance, that the OLS slopes were almost identical for scrub
jays and California towhees, whereas their 0.1st FID quan-
tile slopes clearly differ).

Quantile regression, however, has limitations. Similar to
OLS regression, the accuracy of a quantile’s estimate is
affected by sample size (Cade and Noon 2003), but

Fig. 3 Relationships between starting distance (SD) and flight initia-
tion distance (FID) in four bird species [a, e California thrasher (n0
61); b, f western scrub jay (n0123); c, g California towhee (n0374); d,
h silver gull (n0272)]. Panels a, b, c, d show the data, the 1:1 line
(continuous, bold), the OLS regression line (dotted), and the quantile

regression lines for the 0.05, 0.1, …, 0.95th quantiles. Panels e, f, g,
h show how the slopes of the regression lines and their associated 95 %
confidence intervals vary across the 0.05, 0.1, …., 0.95th quantiles
(continuous line: slope, dotted lines: confidence interval)
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unfortunately, power analysis cannot be easily conducted.
Additionally, accuracy of the estimation varies across quan-
tiles, with the most extreme quantiles (closest to zero or one)
less well estimated than quantiles closer to the median (Cade
and Noon 2003). Thus, although this ultimately depends on
the regression models and the distribution of the data, cor-
rect estimation of many and/or extreme quantiles will gen-
erally require larger sample size than usually needed for
OLS regression. This data requirement is the main drawback
of quantile regression, but knowing about this ahead of time
should permit sufficient data to be collected. Analyses con-
ducted using increasingly larger subsamples of the datasets
used in this study suggested that a sample size of 50 or more
was usually required to achieve consistent results using
linear regressions and even when all data were used lower
sample size at higher SD values prevented us to meaning-
fully test for nonlinearity of the SD–FID relationship using
quantile regressions (not shown). We also suggest estimat-
ing regression slopes for many quantiles, as presented in
Fig. 3, to help assess the stability of estimation of the
quantile regression slopes.

Beyond the data requirements, our work suggests that
future FID studies would benefit from obtaining indepen-
dent estimates of l, for instance, by monitoring undisturbed
behavior of the studied species, or from artificially decreas-
ing l by, for instance, providing attractive food patches
where experiment would be conducted. One can also imag-
ine conducting experimental approaches at a high speed to
reduce the likelihood of the animal naturally leaving the
location. This may, however, affect the global perception
of risk and would also make it difficult to compare data
between species. More generally, we urge behavioral ecol-
ogists studying flight initiation distance to account for the
natural rate of leaving and collect the necessary data to
develop better null models.

We see an additional benefit to using quantile regression
in the context of FID studies. The great variability observed
in FID data (Fig. 3) may question if sensitivity to threat is a
species-specific trait or is overwhelmed by individual differ-
ences and/or plasticity. Blumstein et al. (2003) showed that
mean FID could be consistently different between species
across various environmental contexts, and a number of
studies have identified phylogenetic signal in FID data
(e.g., Blumstein 2006; Møller 2008, 2009). However,
amount of overlap could be wide, which may decrease the
ecological relevance of such differences. Comparing pro-
files as such produced in Fig. 3 will help in understanding
species differences. FID data are also widely used to design
buffer zones between wildlife and humans (Rodgers and
Schwikert 2002; Fernández-Juricic et al. 2005), and quantile
regression could clarify the effect of relying, even conser-
vatively, on species-specific mean FID values to design
these buffer zones (Blumstein et al. 2003).

The SD–FID relationship provides a case study in which
both theoretical predictions and experimental design interact
to define what portion of the response data are informative
and, furthermore, highlights the utility of quantile regres-
sion. Quantile regression, however, should be valuable to
many other questions that behavioral ecologists ask. The
method is commonly used by ecologists to investigate lim-
iting factors that shape the edges of data cloud (Scharf et al.
1998; Cade et al. 1999), and it could be applied similarly in
behavioral ecology. For instance, Korstjens et al. (2010)
found that temperature was an important factor limiting the
active time of primates, providing a rare use of quantile
regression in behavioral ecology studies. Quantile regres-
sion may thus shed light on the constraints imposed on
behavioral adjustments. We also suggest that quantile re-
gression may be particularly useful to investigate changes in
intraspecific variability, quantified as the differences be-
tween quantiles. Ultimately, we invite behavioral ecologists
to consider quantile regression as an important tool for their
statistical toolbox.
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