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Abstract After several decades during which applied statis-
tical inference in research on animal behaviour and behav-
ioural ecology has been heavily dominated by null hypothesis
significance testing (NHST), a new approach based on
information theoretic (IT) criteria has recently become
increasingly popular, and occasionally, it has been considered
to be generally superior to conventional NHST. In this
commentary, I discuss some limitations the IT-based method
may have under certain circumstances. In addition, I reviewed
some recent articles published in the fields of animal behaviour
and behavioural ecology and point to some common failures,
misunderstandings and issues frequently appearing in the
practical application of IT-based methods. Based on this, I give
some hints about how to avoid common pitfalls in the
application of IT-based inference, when to choose one or the
other approach and discuss under which circumstances a
mixing of the two approaches might be appropriate.

Keywords Akaike’s information criterion . Null hypothesis
significance testing . Data dredging

Introduction

For several decades, the statistical methods applied in
biology have been dominated by the concept of null

hypothesis significance testing (NHST), in which a ‘null
hypothesis’ is rejected or not, based on a P value. Since
approximately the 1990s of the last century, a new approach
became increasingly popular which does not test a null
hypothesis but compares several competing hypotheses (i.e.
models) using information theory-based criteria. Among
these one or several models are then selected as the most
plausible one(s) generating the data observed and as the
models with the best expected predictive capability.
Whether or not the new approach could or should replace
or complement the old one has been hotly debated since
then (e.g. Johnson 2002; Guthery et al. 2005; Stephens et
al. 2005; Steidl 2006; Lukacs et al. 2007; Sleep et al. 2007).

In this commentary, I discuss some of the issues coming
along with the use of information theory (IT)-based
statistical inference and point to some frequent misconcep-
tions in its practical application in animal behaviour and
behavioural ecology. Throughout, I shall tend to take a
frequentist’s perspective (i.e. that of someone advocating
the classical NHST approach). That is, I shall hint at
problems which, from a frequentist’s point of view, might
arise when applying the new approach.

The classical concept of statistical inference

For several decades now, statistical inference drawn about
behavioural data has been strongly dominated by null
hypothesis significance testing. Using this approach, one
states a null hypothesis of (usually) no difference or no
relation and calculates the summed probability of getting
data (given the null hypothesis) deviating from that null
hypothesis at least as much as the actually observed data.
The resulting probability (i.e. the P value) is the probability
of observing data at least as extreme as those actually
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obtained, given the null hypothesis being true (see, e.g.
Siegel and Castellan 1988; Sokal and Rohlf 1995; Zar
1999; Quinn and Keough 2002). The question of how to
draw inference based on such a P value has been a matter
of debate since the advent of this approach. While some
have suggested making dichotomous decisions (rejecting or
accepting the null hypothesis; but see below) based on the
P value being below or not below a certain threshold
(usually 0.05), others have proposed to treat P values as
continuous measures of evidence against the null hypoth-
esis (reviewed in, e.g. Stoehr 1999; Quinn and Keough
2002; Hurlbert and Lombardi 2009). Current practice in
ethology, behavioural ecology and related disciplines
represents a mixture of both approaches: On the one hand,
we use terms like ‘significant’ (usually when a P value is
below 0.05); on the other hand, many researchers report
exact P values and consider a ‘really small’ P value (e.g.
0.001) as ‘strong’ or a ‘marginally non-significant’ P value
(e.g. 0.06) as ‘some’ evidence against the null hypothesis
(Quinn and Keough 2002).

Since its inception, the NHST approach has been
criticised for several inherent weaknesses and for the way
it is used and its results are interpreted (or better:
misinterpreted). The main problems of the approach arise
from what a P value is actually measuring (and not
measuring). In fact, a P value expresses the probability of
getting the data (or more extreme ones) given the null
hypothesis being true (Pdata|H0), but neither the probability
of the null hypothesis given the data (PH0|data) nor the
probability of any particular alternative hypothesis given
the data (PHA|data; see, e.g. Cohen 1994; Nickerson 2000
or Quinn and Keough 2002 for summaries). This has major
implications with regard to the interpretation of a P value.
In fact, although it is the core of the NHST approach to
reject or accept the null hypothesis, such inference is
actually based on a rather indirect logic: A large P value
indicates that the data have a large probability given the
null hypothesis but this is not equal to the probability of the
null hypothesis given the data, and a small P value
indicates a small probability of the data given the null
hypothesis but again this is not equal to the probability of
the null hypothesis (or any other) given the data. Another
major criticism of NHST is centred around the fact that
whether a null hypothesis is rejected or not depends not
only on whether an effect does exist but also on the sample
size (the well-known relation between power and sample
size; see, e.g. Cohen 1988; Siegel and Castellan 1988;
Stoehr 1999). To take this issue to the extreme, consider
that given an effect of a certain magnitude, it is the sample
size alone that determines the P value and hence whether a
test reveals significance. From this perspective, a P value
seems to be a completely pointless measure. However, it
has been frequently suggested to complement P values with

measures of effect size as well as point estimates and
confidence intervals or standard errors of the effects
considered, which aim to indicate the practical relevance
of the phenomenon investigated in addition to its statistical
significance (e.g. Stoehr 1999; Anderson et al. 2001;
Nakagawa and Cuthill 2007; Garamszegi et al. 2009).
Based on this, one could, for instance, neglect the practical
relevance of a small but statistically significant effect.
Further criticisms of the NHST approach largely refer to its
misuse and misinterpretation (both presumably resulting
from the aforementioned weaknesses of the approach,
Johnson 1999) by researchers in various areas (for
summaries of the criticisms of NHST, see, e.g. Cohen
1994, Johnson 1999, Nickerson 2000 or Stephens et al.
2007).

The information theory-based approach to statistical
inference

Since approximately a decade, a new approach to statistical
inference has become increasingly popular in applied
statistics used in research in ecology and, to a lesser extent,
also animal behaviour (Garamszegi et al. 2009; Garamszegi
2010; Richards et al. 2010). This approach differs from
NHST very fundamentally in how inference about the data
is drawn. It is based on comparing relative measures of
support for several different (usually competing) models,
each representing a hypothesis. More practically, one tries
to find, for each of the models to be investigated, those
parameters of the model which best explain the data (with
the ‘parameters’ being, e.g. estimated coefficients and
residual standard deviation). The probability of the data
(i.e. the product of their point probabilities) given the model
and its parameter values then reveals the ‘likelihood’ of the
specific parameter values (which are usually searched for
by maximising the likelihood; see below). Obviously, the
explanatory power (i.e. the likelihood) revealed for a certain
model depends on the number of predictor variables it
includes (and actually increases with the number of
predictor variables). For instance, in the case of a linear
regression, the fit of a model with two predictor variables
will invariably be better than the fit of a model with only
one of them. However, the increased model fit, achieved by
adding a parameter, comes along with the cost of increased
model complexity. In fact, by adding more and more
parameters, one can easily achieve a perfect fit, but at the
same time, this fit is likely to be totally trivial. IT-based
inference aims in compromising between model fit and
model complexity. It compares different models and
searches for those which are most parsimonious, i.e. which
represent the best compromise between explanatory value
and simplicity. This requires being able to compare the fit

58 Behav Ecol Sociobiol (2011) 65:57–68



of different models with different numbers of predictor
variables. This is done by penalizing the likelihood for the
number of predictor variables (more precisely, the number
of estimated parameters) in the model. The most basic way
of practically doing this is using Akaike’s information
criterion (AIC), which equals twice the negative natural
logarithm of the likelihood associated with the model, plus
twice the number of estimated parameters. The AIC is then
taken as a measure of relative support for a certain model
(where a smaller AIC indicates a ‘better’ model; see
Burnham and Anderson 2002 for an introduction). Infor-
mation criterion-based model selection is supposed to
compromise well between underfitting and bias, on the
one hand, and overfitting and variance (i.e. uncertainty in
parameter estimates), on the other hand. Choosing models
based on, e.g. the AIC means to search for a parsimonious
model representing a good trade off between bias and
variance (Burnham and Anderson 2002), or between model
simplicity and model fit.

Among the major advantages of the approach is that it
allows to account for uncertainty in the decision about
whether to assume a certain model to be effective (or the
best in a set of candidate models; e.g. Burnham et al. 2010).
In fact, one may investigate a number of competing models
and draw inference from the entire set of models or a subset
of it (‘Multi-Model Inference’ (MMI); see Burnham and
Anderson 2002 for an introduction): Models with similarly
small AIC have similar explanatory value, and one would
not (or does not have to) opt for one of them to be the ‘best’
model (and reject all the others) but can compare the
relative support for each of them (usually measured using
‘Akaike weights’). Similarly, one can also measure the
relative level of support for each of the variables investi-
gated. Hence, one does not (have to) make dichotomous
decisions (accept or reject a null hypothesis about a certain
model or variable) but collects relative support for a range
of models and potentially selects several of them as likely
candidates for the ‘best’ model in the set (for details, see
Burnham and Anderson 2002, and for quick introductions,
see, e.g. Johnson and Omland 2004, Burnham et al. 2010 or
Symonds and Moussalli 2010).

An essential prerequisite of the IT and MMI approach is
careful a priori selection of the models investigated. The
recommendation most frequently given is that each of the
models to be investigated (and hence each of the predictor
variables to be included therein) requires good empirical
and/or theoretical support (Burnham and Anderson 2002).
However, it has also been suggested that under certain
circumstances all possible models that could be built out of
a set of variables may be investigated (Stephens et al.
2007), though some (e.g. Burnham and Anderson 2002)
have termed this approach ‘unthoughtful’ (p. 39) or ‘poor
strategy’ (p. 147). For strategies of obtaining a candidate

set, see, e.g. Burnham et al. (2010) and Dochtermann and
Jenkins (2010), and for more general discussions of this
topic, see, e.g. Hegyi and Garamszegi (2010) or Symonds
and Moussalli (2010).

Differences and communalities of NHST- and IT-based
inference

It is important to note that NHST- and IT-based MMI differ
only with regard to the questions asked, what conclusions
are drawn and how inference is made, but not at all with
regard to model fitting (at least regarding the results).
Having, for instance, one continuous predictor variable and
one continuous response variable and assuming a linear
relation between the two (i.e. a simple regression with
response ¼ c0 þ c1 � predictor), the estimated values for
the two coefficients (c0 and c1) would be exactly equal,
regardless of whether one uses ‘ordinary least squares’ or
maximum likelihood to find them. The same applies to any
ordinary least squares based statistic in NHST, i.e. any
general linear model (obviously this implies that both
procedures also have the same assumptions, e.g. regarding
independent and normal errors with constant variance).
Having a response variable for which ordinary least squares
are not suitable (e.g. a binary or count response), a
frequentist would also use maximum likelihood to get the
estimated values of the coefficients (i.e. a ‘Generalized
Linear Model’, McCullagh and Nelder 2008). Hence, for
any given model, the way that its parameters (i.e.
coefficients) are estimated is essentially the same in
NHST- and IT-based inference, and the obtained values of
the coefficients associated with the predictor variables are
virtually identical.

The main difference between NHST- and IT-based
inference lies in the kind of questions addressed, how and
about what inference is drawn and what it reveals. In
NHST, one asks whether a null hypothesis should be
rejected or not and (usually) compares one model with the
null hypothesis (usually the ‘null model’ not comprising
any predictor variable): If the summed probability of the
observed and all other more ‘extreme’ relationships
between the predictor variable(s) and the response variable
is sufficiently small (e.g. ≤0.05), one rejects the null
hypothesis and concludes that the data are unlikely to be
generated by chance alone and that the predictor variable(s)
do affect the response variable, otherwise not. In IT-based
inference, one does not reject or accept hypotheses but
measures and compares the relative support that each model
(i.e. hypothesis) in a set of candidate models receives. In
other words, NHST (sensu Neyman–Pearson; see Stoehr
1999) addresses the question ‘what should I do?’ (i.e.
rejecting the null hypothesis or not) whereas IT addresses
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the question ‘what does this observation tell me about A
versus B?’ (i.e. which hypothesis receives more or the most
relative support; Royall 1997).

A further difference between NHST- and IT-based
inference is that IT-based methods are mainly designed
and available to compare models fitted using maximum
likelihood, whereas NHST can be used in a variety of other
contexts and for other questions addressed. For instance,
ordination methods such as Principal Components and
Principal Coordinates Analysis do, to my knowledge, only
exist in the framework of NHST, and also rank-based non-
parametric statistics do not have a directly comparable
counterpart in the framework of IT-based analysis.

General problems coming along with the use of IT-based
inference

Proponents of the IT-based approach have frequently stated
that it is superior to NHST when analysing complex and
observational ecological data sets with several predictor
variables (Burnham and Anderson 2002; Stephens et al.
2007). Occasionally, it has also been stated that IT-based
inference is generally superior to NHST (e.g. Lukacs et al.
2007). Hence, the question arises whether we should
generally refrain from using NHST and rather use IT-
based inference instead. For several reasons, I do not
believe that such a procedure is adequate in every case.

First of all, it is a core assumption of IT-based inference
that all candidate models are theoretically and/or empiri-
cally well-founded (Burnham and Anderson 2002;
Burnham et al. 2010; but see Stephens et al. 2007 and
Burnham and Anderson 2002, p. 168; note that also in case
of an NHST analysis thorough thinking about the models
investigated is required). From my understanding, this
implies that also the predictor variables included therein
are well-founded. This, in turn, requires good knowledge of
the system investigated. The systems investigated in
behaviour and behavioural ecology, though, are not
generally or necessarily well understood. Measuring the
‘quality’ of an individual or its territory, for instance, is
frequently complicated by first being a complex phenom-
enon comprising a variety of different aspects and second
being not very well understood (in the sense that we often
do not know what exactly determines a ‘high quality’
individual or territory). As a consequence, the use of so-
called proxies is frequently seen. With a proxy, I here refer
to a variable not being the variable of interest in itself (e.g.
territory quality) but another variable (e.g. average temper-
ature) assumed (or hoped) to be somewhat correlated with
the variable of interest. The point I wish to make is that in
research about, for example, animal behaviour or ecology,
we frequently are not very confident of whether the

(statistical) predictor variables we investigate affect the
phenomenon under study at all. In fact, I am convinced that
many studies of animal behaviour or behavioural ecology
are ‘experimental’ in the sense that a priori it is completely
unknown whether the predictor variables used will show to
have any effect on the phenomenon under study. In such a
situation, though, I believe that an approach which requires
a good foundation of the models investigated and hence the
variables out of which they are built to not generally or
necessarily be fully appropriate (see also Steidl 2006 or
Symonds and Moussalli 2010).

Closely related to this aspect is the question of whether it
makes sense at all to test null hypotheses of no relation or
no difference (also referred to as ‘nil hypothesis’, e.g.
Cohen 1994). In fact, one of the main criticisms of NHST is
that null hypotheses are always wrong (e.g. Johnson 1999;
see also review by Nickerson 2000). And indeed, given an
effect of a certain magnitude, the P value is solely a
function of the sample size, and given the latter being large
enough, a statistical test will invariably reveal significance
(see above). However, this statement only holds as long as
there is an effect. While for certain phenomena in certain
research areas (e.g. in ecology) it can be assumed ‘that
everything is connected to everything else’ (Johnson 1999),
I argue that this is not generally the case. With regard to the
null hypotheses tested in research on animal behaviour, for
instance, it seems reasonable to assume that a considerable
proportion of these are actually true. In principle, this seems
plausible because many of the predictor variables we
investigate are proxies (as described above) which we hope
or believe to be related to what we actually want to measure
(but cannot directly, due to its complexity or our lack of
knowledge). As a consequence, it is likely to happen (not
too rarely, presumably) that such a proxy turns out to not
show the slightest indication of an effect. I am also sure that
most readers of this article will already have made the
disappointing experience of not having found the slightest
indication of a null hypothesis investigated being wrong. I
believe that such an outcome is usually due to insufficient
variables (i.e. ‘proxies’) and lack of knowledge of the
complex systems we investigate. In fact, I am fully
convinced that the null hypotheses tested in, for example,
ethology and behavioural ecology are not generally as
trivial and wrong per se as the great example found by
Johnson (1999), which states that density of large trees is
unaffected by logging. Hence, establishing the statistical
significance of a variable using classical NHST seems to be
a reasonable exercise under certain circumstances (see also
Forstmeier and Schielzeth 2010). Finally, it seems worth
noting that the investigation of proxies, insufficient knowl-
edge about the matter under investigation and the testing of
presumably true null hypotheses is not specific to ethology
and behavioural ecology but is likely to be an issue in many
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research areas (particularly from the life sciences in their
widest sense, including, for example, psychology and
sociology). For recent contributions to the issue in other
research areas see, for example, Ioannidis (2005), Young et
al. (2009) or Vul et al. (2010).

A final issue for which NHST has been criticised and
which is not a characteristic of IT-based inference is that of
making binary decisions (about null hypotheses). It frequently
has been argued that the NHST approach of making
dichotomous decisions based on an arbitrarily selected
threshold (e.g. a P value being or not being ≤0.05) will
frequently lead to wrong conclusions (e.g. Johnson 1999;
Stoehr 1999), and this is certainly true, particularly when the
power of an analysis and effect sizes are not considered. On
the other hand, however, proponents of NHST have also
repeatedly suggested that P values should be considered as
continuous variables (see summary by Stoehr 1999) measur-
ing strength of evidence ‘against’ the null hypothesis, and it
frequently has been suggested that the interpretation of P
values should generally be accompanied by a consideration
of power, measures of effect size as well as point estimates
associated with their standard errors or confidence intervals
(e.g. American Psychological Association 1994; Stoehr 1999;
Anderson et al. 2001; Nakagawa and Cuthill 2007;
Garamszegi et al. 2009). So the argument against NHST
would be somewhat weakened if these suggestions were
followed.

Issues and recommendations regarding the practical
application of IT methods

Besides these more fundamental problems outlined above, I
see several issues regarding how IT-based statistics are
currently practically applied. To evaluate how widespread
and/or severe these issues are, I searched the issues of
Animal Behaviour, Behavioral Ecology and Sociobiology
and Behavioral Ecology that appeared in 2008 (plus some
fraction of those that appeared in 2007 and articles in press)
for articles including the term ‘AIC’. The total number of
articles I found was 51 (22 in both Animal Behaviour and
Behavioral Ecology and seven in Behavioral Ecology and
Sociobiology). However, I did not make an attempt to do an
in-depth and quantitative analysis of what I found, largely
because I frequently found it hard to follow what actually
has been done. Hence, the following account will largely be
qualitative and particularly focus on the problems I see (i.e.
it will be biased towards articles including problematic
statistics). The main problems were data dredging, failure to
establish explanatory value of the best model(s), poor
documentation of the candidate set of models investigated,
mistreatment of interactions, neglecting assumptions and
several other issues. Besides treating these issues in the

application of the IT approach, I shall give some recom-
mendations regarding its use.

Model selection and significance testing

The problem

The main problem with the practical application of model
selection was that it was frequently used in conjunction
with significance testing in a way I consider ‘data
dredging’. With data dredging, I refer to an analysis which
searches among a (potentially large) set of variables and
models built thereof for those ‘significantly’ explaining the
response variable(s). The problem with data dredging is that
the probability of finding a model seemingly explaining the
response variable well (e.g. a statistically significant one)
increases with the number of variables and models
investigated, even in the complete absence of any relation
between the predictor variables and the response variable.
The results of such an analysis are potentially completely
meaningless, and without external reference (e.g. replica-
tion or cross-validation), it is impossible to assess whether
this is the case. Consequently, both proponents of IT-based
inference and NHST have repeatedly warned against data
dredging (also referred to as, for example, a ‘fishing
expedition’; e.g. Lovell 1983; Chatfield 1995; Anderson
et al. 2000; Burnham and Anderson 2002; Smith and
Ebrahim 2002; Symonds and Moussalli 2010). Since I am
adopting a frequentist’s perspective, it might be worth
repeating Burnham and Anderson (2002, p. 203) as
proponents of an IT-based approach in this context: “... do
not use AICC [or AIC; my addition] to rank models in the
set and then test whether the best model is “significantly
better” than the second-best model. The classical tests one
would use for this purpose are invalid, once the model pairs
have been ordered by an information criterion.” Obviously,
the same applies also for a comparison between the best
and any other model, for example, the null model.

Nevertheless, in the 51 papers, I investigated I found at
least 15 (29%) presenting at least one analysis I consider being
a case of data dredging and approximately five additional
papers for which this was potentially the case. Most of these
selected one or several best models using an IT-based analysis
and subsequently tested their significance (or the significance
of the variables included therein) using classical NHST. That
such an analysis has a high potential of false positives should
be obvious since it, first, represents a classical case of multiple
testing and, second, uses the same data to formulate a null
hypothesis based on data exploration and then to test its
statistical significance (e.g. Chatfield 1995).

To demonstrate that this increased potential of false
positives is not somewhat negligible but actually of
considerable magnitude, I used a simulation very similar
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to that used by Mundry and Nunn (2009). In this
simulation, I generated data sets, each comprising two to
ten predictor variables and one response variable. Each data
set consisted of pure random numbers being normally
distributed with a mean of five and a standard deviation of
four (both arbitrarily chosen). Since the sample size
required for a reliable and stable result is dependent on
the number of predictor variables, I set the number of cases
(N) as a function of the number of predictor variables (k)
with N ¼ 3 � 50þ 8 � kð Þ (Field 2005). For each
simulation with a given number of predictor variables, I
generated 1,000 such data sets. For each data set, I analysed
all models that can be built out of its predictor variables
(disregarding interactions) using a standard multiple regres-
sion (assuming normally distributed and homogeneous
errors) and extracted the AIC of each model. Finally, I
selected the best model and tested its significance as
compared to the null model using a conventional F test.
When the best model was the null model, I set the P value
to one. The simulation was run using a script written for R
(version 2.9.1, R Development Core Team 2009), and the
main functions used were ‘rnorm’ to get the random
numbers, ‘lm’ to calculate the multiple regression, ‘extrac-
tAIC’ to get the AIC and ‘anova’ to compare the best with
the null model. I found that the number of ‘significant’ best
models was invariably above 5% and clearly and greatly
increased with the number of predictor variables investi-
gated (Fig. 1). To make this point perfectly clear: If I
investigate, say, whether the breeding success of night-
ingales is related to a set of ten predictor variables, all of
them being completely meaningless (e.g. average daily
rainfall and temperature at a randomly chosen weather
station on a continent on which nightingales do not occur,
the value of the Dow Jones index at the date of individual
births, the weight of the bar of soap in my bathroom on the
day when the individual was included into the study etc.),
then I have an almost 50% chance of getting a ‘significant’
finding when running an all subsets analysis, selecting the
best model using AIC and then testing its ‘significance’
using NHST. This is not to say that MMI or selecting a best
model does not make sense. It is only to say that selecting a
best model and then testing its statistical significance using
classical NHST does not make any sense.

It is worth noting that at least six of the 15 papers
mentioned above used AIC (or a derivative of it) in
conjunction with stepwise model selection methods for at
least one analysis. This was somewhat disturbing since
stepwise model selection has been heavily criticised by
both proponents of IT-based inference and NHST for a
variety of good reasons. Among these are (a) that different
methods (i.e. forward selection, backward elimination
and the combination of the two) do not necessarily or
generally reveal the same solution (reviewed in James and

McCulloch 1990), (b) that the method does not allow for a
reliable ranking of the predictor variables by their impor-
tance, (c) that the final model selected may comprise
nuisance variables and does not necessarily include all
important predictor variables (Derksen and Keselman
1992), (d) that the solution derived tends to be unstable in
the sense that slight changes in the data set can lead to gross
changes in the final model (e.g. Austin and Tu 2004) and
(e) that stepwise procedures in conjunction with NHST lead
to greatly inflated type one error rates (i.e. increased
probability of erroneous rejection of a true null hypothesis;
e.g. Freedman 1983; Mundry and Nunn 2009; see Whit-
tingham et al. 2006 for a summary of the weaknesses of
stepwise regression). None of these shortcomings of stepwise
methods is affected at all bywhether variables are entered and/
or removed using a classical statistical significance criterion
or an information criterion like the AIC (Burnham et al. 2010;
Hegyi and Garamszegi 2010; Richards et al. 2010). It is
worth noting in this context that proponents of IT-based
inference have frequently and particularly emphasised the
superiority of IT-based MMI compared to stepwise methods
(e.g. Burnham and Anderson 2002; Whittingham et al. 2006;
Burnham et al. 2010), and I agree with them.

Recommendations

What follows from this is straightforward: Selecting one (or
a few) best model(s) based on an IT-based approach and
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Fig. 1 Numbers of ‘significant’ best models (out of 1,000) as a
function of the number of predictor variables and when the null
hypothesis is, by definition, true (tested were pure random data). Best
models were selected from all models that can be built out of the
respective number of predictor variables and selected using AIC.
Symbols above the dashed horizontal line represent proportions
significantly in excess of chance expectation (50, solid line; binomial
test). Note that the probability of getting a significant result was
always clearly above the desired 5%. Counting the number of data sets
for which the difference between the AIC of the null model and that of
the best model was at least two revealed almost the same results (i.e.
per number of predictor variables the number of data sets for which
AICnull � AICbest � 2 differed by at most 14 from the number of
‘significant’ best models)
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then testing its (or their) statistical ‘significance’ using
NHST does not make any sense because the probability of
such a test to reveal ‘significance’ is much higher than the
nominal error level. In fact, doing so potentially produces
nothing else than publication bias, with the researcher
actively grabbing one or a few ‘significant’ P values out of
a larger number of non-significant ones being replaced by
some automated formalism. Hence, such an exercise is a
pointless undertaking which should generally be refrained
from. Consequently, Burnham and Anderson (2002) have
also repeatedly warned against mixing the two approaches
(see also Burnham et al. 2010).

It is worth noting in this context that whether ‘signifi-
cance’ is established using a classical significance test or
based on effect sizes and confidence intervals does not
make a difference, neither practically nor conceptually. This
is the case for theoretical reasons as outlined by, for
example, Chatfield (1995), who pointed out that in case of
no relationships between the predictors and the response
and an assessment of the explanatory value of the best
model, one would be likely to overestimate this explanatory
value. To illustrate this point, I ran the simulation described
above (see also Fig. 1) again and this time measured R2

(adjusted as described in Tabachnick and Fidell 2001, p.
147) of the best model, when it was not the null model.
When pooling across all simulations, I found an average R2

of 0.013 (range 0.0025–0.084). The R2, averaged separately
per number of predictor variables (2–10), ranged from
0.0128 to 0.0140 and decreased slightly but clearly with the
number of predictor variables (Spearman correlation: rS=
−0.73, N=9, P=0.03). Although these effect sizes seem
very low at a first glance, they are not far below what could
be considered ‘normal’ effect sizes in ecology (Møller and
Jennions 2002). Inspecting the estimated coefficients of the
predictor variables in the best model together with their
standard errors and confidence intervals revealed compara-
ble results. Here I checked only one best model, randomly
chosen from simulations with ten predictor variables, of
which three where included into the best model. Again,
effects are not too strong, but two of the three predictor
variables have confidence intervals not including the zero
(Table 1; see also Forstmeier and Schielzeth 2010).

Failure to establish explanatory value of the best model(s)
(data dredging II)

An issue closely related to the previous one is failure to
establish the explanatory value of the best model(s) at all.
Although a perfect case of this failure did not occur in the
sample of papers, I investigated (but almost) this issue
seems worth mentioning because I frequently encountered
researchers being confused about this point. The failure is
to simply take the best model as the ‘significant one’

without any consideration of its explanatory value
(Burnham et al. 2010). The simple reason why this is not
a very useful approach is that there will always be a best
model (Garamszegi 2010; Symonds and Moussalli 2010),
and with an increasing number of predictor variables and
models investigated, the probability of the best model being
not the null model increases considerably. It seems to me
that researchers are not always aware about this issue since
I found, for instance, a paper stating that some models
‘received substantial support’ ignoring the fact that the
second best model was the null model with an AIC
differing from that of the best model by only 0.8 (though
the authors later recognized that all confidence intervals of
the variables in these models with ‘substantial support’
were very wide and comprised the zero).

The recommendation following from this is straightfor-
ward: Simply selecting the best model for inference without
any consideration of its explanatory value should not be
done. Instead, it is essential that its explanatory value is
investigated (Burnham et al. 2010; Symonds and Moussalli
2010). Ideally, this would be done using replication (i.e.
investigation of an independent data set). In practice, this
will hardly be possible, and one will usually have to use
methods such as cross-validation (i.e. checking how well
the model explains data not used for deriving it) or
bootstrapping (for further recommendations regarding
inference, see below).

Failure to specify the set of candidate models

Another issue which I encountered in at least nine papers
(18%) of the sample was that it remained unclear in at least
one analysis, what exactly the set of candidate models
investigated was (note that these do not include papers
which applied stepwise methods). This is definitely
inappropriate since in such a case it is unclear about what
inference was actually drawn. A similar problem appeared
when stepwise methods were used for which the set of
models investigated is not predefined at all and at least with
regard to what is eventually published, usually completely
unclear.

Table 1 Estimated parameter coefficients, their standard errors,
confidence intervals, t and P values

Estimate SE CI t value P

Intercept 5.88 0.46 +4.98 to +6.78 12.85 <0.001

pv_2 0.08 0.05 −0.02 to +0.18 1.61 0.108

pv_8 −0.11 0.05 −0.21 to −0.01 −2.25 0.025

pv_10 −0.13 0.05 −0.23 to −0.03 −2.61 0.009

The model is the best model selected from all models that can be built
out of ten predictor variables (not including interactions) and
comprises three of them
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The recommendation following from this issue is clear:
When using IT-based inference, it is essential that the
candidate set of models investigated is well-founded,
carefully developed and clearly stated (Burnham and
Anderson 2002; Burnham et al. 2010; Dochtermann and
Jenkins 2010). From an IT-based inference on an unclear
set of candidate models, one cannot really learn anything.

Difference between AIC values as a ‘significance test’

I also found several papers using a difference in the AIC
between two models for some kind of ‘significance’ test,
stating, for instance, ‘that a change in AIC of more than
2.00 would be considered biologically meaningful’, ‘as-
suming that a difference between models of AIC >2.00 is
biologically significant’ or ‘the model with the highest
Akaike weight was considered the best model, but only
significantly so if it differed from other candidate models
by at least 2 AICc units’. I personally do not consider this to
be a very serious issue (from a frequentist’s perspective,
there is nothing to complain about such a decision
criterion); however, I assume that most proponents of an
IT-based approach would do so. For instance, Burnham and
Anderson (2002, p. 203) state explicitly that one should
‘avoid terms such as significant’ in the context of an IT-
based analysis.

It might be worth taking a closer look at what exactly is
done with such a ‘significance test’ based on differences
between AIC values. It can be easily seen that the
difference in AIC between, e.g. a full and a null model
(here ΔAIC ¼ AICnull � AICfull) is tightly linked to the test
statistic of the likelihood ratio test (change in deviance,
ΔD) that a frequentist might use to test the full against the
null model (Dobson 2002). In fact, ΔD ¼ ΔAICþ 2 � k,
with k being the number of estimated parameters (Sakamoto
and Akaike 1978). Hence, the larger the ΔAIC is, the larger
the ΔD. Plotting the P value obtained from the likelihood
ratio test against the ΔAIC shows that the decision based on
the ΔAIC (being >2 or not) and that based on the P value
obtained from the likelihood ratio test (being P≤0.05 or not)
are virtually identical in the case of two predictor variables,
but that for other numbers of predictor variables the
likelihood ratio test is more likely to reveal ‘significance’
(Fig. 2). As already stated, from a frequentist’s perspective,
there is nothing to complain about such practice. The
question arises, though, as to what the advantage of an IT-
based approach is when it is used in such a way. The simple
answer is that there is none. In fact, such NHST-like
inference based on the difference between two AIC values
carries all of the shortcomings of NHST and can be criticised
for exactly the same reasons (e.g. making binary and
automated decisions according to an arbitrary criterion).
Hence, I think one should be honest and replace such NHST-

like inference by conventional NHST, if possible, and state a
P value.

Other issues and recommendations

Besides the above-mentioned issues, which were all more
or less specific to the practical application of IT methods, I
encountered a number of further issues which are rather
generic for statistical modelling approaches in general.

For instance, I encountered at least six papers (12%)
presenting models which included interactions but not the
respective main effects. Fitting such a model is invalid
since the effect of the interaction is confounded with the
effects of the two main effects (or more generally,
assessment of the effect of an interaction is only possible
when all the terms included in it are also in the model). In
such a case, a reliable estimation of the effect of the
interaction is difficult if not impossible (e.g. Cohen and
Cohen 1983; Aiken and West 1991). Another issue related
to interactions was that in several cases it was unclear
whether continuous variables were centred before being
included into an interaction. Centring (to a mean of zero) or
standardising (to a mean of zero and a standard deviation of
one) might be essential in such a case, though, because
otherwise the continuous predictor and the interaction term
might strongly correlate, leading to the adverse effects of
collinearity (e.g. Tabachnick and Fidell 2001; note that the
same applies if powers of a continuous variable are
included). Finally, it might be worth mentioning that the
interpretation of main effects involved in an interaction is
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considered impossible by most statisticians (see, e.g. review
by Hector et al. 2010; but see Schielzeth 2010). In addition,
one should keep in mind that a main effect in a model
including an interaction involving that main effect and the
same main effect in a model not including such an
interaction have two different meanings and interpretations.

There were also some cases in which there was some
imbalance between the number of cases, on the one hand,
and the number of variables and models investigated, on the
other hand. An extreme case was a data set of a sample size
equalling 12 which was used to investigate four predictor
variables and ten models built thereof (null model not
counted). Although no clear rules are available for what the
number of cases should be, given a certain number of
predictor variables (and models built thereof), it seems clear
that the sample size should be considerably in excess of the
number of predictor variables (see, e.g. Tabachnick and
Fidell 2001, Harrell 2001 and Quinn and Keough 2002, or
see Field 2005 who gives some guidelines about acceptable
ratios of the number of cases to the number of predictor
variables and Burnham et al. 2010 for an upper limit of the
number of models investigated in the relation to the sample
size). If this is not the case, models tend to overfit and be
unstable (in the sense that even small changes in the data
may lead to substantially different findings).

Furthermore, in most of the papers, I found at least some
hints that the authors were aware of the assumptions of the
analyses conducted, but in a few these were completely
missing. However, these matter as much in an IT-based
approach as in NHST, and violations of them may severely
affect the conclusions drawn. Hence, one should routinely
perform the standard checks required for the specific model
fitting procedure used (e.g. normality and homogeneity of
residuals; influence of certain cases, etc.).

An important assumption in case of having two or more
predictor variables in a model is absence of collinearity.
However, I found only a total of nine papers showing
indications that the authors considered this to be an issue.
Collinearity means that the predictor variables are (partly)
interrelated (Quinn and Keough 2002; Field 2005) and in
the simplest case is indicated by (some) high correlations
among them. When collinearity does exist, results tend to
be unstable (small differences in the analysed data may lead
to large changes in the parameters estimated), and estimates
of parameters have large standard errors (implying that the
estimated effect of a predictor variable is associated with
large uncertainty; Freckleton 2010). In the context of IT-
based inference and particularly MMI, collinearity is an
issue because it leads to model redundancy, which
particularly affects Akaike weights (Burnham and
Anderson 2002) and is likely to inflate the number of
models in the confidence set. Hence, to me it seems
necessary to routinely check models with several predictor

variables for collinearity among them. It might be worth
mentioning here that collinearity takes place among the
predictor variables and has nothing to do with the response.
Hence, these checks do not differ at all between, e.g. linear,
logistic or Poisson regression (Field 2005).

General recommendations

Following these criticisms and recommendations regarding
the practical application of IT-based inference, it might
seem worth to give some more general hints regarding the
choice between IT- and NHST-based inference and discuss
if and how a mixture of the two methods seems appropriate.
I want to emphasize, though, that these suggestions are
partly preliminary and reflect my personal opinion and, that
I am confident that not all these suggestions will be
supported by everyone.

When to choose NHST- and IT-based inference?

To me, the main reason why the two approaches are mixed
so frequently seems to be some lack of knowledge about
the rationales and assumptions of the two approaches and
when they are appropriate. So when are the two approaches
appropriate?

In any case when one feels the necessity to state a
statistical significance (i.e. a P value) in order to support
some statement, an NHST approach is required (but this
must not ‘test’ a best model selected using an IT-based
method or the variables included in the best model). I
personally feel some necessity to do such significance tests
in case of an ‘experimental’ study (in the sense outlined
above), for which it is not a priori clear whether the
predictor variables investigated have any effect on the
response variable(s), and I am also convinced that in animal
behaviour research, such studies are common (see also
Forstmeier and Schielzeth 2010). However, I also
strongly suggest to follow the recommendations of others
to generally refrain from reporting ‘naked’ P values
(Anderson et al. 2001) but regularly complement them
with measures of effect sizes, point estimates and their
standard errors or confidence intervals (e.g. Stoehr 1999;
Anderson et al. 2001; Nakagawa and Cuthill 2007;
Garamszegi et al. 2009).

On the other hand, there are definitely situations in
which NHST does not make much sense, for instance, in
case of ‘silly’ nulls (e.g. Johnson 1999; Anderson et al.
2001) which are obviously wrong and pointless, as it might
frequently be the case in ecology where the relation
between two variables might be straightforward. Also when
several (potentially non-nested) competing models have to
be compared and the strength of evidence in favour of any
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of these has to be determined, NHST does not really offer
much, whereas IT-based inference offers a lot (Burnham
and Anderson 2002). Finally, when prediction is a major
purpose of the study, I believe that IT-based methods are
clearly superior because ‘model averaging’ (Burnham and
Anderson 2002; Johnson and Omland 2004) does not
require to base predictions on a single model, selected
based on partly arbitrary thresholds (e.g. P values; for a
quick introduction, see Symonds and Moussalli 2010).
Instead, IT-based model averaging elegantly allows for
accounting for uncertainty in model selection (but see
Richards et al. 2010). In all these situations, IT-based
inference seems clearly superior to me. However, it seems
important to emphasise that such analyses do not require
classical significance tests, and that classical significance
tests in such studies do not offer any additional insights.

Occasionally, it has been suggested that the IT-based
approach might be preferable in case of observational
studies whereas NHST is the better option in case of an
experimental study (Burnham and Anderson 2002; see also
Stephens et al. 2007). However, I personally do not find
this distinction to be very helpful because, on the one hand,
observational studies can be ‘quasi-experimental’ and, on
the other hand, experimental studies can be confounded by
a whole set of rather uncontrollable confounding variables
turning them, in fact, into ‘quasi-experimental’ studies. For
instance, when testing for age effects in the song of birds,
one could do a longitudinal study on wild individuals (i.e.
an observational study) investigating each subject in its first
and second season. In such a case, potentially confounding
variables would be rather well accounted for by incorpo-
rating individual identity into the model. An experimental
study, on the other hand, may become rather ‘observation-
al’, for instance, when the number of individuals is limited
(and hence one has to take the individuals available), and
some potentially confounding variables like age, sex, litter
or prior testing experience should be incorporated into the
statistical model. Hence, it seems that a decision between
one or the other approach is best driven by the specific
question addressed rather than by the somewhat arbitrary
distinction between experimental and observational studies
(see also Stephens et al. 2005; Garamszegi 2010).

Mixing the two approaches

In my opinion, some scenarios do exist in which both
approaches can coexist. For instance, IT-based inference
usually requires certain assumptions to be fulfilled, and I do
not see any reason why, for instance, the normality of
residuals should not be tested by using, for example, a
Kolmogorov–Smirnov test, in the context of an IT-based
analysis (though I frequently have the impression that eye-
balling the distribution of the residuals is superior to such a

formal test; see also Quinn and Keough 2002). Another
situation in which I think mixing of the two approaches
might be appropriate is when one wants to use NHST to
test the effect of some variables but there are some
additional potentially confounding variables to be con-
trolled for. Since including many variables into a model
might create overfitting and lead to inflated variance (e.g.
Burnham and Anderson 2002), a potential strategy to
choose a parsimonious combination of the control variables
could be an IT-based approach, also when the final
inference about the test variables (but not of the control
variables) is based on NHST. A similar situation is one in
which different error structures (e.g. Poisson or Gaussian;
for an example, see Richards et al. 2010), or different ways
of controlling for autocorrelation, are available and one
needs to choose the most appropriate one. Here one could
potentially choose the error structure or the way autocor-
relation is controlled for using an IT-based method and then
use NHST to investigate the effects of some other predictor
variables. However, more research is needed before such an
approach of choosing a parsimonious set of control
variables or an appropriate error structure can be trusted
with regard to the error rate in an NHST analysis.

There seems to be also an avenue potentially reconciling
IT- and NHST-based inference: In the simulation described
above, I also included a check of whether the null model
(comprising only the intercept but none of the predictors)
was in the 95% confidence set (being defined based on
summed Akaike weights as described in Burnham and
Anderson 2002, p. 169, or Symonds and Moussalli 2010). I
found that of 1,000 simulations conducted per number of
predictor variables, at most 57 revealed a confidence set
which included the null model (average, 46.6). Hence, the
probability of the 95% confidence set to comprise the null
model was very similar to the error level conventionally
applied in NHST (i.e. 5%). Moreover, the number of
confidence sets comprising the null model did not obvi-
ously correlate with the number of predictor variables (rS=
−0.28, N=9, P=0.47). Hence, it seems that drawing
inference based on best models or confidence sets only
when the confidence set does not comprise the null model
does prevent false positives in the sense of classical NHST
(note that the difference in AIC between the best and the
null model does not reveal such an option, since in my
simulation the probability of AICnull−AICbest to reveal at
least two was very similar to the probability of the best
model to be ‘significant’; see also Fig. 1; see also Burnham
et al. 2010 or Dochtermann and Jenkins 2010). I want to
stress, though, that this suggestion is very preliminary, and
further research is definitely needed before such an
approach can be trusted. I also want to emphasize that this
is not my idea. In fact, I know several researchers routinely
checking whether the null model is in the confidence set,
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but I am not aware of a reference suggesting such an
approach (but see Burnham et al. 2010). Finally, I want to
emphasise that I am confident that several proponents of the
IT-based approach would not consider this to be a valid or
even necessary procedure. In fact, Burnham and Anderson
(2002) warned against routinely including the null model
into the set of models investigated.

Finally, I personally would consider it a valid procedure
when first the full model is tested using classical NHST,
and once this revealed significance, the most parsimonious
model (or a set of models) is selected using an IT-based
approach (see also Symonds and Moussalli 2010; for more
reasons to inspect the full model, see Forstmeier and
Schielzeth 2010). But again, I am confident that many
proponents of IT-based inference would consider this an
unnecessary exercise.

Concluding remarks

To summarise, I do not want to argue in favour or against
one of the two approaches. I believe that both have their
justifications, are useful under certain circumstances, have
specific strengths and limitations, and will probably
coexist (presumably supplemented by Bayesian inference,
Garamszegi 2010) for a long period.

Given the advances in our understanding of, e.g. ecology
and behaviour in the past decades, the NHST approach
definitely proved to be useful and allowing for revelations
of fruitful insights into natural phenomena. However, these
past decades during which statistical inference was heavily
dominated by NHST also clearly revealed many of the
shortcomings of this approach. Among these are funda-
mental weaknesses of the approach, promoting scientists to
misunderstand what conclusions a significance test of a null
hypothesis actually allows to draw. From a more practical
perspective, the use of statistical procedures within the
NHST framework frequently suffers from neglected
assumptions and a lack of understanding of fundamental
concepts and problems (e.g. pseudo-replication).

With regard to IT-based inference, the situation is
different because the approach still has to prove its
usefulness and applicability in animal behaviour research,
though it seems likely that it will become an important tool.
From a more practical perspective, I see a clear danger that
the application of IT-based inference will suffer from the
exact same problems as the NHST approach: At best semi-
informed researchers will misunderstand the concepts
behind it and draw conclusions that are not justified by
the data and their analysis. To me, the major sources of
such misunderstandings and potential misuses of the
approach seem to be the following: (a) Confusion of
multi-model inference with data dredging, i.e. investigating

a set of models comprising several or all possible models that
can be built out of a set of all possible variables that potentially
might be somehow related to the phenomenon investigated
and believing that the best model (or the models in the
confidence set) necessarily represents something meaningful.
From my understanding, such an approach can at best be
considered as ‘hypothesis generating’ and is likely to reveal
little insight (if any at all) into the phenomenon investigated;
(b) neglecting assumptions (although IT-based inference
suffers from data analysed using the wrong statistical models
(e.g. error structure) as much as NHST-based inference does);
(c) misunderstanding the conclusions that can be drawn from
the IT-based approach, i.e. making dichotomous decisions
based on a probabilistic approach which allows to explicitly
incorporate uncertainty in model selection; (d) mixing the two
approaches in the sense of selecting models based on an IT
analysis and then testing their significance (or the significance
of the variables they include) using NHST. However, given
that researchers, journal editors and referees are aware of the
pitfalls that an IT-based analysis provides and that it is not
revealing a ‘significance’ in the classical sense, I believe that
animal behaviour research can benefit a lot from incorporating
IT-based analyses where appropriate.
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