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Abstract Network analysis has a long history in the
mathematical and social sciences and the aim of this
introduction is to provide a brief overview of the potential
that it holds for the study of animal behaviour. One of the
most attractive features of the network paradigm is that it
provides a single conceptual framework with which we can
study the social organisation of animals at all levels
(individual, dyad, group, population) and for all types of
interaction (aggressive, cooperative, sexual etc.). Graphical
tools allow a visual inspection of networks which often
helps inspire ideas for testable hypotheses. Network
analysis itself provides a multitude of novel statistical tools
that can be used to characterise social patterns in animal
populations. Among the important insights that networks
have facilitated is that indirect social connections matter.
Interactions between individuals generate a social environ-
ment at the population level which in turn selects for
behavioural strategies at the individual level. A social
network is often a perfect means by which to represent

heterogeneous relationships in a population. Probing the
biological drivers for these heterogeneities, often as a
function of time, forms the basis of many of the current
uses of network analysis in the behavioural sciences. This
special issue on social networks brings together a diverse
group of practitioners whose study systems range from
social insects over reptiles to birds, cetaceans, ungulates
and primates in order to illustrate the wide-ranging
applications of network analysis.

Keywords Social networks . Animal interactions .

Social organisation

Introduction

At the mention of social networks, many may think “So
what, hasn’t this method been around for decades?” and
they are right. The origins of the network concept are in
mathematical graph theory that can be traced back for
centuries (Euler 1736 in Biggs et al. 1986) and its use in
social network analysis was instigated by sociologists and
psychologists in the first half of the 20th century (Scott
2000). However, what’s new is the fact that the subject has
undergone a dramatic and rapid transformation in
recent years. Increasing globalisation has seemingly
interconnected everything, our communication networks
(e.g. internet, mobile phone) and transport systems span the
globe, economic integration of nations and communities
becomes ever closer and more complex with a growing
number of multinational organisations and environmental
problems transcending national boundaries. The fact that
our world is becoming more and more interconnected has
led to an exponential interest in understanding networks
because they are an effective way of studying this process
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of increasing social inter-connectedness (see Newman 2003
for a review). As a result of this strong interest, there have
been major conceptual advances in several areas, including
statistical physics that have pushed the boundaries of our
understanding of networked systems. Software programs
have been developed that make the use of network analyses
more user-friendly, opening these methods up for the
mainstream. So far, however, the fields of animal behaviour
and behavioural ecology have benefited relatively little
from the new possibilities that these recent analytical
advances offer us and the purpose of this special edition
is to address this issue.

So what’s so special about network analyses then?
Network analysis provides tools which allow us to test for
the first time some of the long-standing conceptual frame-
works of social organisation and structure (e.g. Wilson
1975; Hinde 1976). Most conventional analyses might
permit exploration of social structure at the level of the
individual, dyad, group or population. Network analyses
allow us to span these scales, and scales in between,
making it possible for us to build up larger social units from
pair-wise interactions. Though such analyses have long
been possible for some types of relational data (such as
associations among group-living animals), the strength of
the network approach is that so many types of interaction
(sexual, aggressive, cooperative; who eats whom and so on)
can be treated within the same conceptual framework, and
using the same visual and analytic tools. Perhaps “Animal
Interaction Networks” would be a more suitable title for
this field, given the generality of the potential applications.

This generality means we can look at how individual
behaviour influences what happens at the population level and
we can likewise study the fitness implications of the latter for
the individual (Fig. 1). This kind of feedback loop is
fundamental for an understanding of the role of self-
organisation in social systems (Camazine et al. 2001; Couzin
and Krause 2003). A great advantage of a networks approach
is that we do not need to decide a priori on the level of social
organisation that must be key to understanding our animal
system. We always deal simply with nodes (animals) and
edges (interactions between them) and search the patterns
they reveal, through statistical tools, models or both.

Finally, the network approach also allows the contem-
plation of a much neglected aspect: specifically that the

social (network) structure of the population can have
important repercussions for the fitness of individuals
(Fig. 2). This argument is familiar to most of us from
game theoretic models. The frequency at which different
behavioural strategies are used in a population can have
important fitness consequences for individuals in the
population (Maynard Smith 1982). Early game theoretic
models assumed that all individuals mix freely with each
other. In most animal and human populations, however, not
everybody interacts with everybody else and we see a
highly structured social organisation that reflects differ-
ences between individuals in the number of social inter-
actions, the degree to which some individuals are central or
peripheral to the population network and the tendency to
interconnect different communities that form substructures
within networks (Krause and Ruxton 2002; Krause et al.
2007; Croft et al. 2008). More recent “evolutionary graph
theory” models (for example Ohtsuki et al. 2006; Santos et
al. 2008) use networks to quantify social heterogeneity, and
account for it, in models of, for example, the evolution and
maintenance of cooperation. While the nature of the “social
networks” invoked in evolutionary game theory may be
rather different from the social networks observed and
analysed by empiricists, the parallel is an interesting one.

A similar point can be made about conventional
epidemiological models and the modelling of socially
transmitted information. The initial assumption of random
interactions between individuals turns out to be too
simplistic and does not fit the finding that most social
systems have a more or less heterogeneous structure that
should not be neglected when studying the processes that
take place on these systems.

An example

A network can be described as consisting of nodes
(individuals) and edges (interactions between them)
(Fig. 3). Part of the appeal of the network approach is its

Individual 
behaviour 

Population 
dynamics 

influences

selects for

Fig. 1 Schematic relationship between individual behaviour and
population dynamics (after Kokko unpublished)

Individual 

Behaviour depends 
on what others do 

How many 
others are there? 

Who is connected 
to whom? 

Fig. 2 Schematic representation of the importance of the frequency of
behavioural strategies and the social fine-structure for the evolution of
behaviour
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simplicity and generality because almost any system that
comprises multiple components (whether biological or
technological) can be described in the form of a network.

In Fig. 3, we have constructed a simple example to
illustrate some of the features that network theory offers.
We can calculate a whole new range of descriptive statistics
that can be used to characterise structural components of
the networks and the position of chosen individuals in
relation to others. For example, we can calculate for each
individual in the network its degree (number of immediate
neighbours), cluster coefficient (the degree to which an
individual’s immediate neighbours are connected), path
length (number of connections on the shortest path between
two individuals) and node betweenness (the number of
shortest paths between pairs of individuals that pass
through a particular individual) (see Croft et al. 2008 for
details). These statistics (which are just a small proportion
of those already available from the social sciences
literature) can be averaged over all individuals in the
network to give an idea of the local and global properties of
the network (Table 1).

Of course, the measures we use to characterise network
structure are most useful if they reflect structures of
biological interest. An individual’s degree, for example,
might be related to the likelihood that the individual can
spread disease or information in a network, with highly
connected individuals more likely to trigger an epidemic or
a rumour. Path length and cluster coefficient might tell us
something about the likelihood that a pathogen will remain
a local outbreak or become global in a population.
Betweenness may indicate how important individuals are
in interconnecting different sections of the network. In the
context of social learning, individuals with high between-
ness that can reach into different communities may be more
likely to be responsible for the global spread of informa-
tion. Many of these network statistics and others can be
calculated using the social sciences package UCINET
(Borgatti et al. 2002; see also Croft et al. 2008) which is

readily available from the internet. Other measures, such as
reach and, in particular, measures of “centrality” are now
being developed and used by behavioural scientists, as
readers of the papers in this volume will see for themselves.
Lusseau et al. (2008) commented on which measures may
be particularly appropriate for animal behaviour data.

Some of the uses of network theory

Our hope is that the papers in this edition will provide a
whole range of examples of and ideas for the use of
networks in the behavioural sciences that will inspire
readers to become active themselves in this exciting and
rapidly developing research area.

In many ways, the developments in the use of network
analysis in the behavioural sciences have tracked similar
developments in the social sciences. We have the advan-
tage, though, in that “discovering” networks several
decades later than social scientists we have ready access
to their ideas and methods, plus those that continue to
emerge in other fields. We also have cheap computing
power to implement sometimes rather involved statistical
tests and analyses.

It is probably fair to say that the majority of applications
of network analysis in the behavioural sciences to date have
been of a descriptive nature; a network is constructed and
analysed for the patterns it contains. Most of us have
employed what Whitehead and Dufault (1999) called the
“gambit of the group”, in which individuals are assumed to
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Fig. 3 Example of a social network where nodes (black circles)
symbolise individuals and edges (lines) social connections between
them. This fictitious network comprises 12 individuals (labelled a–l).
See Table 1 for individual-based measures

Table 1 Some individual-based measures for the network in Fig. 3

Node/
individual

Node
degree

Path length
(to/from
a node)

Clustering
coefficient

Node
betweenness

a 1 3.64 0 0

b 4 2.73 0.333 10.5

c 3 2.36 0.333 5.8

d 3 2.36 0.667 4.3

e 4 2.27 0.5 5.3

f 3 2.09 0.333 8.8

g 4 2 0.333 18.2

h 3 2 0.333 28

i 4 2.36 0.333 24.5

j 2 3.18 1 0

k 2 3.18 1 0

l 3 3.09 0.667 0.5

Mean values 3 2.61 0.486 8.83

See text for a definition of the network measures. In the case of the
path length, we have calculated the mean distance of nodes to and
from a particular node
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be associating if they are seen in the same group; these
associations are accumulated over a number of observa-
tions, to produce an association matrix, which is itself a
representation of a social network. Thus, all the tools
developed for the analysis of association data (Whitehead
2008) may be regarded as tools available for network
analysis of data compiled via the gambit of the group, even
if they are not always explicitly reported as such.

This approach, whether explicitly using networks or not,
can help us identify patterns of social organisation
(including how they change with time) that can lay the
foundation for understanding key components of social
structure, and for making comparisons of different pop-
ulations, contexts or species. This approach has plenty of
mileage left in it. Early network examples include the work
of Lusseau (2003) on dolphins and Croft et al. (2004) on
guppies, Poecilia reticulata. In this volume, there are many
excellent examples of the use and analysis of group-derived
data. Most of the examples are for mammals; this reflects,
as much as anything, that there are a good number of long-
term studies of mammals that contain information ripe for
network studies.

One such example in the volume is the analysis of the
association patterns in a long-term study of a group of
spider monkeys (Ateles geoffroyi) (Ramos-Fernández et al.
2009). The authors used lagged association rates
(Whitehead 2008), a classic “association data” measure, to
look at the temporal stability (over years) of relationships
among females plus the more obviously network-derived
measures of node strength and eigenvector centrality to
differentiate individual social roles. They found that adult
females as a class are at the core of the social structure, but
that within that class there is little evidence for anything
other than random associations.

In a similar vein, Henzi et al. (2009) used a two-pronged
approach to unravel details of the temporal variation in
relationships among female chacma baboons (Papio ham-
adryas ursinus). The authors measured lagged association
rates and fed these into eight alternate models of social
structure. In addition, they constructed weighted association
networks and used individual node measures to quantify
social roles. Each approach led to the conclusion that there
is seasonal variation in the extent to which female baboons
maintain differentiated relationships, results which chal-
lenge established views about primate societies.

Also in this volume, Fischhoff et al. (2009) looked at
associations among adult male plains zebra (Equus burch-
elli) over a 4-year period. They are interested in the
question of whether the reproductive status of the males
(bachelor or stallion) has an effect on social groupings and
bond formation. In order to test this, the authors developed
a permutation test that compares bachelors and stallions
while controlling for temporal patterns in grouping and

sampling. They were able to conclude that bachelors form
stronger, more persistent bonds than stallions.

This last example highlights that relational data, such as a
network, need particular care at the analysis stage, since we can
rarely assume independence of our data points. Though there
are plenty of methods already available (Whitehead 2008;
Croft et al 2008), new questions still often require at least a
tweak on old methods, or sometimes a completely new
approach. There is still plenty of room for developments in
network methodology, many of which appear in the various
contributions to this volume. James et al. (2009) warn us of
some of the potential pitfalls of applying some of the existing
methods, analyses and interpretations without quite enough
thought. Krause et al. (2009) point out that, even for those of
us that have appreciated the need for careful statistical
analysis, it is still surprisingly easy to build a null model of
social associations that is itself not without bias. On a slightly
different front, Franks et al. (2009) present a method to
generate user-controlled ensembles of random networks that
they hope will form the foundation of a framework to
develop a quantitative network sampling methodology.

The toy network in Fig. 3 also illustrates other structural
features which may be explored via network analysis, and
which may be of great biological importance. Nodes a–
h and i–l form clusters of nodes (communities in network
parlance) more densely connected among themselves than
to others. Many methods for detecting such communities
have been developed both in the networks and the animal
association literature (see Croft et al. 2008), and these too
have been used in the animal sciences to find layers of
social structure in the largely unexplored scale between the
group and the population. For example, association matrix
methods were used by Vonhof et al. (2004) and Wittemyer
et al. (2005) to find multiple levels of social structure in
bats, Thyroptera tricolor, and elephants, Loxodonta africa-
na, respectively, while Wolf et al. (2007) used an explicitly
network-based approach to find unexpected layers of social
structure in a colony of sea lions, Zalophus wollebaeki.

In this volume, Lusseau and Conradt (2009) made use of
a community analysis as part of their study of bottlenose
dolphins (Tursiops sp.). Social animals can benefit from
group living by combining diverse information to make
consensus decisions (Conradt and Roper 2005). This area
has seldom been explored in the context of social networks.
Lusseau and Conradt (2009) looked for evidence of
“unshared consensus decisions” among bottlenose dol-
phins. They brought together behavioural observations
associated with a collective switch in patch searching with
network analysis of which animals form clusters or
communities, and which are likely to be best informed,
plus a model of consensus decision making to deduce that
well-informed individuals can induce a collective decision
by the group in this species.
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One of the features of this last example is its use of a
quantitative model to try to tease out what is happening in
the data. There are many examples of the use of null
models in network analysis, and rightly so, as these are
often necessary to show that a relational data set contains
something of biological interest. Examples of models trying
to do more are rather rarer. One nice example is the work of
Ramos-Fernández et al. (2006) which used an individual-
based model of foraging in an environment where feeding
patches vary in size. This simple model produces richly
structured networks even when there is nothing but simple
aggregation bringing animals together. There is plenty of
room in the future for more models of network formation
and dynamics.

It has long been realised that we can use our understanding
of social patterns to look at the implication for processes such
as information transfer or disease transmission (Corner et al.
2003; Cross et al. 2004). In this volume, Godfrey et al.
(2009) made a more direct attempt to map disease pathways
between individual gidgee skinks (Egernia stokesii). Their
interactions are again associative, via shared use of rock
crevices. However, the real interest of the authors is in
parasite transmission, which they addressed by constructing
a “transmission network”, in which two lizards are connected
if they used the same crevice within an estimated transmis-
sion time for parasite infection. This novel approach allowed
the authors to begin to analyse the interplay between parasite
load and social position in this species.

Of course, the network paradigm will become much
more generally appealing if it can be used for making
predictions, and there are a couple of convincing studies
where this has been achieved. Flack et al. (2006) predicted
the effect of social policing on the structure of interactions
among a group of primates, and McDonald (2007) showed
that the network connectivity of young male long-tailed
manakins (Chiroxiphia linearis) predicted their future
breeding success. In this volume, McDonald (2009)
followed up on this earlier study by asking whether it is
kinship that shapes the “young-boy” network of the earlier
work. The answer, as the author points out, is a rather
intriguing “no”.

Another example of network prediction, albeit on a
much shorter timescale, appears in the contribution to this
volume by Eagle and Pentland (2009). These authors
looked at the underlying structure in daily patterns of
human behaviour, using models. The structure was repre-
sented through what the authors call “eigenbehaviors”, a set
of characteristic vectors within the multimodal data set
detailing the daily routines of individuals and groups.

In parallel with the development of network methods to
look at the structure and development of vertebrate
societies, those working with invertebrates have taken a
slightly different path (Fig. 4). When studying vertebrates,

we are more or less forced to observe associations or
interactions which, when amalgamated, yield patterns that
hopefully make biological sense. Having found these
patterns, we naturally ask what effect they will have on,
among other things, process. Assuming that the patterns we
find are representative, we ask what effect they will have on
the transmission of information or disease through a
population, for example. By contrast, network studies of
invertebrates, of which there are now several (Fewell 2003;
Naug 2008, 2009), tend to proceed the other way round. In
most cases, it is (an instance of) the process, such as the
passage of food through a colony, that is observed directly.
The patterns exhibited by the process tend to come second.
It is also worth noting that the networks are not group
derived, but none of these differences prevents the use of
network analysis as the tool of choice.

There is one example of this type of research in this
volume. Naug (2009) presented networks of mouth-to-
mouth contacts in nine colonies of the social wasp
Ropalidia marginata. He found that most colony members
have a similar number of contacts, but there are relatively
few contacts between behavioural classes. He then manip-
ulated the colonies to test the resilience of the interaction
networks to removal of individuals. Manipulation and
replication of this kind is rare in network studies but a
particularly promising area for further research.

The examples used in this volume do not begin to
exhaust all the possible uses of network analysis in the
behavioural sciences. For example, we have not touched
upon the possible contributions of network analyses to the
comparative method, though this is a potentially rich vein.
Examples so far in this area include the work by Croft et al.
(2006) on guppies and the comparison of two closely
related ungulate species by Sundaresan et al. (2007). Much
of the innovation in network analysis and its application
have so far come from other disciplines such as sociology
and statistical physics (Wasserman and Faust 1994;
Newman 2003; see Croft et al. 2008 for a review). In
addition to novel statistical descriptors for networks, there
are many new ideas, methods and testable hypotheses to be
found particularly in the sociology literature. For instance,
Granovetter’s (1973) idea of the importance of weak links
(for information transmission) has yet to be tested in animal
systems.

Invertebrates 

PROCESS 

PATTERN 

Vertebrates 

PATTERN 

PROCESS 

Fig. 4 Schematic representation of the current emphasis in network
analyses applied to vertebrate and invertebrate social systems
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Of course, we behavioural scientists are not without our
own ideas and methods. Readers are referred to books by
Whitehead (2008) and Croft et al. (2008), plus a number of
recent reviews, including those by Krause et al. (2007) and
Wey et al. (2008). This volume includes a view of the
future possible uses of network theory for behavioural
ecologists (Sih et al. 2009) which, we hope, will whet the
appetite of any readers wondering whether network analysis
might be of use to them.
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