
Abstract We studied the effects of ecological variables
on the birth sex ratio of Soay sheep (Ovis aries) lambs on
the island of Hirta, in the St Kilda archipelago, Scotland.
Both individual- and population-level models were con-
structed. In the individual-based model, only population
size was significantly associated with the sex of a lamb,
with the probability of giving birth to a male lamb being
positively associated with population size. However, this
model explained a very small proportion of the variance in
birth sex ratio. A multiple regression analysis of the annu-
al population birth sex ratio also showed a slight increase
in the proportion of males born in years following high
autumn population density, but this result was not statisti-
cally significant. Population growth rate, Julian birthday,
litter size, mother’s age and weight, and the weather con-
ditions during the gestation and neonatal period did not
explain significant variation in the birth sex ratio.
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Introduction

In what has become one of the most cited references in
evolutionary ecology, Trivers and Willard (1973) sug-
gested that females in relatively good physiological con-
dition should produce offspring of the more expensive
sex, if the increased allocation is likely to benefit this
offspring’s fitness more than it would benefit the cheaper
sex (for reviews, see Clutton-Brock and Iason 1986;
Frank 1990). The three underlying assumptions of the
Trivers–Willard hypothesis are that (1) the quality of
young correlates with the quality of its mother, (2) these
differences endure into adulthood, and (3) the reproduc-
tive success of the more expensive sex (commonly sons)
is enhanced more than that of the cheaper sex by in-
creased maternal investment because of the more inten-
sive competition for mates (commonly among males).
Ungulates provide an appealing group with which to test
this hypothesis as these three assumptions are likely to
be met – ungulates are commonly polygynous, display
marked sexual size dimorphism, and commonly produce
only one young per litter. However, published results
from ungulate studies that have tested the Trivers–
Willard hypothesis have been equivocal (e.g. Verme
1983; Skogland 1986; Birgersson 1998; Hewison and
Gaillard 1999; Kruuk et al. 1999).

One plausible reason for the contradictory results in
sex-ratio studies is that environmental conditions have
an inconsistent effect on offspring sex ratio (Kruuk et al.
1999; Post et al. 1999; Mysterud et al. 2000). This, to-
gether with the fact that data are often pooled over sever-
al years, may explain why there are large within-species
differences between studies (Hewison and Gaillard
1999). In addition, sample sizes in sex-ratio studies are
often small. However, this is not always an adequate ex-
planation for results at odds with expectations, as some
studies with large sample sizes have also failed to detect
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evidence supporting the Trivers–Willard hypothesis
(Clutton-Brock 1985; Palmer 2000). Interactions be-
tween timing of sex-specific foetal growth and environ-
mental stress on maternal condition have also been sug-
gested as an explanation for the reported inconsistencies
in sex-ratio variation in sexually size-dimorphic mam-
mals (Forchhammer 2000). Tests for either environmen-
tally induced or adaptive sex-ratio variation require that
the preconditions for the Trivers–Willard hypothesis be
met for the analysis and its interpretation to be sound
(Hewison and Gaillard 1999; Cockburn et al. 2002).

The Soay sheep (Ovis aries) population on St Kilda
provides a good system to test the Trivers–Willard hy-
pothesis. Soay sheep are sexually size dimorphic, with
males approximately 22% heavier than females at birth
and 48% heavier than females as adults (Clutton-Brock
et al. 1992; Milner et al. 1999; this study). The Soay
sheep also satisfy the three preconditions for the 
Trivers–Willard hypothesis as emphasised by Hewison
and Gaillard (1999). First, a high-quality mother is more
likely than a mother in poor condition to wean a high-
quality offspring (Clutton-Brock et al. 1996; this study).
Second, conditions experienced during early develop-
ment have long-lasting consequences and persist into
adulthood (Coltman et al. 1999b; Forchhammer et al.
2001). Third, the variance in male mating success is like-
ly to be higher than the variance in female mating suc-
cess (Coltman et al. 1999a; unpublished data), and con-
sequently differences in phenotypic quality may have
stronger fitness consequences in males than in females.

Here we present an analysis of birth sex ratios in the
Soay sheep population inhabiting the island of Hirta, in
the St Kilda archipelago, Scotland (Clutton-Brock et al.
1991, 1997). Birth sex ratios based on over 2,000 new-
born lambs are available for 15 years, thus enabling us to
avoid the problems of small sample size common in sex-
ratio studies (Palmer 2000). Furthermore, the time span
covered by the data also allows us to address the ques-
tion of the role of environmental variation and popula-
tion size on the birth sex ratio. The Soay sheep popula-
tion is naturally regulated and experiences dramatic 
fluctuations with up to 60% of animals dying in some
years (Clutton-Brock et al. 1991). These fluctuations are
strongly influenced by environmental factors and are
large for a mammal of this size (Clutton-Brock et al.
1991, 1997; Grenfell et al. 1998; Milner et al. 1999). Fi-
nally, the sex-ratio data are collected within hours of
birth and are therefore unbiased by differential neonatal
mortality.

We tested the Trivers–Willard hypothesis and the ef-
fect of environmental variation on the birth sex ratio of
Soay sheep. If mother’s condition is an important deter-
minant of offspring sex, we expect females in good con-
dition to produce excess male offspring. Alternatively,
environmental effects might operate independently of fe-
male condition and cause male-biased mortality in utero.
In this case we would expect to see excess female off-
spring produced following years of adverse environmen-
tal conditions.

Methods

Soay sheep population of St Kilda

Soay sheep were probably introduced to the St Kilda archipelago
(54°49′N, 08°34′W) in the second millennium B.C. (Boyd and
Jewell 1974). Originally, they were restricted to the uninhabited
island of Soay, but in 1932, 107 individuals were introduced to the
island of Hirta, 2 years after the human population was evacuated.
The population increased rapidly and the first census in 1952 gave
an estimate of 1,114 individuals. A detailed demographic study in
Hirta has been carried out since 1985 in the population of the 
Village Bay area, where approximately 30% of all the individuals
in Hirta are found. Since 1985, over 95% of the lambs born annu-
ally have been caught and tagged shortly after birth (for a more
detailed description of methods and study area, see Clutton-Brock
et al. 1991), giving an estimate of the sex ratio of the cohort born
each year.

Statistical analyses at the individual level

We used generalized linear mixed effect models (GLMMs) to
identify sources of variation in birth weight and offspring sex.
Variables included in the analyses were

● Annual autumn population size prior to the spring of birth, nt–1,
in the Village Bay study area

● Population growth rate [Rt=ln(nt/nt–1)]
● Julian birthday of each lamb
● A two-level factor indicating being born as either singleton or

twin
● Mother’s age (fitted alone and as a quadratic)
● Mother’s weight in the previous autumn catch (fitted alone and

as a quadratic)
● Mean monthly temperature (°C) for each month from October

through April
● Total monthly rainfall for each month from October through

April

Because maternal condition is central to the Trivers–Willard hy-
pothesis, we fitted a set of variables that could be either a cause or
a consequence of maternal condition. An individual’s condition,
offspring sex, and birth weight can be affected by population den-
sity (e.g. Kruuk et al. 1999; Post et al. 1999; Forchhammer et al.
2001). Therefore, annual autumn population size prior to the
spring of birth, nt–1, in the Village Bay study area, and population
growth rate [Rt=ln(nt/nt–1)] were fitted. In some cases, the moth-
er’s condition affects the timing of conception, so that mothers in
good condition can conceive earlier than those in poorer condition
(Clutton-Brock et al. 1982). Consequently, the Julian birthday of
lambs could be affected by maternal condition. Maternal condition
and offspring sex ratio can also be associated with litter size (Kent
1995; Kojola 1997). In the Soay sheep approximately 85% of
births are of singleton lambs, with twin births accounting for the
remaining 15% (Grubb 1974; Clutton-Brock et al. 1991, 1992;
Coltman et al. 1999b). Maternal age and weight in the previous
autumn are condition-related factors that may affect birth weight
and offspring sex (Côté and Festa-Bianchet 2001). We considered
mother’s age and weight as both linear and non-linear (quadratic)
terms. In addition, the environmental effects of monthly mean
temperature (°C) and total rainfall from October to April measured
at the Benbecula weather station (80 km east of St Kilda) were 
fitted because they can have a significant effect on birth sex ratio
in ungulates (Kruuk et al. 1999; Post et al. 1999; Mysterud et al.
2000). As the Benbecula weather station was closed in June 1996,
weather variables in subsequent years were calculated using the
association between Benbecula and Stornoway (ca. 150 km east 
of St Kilda) weather data (the average correlation between the
weather variables is approximately r=0.9, T. Coulson, unpublished
data). The number of weather variables fitted was reduced by prin-
cipal component analysis (PCA) to avoid type 1 error (Sokal and
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Rohlf 1995). We used principal components to describe the 
weather conditions in the autumn prior to birth (Octobert–1 to 
Decembert–1) and to capture the conditions during spring (January
to April in year t). This was done to assess whether the effects of
environmental conditions experienced during different stages of
gestation differ (e.g. Forchhammer 2000). The first principal com-
ponents (PC1s) for both periods were fitted in subsequent models
(Table 1). These will be referred to as Autumn and Spring for 
autumn and spring principal components, respectively. The first
principal component for Autumn captured 33.3% of the variation
in the October to December weather variables and corresponding-
ly, Spring represents 38.4% of the variation in the spring weather
(January to April, Table 1). In the birth-weight analysis age at cap-
ture (in days) was included as well.

Because the data consisted of records of multiple offspring per
female across different years (1986–2000), we fitted mother’s
identity as a random effect. The remaining variables described
above were fitted as fixed effects (Schall 1991). The model for
birth weight was fitted assuming normal error structure, and the
model for birth sex was fitted with a binomial error structure
(0=female, 1=male offspring) and a logit link function. Statistical
significance of the explanatory variables and all two-way interac-
tion terms in both models were assessed by Wald statistics when
that variable or interaction term was included last in the model.
These Wald statistics follow a χ2 distribution on the respective de-
grees of freedom. Altogether 1,168 lambs born to 391 mothers
were included in the GLMM analysis of birth weight, and 1,229
lambs born to 406 mothers in the offspring sex model. All GLMM

analyses were performed using Genstat 5, release 4.1 using the 
iterative reweighted restricted maximum likelihood method 
(IRREML).

Statistical analyses at the population level

We also used multiple linear regression to model the annual sex
ratio (proportion of males born each year) as a function of popula-
tion size in the previous autumn (nt–1), annual population growth
rate Rt, and the weather variables Spring and Autumn for a compa-
rable analysis at the population level. We used a forwards stepwise
process with α-to-enter=0.05 and α-to-remove=0.1. This analysis
was done in Systat 8.

Results

Individual-level models

The GLMM model fitted to the birth-weight data ex-
plained about 61% of the variation (Table 2). As the full-
model results show, many factors contribute to offspring
birth weight, sex among them demonstrating significant
size dimorphism at birth (mean and standard deviation for
birth weight in males: 2.18±0.68 kg, n=572; and in fe-
males: 2.08±0.63 kg, n=596). Because several of the pre-
dictor variables were correlated, we also fitted each of the
explanatory variables separately as fixed effects. The on-
ly variable that did not significantly explain offspring
birth weight on its own was Spring (PC1 summarising
spring weather conditions), and it was therefore left out
of the most parsimonious model (Table 2). None of the
tested interactions were significant.

The most parsimonious model explaining offspring
sex included only the population size in the previous au-
tumn (Table 3). The model predicts an increase in the
proportion of males born with increasing population size
the previous autumn but reduces the model deviance on-
ly by 0.5%. None of the two-way interactions were sig-
nificant. The restricted maximum likelihood estimate of
variance components (e.g. Davidian and Giltinan 1995)
revealed that mother’s identity fitted as a random effect
was not a significant term in the GLMM (variance com-
ponent=0.007, SE=0.083, z=0.0063, P=0.94). In addi-
tion, we fitted both mother’s identity and birth year as
random factors in the GLMM but this formulation of the
model did not alter the conclusions.

27

Table 1 Principal component analysis of the weather variables
used in the analyses. Variable-specific loadings on the first princi-
pal components (PC1s) in autumn and spring are given

Variable Loading

PC1 autumn
October mean temperature –0.41
November mean temperature 0.18
December mean temperature 0.52
October rainfall –0.49
November rainfall 0.18
December rainfall 0.51

PC1 spring
January mean temperature 0.49
February mean temperature 0.37
March mean temperature 0.40
April mean temperature –0.11
January rainfall 0.35
February rainfall 0.47
March rainfall 0.32
April rainfall 0.07

Table 2 Summary of the most
parsimonious general linear
mixed model fitting of birth
weight. Parameter estimates,
their standard errors (SE), Wald
statistics, and their associated 
P values are given for each
variable. Wald statistics are
given for each term when fitted
last in the model. Sex gives
weight of male compared to fe-
male; twin gives weight of twin
relative to singleton

Variable Coefficient SE Wald statistic df P

Constant 2.303 0.017
nt–1 –0.001 0.0002 27.68 1 <0.0001
Rt –0.466 0.049 91.56 1 <0.0001
Julian birthday 0.013 0.002 66.03 1 <0.0001
Age at capture 0.104 0.007 207.11 1 <0.0001
Sex 0.136 0.024 31.84 1 <0.0001
Twin –0.782 0.033 547.70 1 <0.0001
Mother’s age 0.269 0.025 118.87 1 <0.0001
Squared mother’s age –0.020 0.002 99.94 1 <0.0001
Mother’s weight 0.211 0.025 71.46 1 <0.0001
Squared mother’s weight –0.004 0.001 44.76 1 <0.0001
Autumn –0.017 0.008 3.85 1 0.050



Population-level model

The annual population birth sex ratio fluctuated between
0.43 (1991, 1995) and 0.56 (1997, 1999; Fig. 1A). A step-
wise multiple linear regression model showed that none of
the explanatory terms (population size, population growth
rate, Spring, and Autumn) were significant, neither as
main effects nor as two-way interactions. The best fitting
of these models was birth sex ratio=0.416+0.0002×nt–1,
Pslope=0.077, R2=0.21.

Discussion

Reproductive investment, in the form of birth weight, is
strongly influenced by environmental factors and pheno-

typic terms that are likely to affect or reflect maternal
condition (Table 2). In contrast, birth sex ratio is only
weakly associated with population size in the year of
conception, and it is not affected by other environmental
factors or maternal phenotype. The individual-based
(GLMM) and the population-level models showed that
the proportion of male offspring increases with popula-
tion size. This result is somewhat surprising as Soay
sheep seem to match the preconditions of the Trivers–
Willard hypothesis (Hewison and Gaillard 1999) rela-
tively well, and we would expect maternal condition to
be negatively affected by high population density. How-
ever, we did not observe any systematic relationship be-
tween traits related to maternal condition and offspring
sex ratio. Our results are therefore not consistent with
the Trivers–Willard hypothesis.

What factors might obscure a relationship between
maternal condition and offspring sex ratio? First, there
may be an interaction between environmental conditions
and the mechanisms governing birth sex ratio (Kruuk et
al. 1999; Post et al. 1999; Forchhammer 2000). For ex-
ample, in red deer (Cervus elaphus), the adaptive sex-
ratio variation reported by Clutton-Brock et al. (1984,
1986) disappeared at high population densities (Kruuk et
al. 1999), presumably because nutritional stress at high
density caused higher foetal loss in hinds carrying male
foetuses. A literature survey reported in the same study
showed that all positive associations between maternal
quality and the proportion of male offspring produced
have been found in populations below carrying capacity,
usually because of artificial management. If the Hirta
sheep population was never sufficiently below carrying
capacity for this criterion to be met, we would expect to
observe no correlation between maternal condition and
an equal or perhaps female-biased sex ratio. However,
we observed slightly more males born following high
population densities. We also did not find evidence for
an interaction between maternal condition and the timing
of environmental conditions experienced during gesta-
tion, which might be expected to occur under the scenario
of varying sex-specific foetal growth rates and selective
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Table 3 Summary of the gen-
eral linear mixed model fitting
of the birth sex ratios. Parame-
ter estimates, their standard er-
rors (SE), Wald statistics, and
their associated P values (Wald
statistics are given for each
term when fitted last in the
model) are given for the full
model. A summary is given 
for the best-fitting model

Variable Coefficient SE Wald statistic df P

Full model
Constant –0.072 0.068
nt–1 0.002 0.001 6.41 1 0.01
Rt –0.168 0.223 0.57 1 0.45
Julian birthday –0.001 0.007 0.02 1 0.89
Twin 0.034 0.147 0.05 1 0.82
Mother’s age 0.015 0.118 0.02 1 0.90
Squared mother’s age –0.005 0.009 0.23 1 0.63
Mother’s weight 0.031 0.112 0.07 1 0.79
Squared mother’s weight –0.001 0.003 0.06 1 0.81
Autumn weather conditions –0.035 0.042 0.71 1 0.40
Spring weather conditions 0.054 0.045 1.48 1 0.22

Best-fitting model
Constant –0.064 0.058
nt–1 0.002 0.001 8.33 1 0.004

Fig. 1 A Proportion of males born and B population fluctuations
in the Village Bay area in years 1985–2000



abortion (Forchhammer 2000). It seems that a potential
link between high population density, reduced female
condition, and increased probability of abortion of male
foetuses would not explain the pattern observed in Soay
sheep.

Scenarios involving sex-ratio effects mediated by ma-
ternal condition require that we are capturing the biolog-
ically meaningful part of maternal condition with the
available data. This is difficult to evaluate, and age and
weight may seem crude proxies. However, as indicators
of condition-related variation, autumn weight and age
are good predictors of over-winter survival (Milner et al.
1999), fecundity (Clutton-Brock et al. 1991), and birth
weight (Table 2). Perhaps the time scale of variation in
population size and weather conditions is too short and
unpredictable for selection to operate on adaptive sex-
ratio adjustment in Soay sheep. It has been shown that
their life history strategy is close to optimal if it is as-
sumed that the sheep have no information about the pop-
ulation fluctuations (Clutton-Brock et al. 1996; Marrow
et al. 1996). Maybe this is also the case with sex-ratio
adjustment.

In an alternative, adaptive scenario, it would be an ad-
vantage for females (especially those in good condition)
to produce males after high-density years. This is be-
cause males born following high-density autumns have
high postnatal survival probability (because high-density
autumns are typically followed by a large crash in popu-
lation size, so survivors face optimal conditions) and
therefore survive to compete in many subsequent ruts
and enjoy high lifetime reproductive success (Coltman et
al. 1999b). This argument is close to the idea presented
by West and Godfray (1997; see also Werren and Taylor
1984); if females can use the population density as a cue
for recruitment likelihood of their offspring, selection
would favour bias in offspring sex ratio accordingly.
Their model shows that below-average recruitment can
favour production of the sex with reproductive values
less evenly distributed across the age classes, which
would predict an increased production of males follow-
ing high densities.

In conclusion, the data on Soay sheep do not support
the Trivers–Willard hypothesis, nor are they consistent
with environmental variation modifying birth sex ratio
through effects on maternal condition. The biological
significance of the relationship between population size
and increased proportion of male offspring is unclear. It
could be an adaptive response, however, and it could
also be attributed to type I error. A mechanism for the
possible adaptive explanation remains to be discovered.
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