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Abstract
Purpose  AI has shown promise in automating and improving various tasks, including medical image analysis. Distal humerus 
fractures are a critical clinical concern that requires early diagnosis and treatment to avoid complications. The standard 
diagnostic method involves X-ray imaging, but subtle fractures can be missed, leading to delayed or incorrect diagnoses. 
Deep learning, a subset of artificial intelligence, has demonstrated the ability to automate medical image analysis tasks, 
potentially improving fracture identification accuracy and reducing the need for additional and cost-intensive imaging modali-
ties (Schwarz et al. 2023). This study aims to develop a deep learning–based diagnostic support system for distal humerus 
fractures using conventional X-ray images. The primary objective of this study is to determine whether deep learning can 
provide reliable image-based fracture detection recommendations for distal humerus fractures.
Methods  Between March 2017 and March 2022, our tertiary hospital’s PACS data were evaluated for conventional radiog-
raphy images of the anteroposterior (AP) and lateral elbow for suspected traumatic distal humerus fractures. The data set 
consisted of 4931 images of patients seven years and older, after excluding paediatric images below seven years due to the 
absence of ossification centres. Two senior orthopaedic surgeons with 12 + years of experience reviewed and labelled the 
images as fractured or normal. The data set was split into training sets (79.88%) and validation tests (20.1%). Image pre-
processing was performed by cropping the images to 224 × 224 pixels around the capitellum, and the deep learning algorithm 
architecture used was ResNet18.
Results  The deep learning model demonstrated an accuracy of 69.14% in the validation test set, with a specificity of 95.89% 
and a positive predictive value (PPV) of 99.47%. However, the sensitivity was 61.49%, indicating that the model had a 
relatively high false negative rate. ROC analysis showed an AUC of 0.787 when deep learning AI was the reference and an 
AUC of 0.580 when the most senior orthopaedic surgeon was the reference. The performance of the model was compared 
with that of other orthopaedic surgeons of varying experience levels, showing varying levels of diagnostic precision.
Conclusion  The developed deep learning–based diagnostic support system shows potential for accurately diagnosing distal 
humerus fractures using AP and lateral elbow radiographs. The model’s specificity and PPV indicate its ability to mark out 
occult lesions and has a high false positive rate. Further research and validation are necessary to improve the sensitivity and 
diagnostic accuracy of the model for practical clinical implementation.

Keywords  Artificial intelligence · Diagnostic support system · Distal humerus fractures · Orthopaedic imaging · Deep 
learning

Introduction 

The professor emeritus of computer science at Stanford 
University and the originator of the term “artificial intel-
ligence” is John McCarthy [2]. Artificial intelligence (AI) 
was described for the first time in 1956; however, due to 
higher data amounts, smarter algorithms, and advancements 
in computer power and storage, AI is becoming increasingly 
prevalent today [3]. In the 1960s, the US Department of 
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Defence grew interested in this type of work and began 
teaching computers to mimic core human reasoning. In the 
1970s, for instance, the Defence Advanced Research Studies 
Agency (DARPA) [4] conducted street mapping projects. 
DARPA created intelligent personal assistants in 2003, long 
before Siri, Alexa, and Cortana became popular names. This 
ground-breaking study paved the way for today’s automa-
tion and formal reasoning in computers, such as decision 
support systems and intelligent search engines, which may 
be designed to complement and enhance human abilities 
[5]. To aid readers unfamiliar with AI and machine learning 
(ML), these fields encompass the development of algorithms 
and statistical models that enable computers to perform 
tasks without explicit instructions. AI and machine learn-
ing are increasingly integral in health care, offering novel 
approaches to diagnosis and treatment (Fig. 1). Machine 
learning in orthopaedics can be likened to a highly skilled 
assistant who learns from each case, becoming increasingly 
proficient in predicting outcomes and diagnosing condi-
tions. Just as a surgeon accumulates experience over years 
of practice and can make more accurate decisions, machine 
learning algorithms improve their diagnostic capabilities 
with each new data point. This continuous learning pro-
cess enables AI systems to assist in accurately diagnosing 
complex cases, much like a seasoned surgeon’s ability to 
identify subtle nuances in patient conditions. This analogy 
encapsulates the essence of AI and ML’s role in enhancing 
the precision and efficacy of orthopaedic care.

Distal humerus fractures are an important clinical 
and public health concern around the world. Avoidance 
of consequences such as neurovascular sequelae and 
deformities depends on early diagnosis and treatment of 

the distal humerus fracture. Accurate diagnosis of distal 
humerus fractures is crucial due to possible complica-
tions such as joint stiffness, which can severely impact 
patient outcomes, including increased mortality risk. The 
most common method to diagnose a fracture is by X-ray 
imaging, which accounts for about 6% of all imaging 
referrals from our tertiary public hospital emergency 
department. For an accurate diagnosis and treatment 
plan for the distal humerus fracture, anteroposterior (AP) 
and lateral elbow radiographs are required. Most distal 
humerus fractures exhibit a distinct fracture line or bone 
displacement. Occult fractures, on the other hand, are 
missed on radiographs. If the fracture line or displace-
ment is minimal or not visible on conventional radiogra-
phy, the diagnosis of a distal humerus fracture requires 
a high level of expertise. Only a third of these patients 
have additional imaging, such as computed tomography 
(CT) or magnetic resonance imaging (MRI), to reduce 
the risk of misdiagnosis. Not only does this increase 
diagnostic costs and resource use, but without access to 
these advanced imaging modalities (for example in far 
flung and remote locations), delayed or missed diagnoses 
are more likely to result in poor patient outcomes, such 
as increased morbidity, elbow dysfunction, dependency 
rate, length of hospitalisation and cost of care, as well as 
employment loss.

Advances in deep learning in medical image analysis 
have resulted in automated systems that can perform as well 
as human professionals in a variety of medical tasks. Deep 
learning is a vertical of AI to enable CNN models to recog-
nise patterns that can be used to distinguish between groups 
of photos, such as images with and without a specific disease 
[6]. The evaluation of the distal humerus fracture using X-ray 
studies based on AI (deep learning) that are highly sensitive 
and specific can help with a more precise and earlier diag-
nosis. AI in all probabilities can also minimise the need for 
costly CT and MRI tests, improving service efficiency and 
expanding access to highly accurate distal humerus fracture 
identification in underserved areas [7]. Given the acknowl-
edged difference in diagnostic confidence between human 
specialists of various levels of experience, automation could 
also increase reproducibility. We investigate the use of CNNs 
in deep learning for fracture identification and report this study 
where a deep learning system was used for X-ray evaluation 
[8]. In recent years, deep learning using convolutional neural 
networks (CNN) has become increasingly popular in medical 
imaging [9]. Recent research has shown that deep learning 
has the ability to automate the identification and classification 
of anomalies in a variety of medical imaging modalities [10]. 
The multi-view technique [11] is particularly promising among 
different proposed models [12]. The goal of this study was to 
create a CNN-based deep learning system that uses AP and 
lateral elbow radiographs to diagnose distal humerus fractures 

Fig. 1   Artificial intelligence and its subsets machine learning and 
deep learning
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using conventional radiography and to evaluate its practicality 
and diagnostic performance.

The literature search revealed that there is a need to estab-
lish a validated data set for the training and development of a 
distal humerus fracture diagnostic algorithm. There is a need 
to increase awareness among orthopaedic surgeons about 
proper data labelling and collection. There is a need to develop 
an external validation set for the assessment of the deep learn-
ing algorithm. Therefore, we need to answer the question of 
whether the deep learning–based diagnostic support system 
(AI) can diagnose a distal humerus fracture.

a)	 Aim
	   The aim of this study was to determine if deep learn-

ing provides reasonable image-based fracture detection 
recommendations for distal end humerus fractures.

b)	 Objectives

•	 Develop a deep learning–based diagnostic support sys-
tem for X-ray distal Humerus using deep learning( AI).

•	 Establishing the data set.
•	 Validation of the output.
•	 Testing of the algorithm.

c)	 Type or nature of study
	   Phase 1 study.
d)	 Sample size
	   We collected 4931 images in total for better modelling 

training and testing (Table 1).
e)	 Variables
	   The difference in the experience of the reviewers 

ranged from 1 to 12 years.

Material with their standardisation

Between March 2017 and March 2022, we evaluated PACS 
data in our tertiary hospital for conventional radiograph 
images of AP, lateral or both elbows for suspected traumatic 
distal humerus fracture. Institutional ethics board certifi-
cation was taken for conducting the study. We excluded 
images from the paediatric age group under seven years 
as the centre of ossification of the capitellum, radial head, 
internal epicondyle and the trochlea does not appear before 
seven years of age. Radiographs were collected from the 

seven and older age group. The total number of images col-
lected was 4931. The casting material was off while taking 
the image. As some of the images were outpatient once 
the exact time since the injury was difficult to mention, the 
average duration was zero to nine days. There were 20% 
more male compared to female patients.

After anonymisation, the elbow images were retrieved in 
digital imaging and communications (DICOM) format. Two 
senior orthopaedic surgeons with 12 + years of experience 
who were not part of the review group reviewed and labelled 
the images. Each patient’s image was classified as fractured 
or normal. Each patient’s image was classified as fractured 
(1) or normal (0). All images were viewed in PACS without 
magnification. Orthopaedic surgeons were told to the group 
images based only on the above instructions.

From the original data set from our institute, we used 
4931 images. Based on the labels, the data for model devel-
opment were sequentially split into training (3944 pictures, 
79.88%) and a validation test set (987 images, 20.1%). All 
data sets were well balanced for the evaluation of the model.

Image pre‑processing

Each DICOM file was converted to a PNG file and cropped 
to 224 × 224 pixels around the capitellum.

On AP and lateral elbow radiographs, we designated the 
centre of the capitellum. If the distal humerus was not visible 
in the cropped picture, the cropping was manually changed. 
Each image was saved as an array in.npz format.

The deep learning algorithm architecture used is 
ResNet18 [13]. ResNet18 is a 72-layer architecture with 18 
deep layers used for building the model (Fig. 2). The deep 
learning algorithm was ResNet18, a Python-based high-level 
deep learning library, implemented on top of PyTorch Light-
ning, running on a computer equipped with an Intel Core i5 
CPU. The GPU utilised was the GTX 1560 Ti via Nvidia 
CUDA 11. We built an image classification model that used 
two identical 224 × 224 images as input. Every image was 
fed into ResNet18 models (Fig. 3). The model produces out-
put as 1 and 0 for the images (Fig. 4). The architecture of this 
network helps in computing large amounts of convolutional 
layers to function efficiently.

After training on the training set, the model was subjected 
to evaluation by the validation test set and it gave an out as 
0 being negative (normal) and 1 being positive (fracture).

The validation test data set was reviewed by four certi-
fied orthopaedic trauma surgeons practising in our institute 
with variable years of experience (1 to more than 12 years). 
Reviewers reviewed the DICOM files; clinical information 
was hidden.

On a two-point scale of 0 and 1, similar to the model 
output, the reviewers labelled them 0 and 1, 0 being negative 

Table 1   Data set Data distribution:

Total images = 4931
Train units = 3944
Units of test/validation = 987
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(no fracture) and 1 being positive (fracture) (Table 2). The 
decision of the most senior orthopaedic surgeon was con-
sidered the ground truth for the calculation of the ROC per-
formance among orthopaedic surgeons.

Inclusion and exclusion criteria

•	 All AP and posterior elbow radiographs above 
seven years of age.

•	 X-rays of the elbows with diseased bone, tumour, infec-
tion, artefacts and poor quality.

Analysis of result and discussion

Data analysis in tabular form

Deep learning and processing information:

1.	 The input layer and output layers are modified to suit the 
project (Fig. 5).

2.	 “Conv1” and “fc” are modified. Conv1 is modified to 
have one input channel instead of three input channels. 
Fc is modified to output a single feature.

Hyperparameters: Learning rate = 0.0004, Opti-
mizer = Adam, Loss function = BCEWithLogitsLoss.

3.	 Deep learning library used = PyTorch Lightning
4.	 The GPU used is GTX 1560 Ti through Nvidia CUDA 

11
5.	 Epochs trained: 50

Result:
Accuracy = 69.14%
Table 3 shows the confusion matrix of the AI model.
The probability of an accurate diagnosis by orthopaedi-

cian 1 or AI (deep learning CNN) was significant whether 
orthopaedician 1 was the reference (AUC 0.580 (95% CI, 
0.544–0.617), p < 0.001) (Figure 1a) or AI (deep learning 
CNN) was the reference (AUC 0.787 (95% CI, 0.747–0.827), 
p < 0.001) (Graph 1b).

Graph 2 a, b, and c show the ROC curves for the diag-
nosis of DHF by different orthopaedicians having a varying 
range of experience in reference to AI (deep learning CNN).

There was a significant probability of diagnosing by the 
first, second, and third orthopaedicians, as indicated by the 
AUC of 0.713, 0.775, and 0.679 (p < 0.0001 for all compari-
sons), respectively (Table 4).

Fig. 2   Pre-processing if the 
image and the workflow

Fig. 3   The architecture of ResNet18 model. Image source: researchgate.net
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Similar results were observed compared to the inves-
tigator findings as reference (Graph 1) where the first 
orthopaedician (AUC 0.823, 95% CI 0.790–0.856, 
p < 0.0001) and second (AUC 0.863, 95% CI 0.832–0.894, 
p < 0.0001) orthopaedician had a significantly higher 
probability of accurate diagnosis at elbow. The third 
orthopaedician had lower chances of an accurate 

Fig. 4   Pictorial representation of the functioning of a single AI neuron

Table 2   Output generated by 
the AI model

A. Labelling:

Negative cases are labelled 0
Positive cases are labelled as 1

Fig. 5   Workflow of the ResNet 
model
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diagnosis in relation to an investigator (AUC 0.545, 95% 
CI 0.500–0.590, p = 0.053).

Statistical analysis

On the validation test set, a receiver operating curve (ROC) 
analysis (25) was performed and the area under the receiver 
operating curve (AUC) was calculated (Graph 3). To inves-
tigate the diagnostic performance of the model, we com-
pared the performance of the deep learning model with the 
three orthopaedic surgeons based on the ROC analysis on 
the validation set. We constructed 2 × 2 confusion matrices 
[14] for the deep learning algorithm to evaluate the diagnos-
tic performance of the model in the validation data set. The 
comparison between orthopaedic surgeons was also done 
using the ROC curve considering the input of the senior 
orthopaedic surgeons as the ground truth. We calculated the 
sensitivity, specificity, PPV, NPV, and accuracy of the model 
using the confusion matrix (Table 5). All data were ana-
lysed using SPSS (version 15; SPSS Inc., 233 South Wacker 
Drive, 11th floor, Chicago, IL 60606–6412).

Discussion

We built a CNN-based deep neural network model for the 
identification of distal humerus fractures based on AP and 
lateral elbow radiographs and compared its detection accu-
racy with that of orthopaedic surgeons. The probability of an 
accurate diagnosis by the investigator or AI (deep learning 
CNN) was significant regardless of whether the investiga-
tor was the reference (AUC 0.580 (95% CI 0.544–0.617), 
p 0.001) or whether the AI (deep learning CNN) was the 
reference (AUC 0.787 (95% CI 0.747–0.827), p 0.001). ROC 
curves show the diagnosis of distal humerus fracture by other 
orthopaedic surgeons with different levels of expertise rela-
tive to AI (deep learning CNN). The likelihood of identify-
ing a distal humerus fracture by the second, third and fourth 
orthopaedists was substantial, as evidenced by AUC values of 
0.713, 0.775, and 0.679, respectively (p 0.0001 for all com-
parisons). Compared to orthopaedician 1 findings as refer-
ence (Graph 1), both the first orthopaedician (AUC 0.823, 
95% CI 0.790–0.856, p 0.0001) and second orthopaedician 
(AUC 0.863, 95% CI 0.832–0.894, p 0.0001) had a consid-
erably higher probability of making an appropriate diagno-
sis in the elbow. Orthopaedician 4 had a lower likelihood 

of making a correct diagnosis than orthopaedician 1 (AUC 
0.545, 95% CI 0.500–0.590, p = 0.053). In the validity sec-
tion, our model had high AUC values (0.787). The algorithm 
developed showed high sensitivity and low NPV, for it even 
exhibited 95% specificity to the test set. The high specificity 
of our models is an indication that it can mark out occult 
lesions and have a high false positive rate which we origi-
nally expected. Despite the fact that the built deep learning 
model demonstrated excellent specificity, PPV, and NPV 
compared to orthopaedic surgeons, less precision and sensi-
tivity showed that there are still improvements to be made in 
the developed framework.

Rayner et al. [15] demonstrated that artificial intelli-
gence might improve the precision of diagnosis for proxi-
mal femoral fractures. The performance of this model was 
maintained with an AUC of 0980 (0931–1000). However, 
preclinical analysis revealed hurdles to safe deployment, 
such as a significant change in the operating point of the 
model during test validation and an increased error rate in 
cases with atypical bones. During additional tests, it revealed 
some limitations. The AUC of our model (AUC 0.787 (95% 
CI 0.747–0.827), p 0.001) when AI was the reference was 
0.787 (0.747–0.827). On the test set, our model generated a 
satisfactory result.

Ren et al. [16] developed and evaluated a two-stage deep 
convolutional neural network method to identify triquetral 
avulsion and Segond fractures. The cross-validated area 
under the receiver operating characteristic curve values for 
the two-stage system were 0.95 and 0.990, while the one-
stage classifier obtained 0.86 (p = 0.0086), whereas the stud-
ied model is a CNN with a single stage. The AUC (AI deep 
learning CNN) produced by the model in the initial test set 
served as the standard (AUC 0.787 (95% CI 0.747–0.827), 
p 0.001).

Choi et al. [17] sought to develop and evaluate a dual 
input convolutional neural network for paediatric supracon-
dylar fracture on conventional radiography. The model has a 
sensitivity of 93.9%, specificity of 92.2%, positive predictive 
value of 80.5% and a negative predictive value of 97.8%. 
Our ResNet18 model has a sensitivity of 61.48796499, a 
specificity of 95.89041096, a positive predictive value (PPV) 
of 99.46902655 and a negative predictive value (NPV) of 
16.58767773, as well as an accuracy of 69.14660832. A sin-
gle input model was used.

In the examination of musculoskeletal imaging in gen-
eral and distal humerus fracture in particular, a comparison 
with the contralateral side is necessary, since the align-
ment of the bones and the sign of the fat pad can appear 
differently depending on the radiographic position [18]. 
As the suggested model lacked a contralateral compari-
son method, it is believed to produce more false-positive 
results than the review group. That is a limitation which 
other studies have also encountered. Usually, in cases of 

Table 3   Confusion matrix of the AI model

Predicted yes Predicted no
Actual yes 562 3
Actual no 352 70
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clinical dilemma, further investigations are made to arrive 
at a diagnosis [19, 20].

The decision-making of radiological tests would be 
especially helpful in a high-volume emergency department 
with clinical demand for rapid reading, but typically lim-
ited human resources. The results of our study show that 
deep learning can play a role in the evaluation of elbow 
injuries in the emergency room. It may also decrease the 
usage of need of CT scan when used as diagnostic support 
system along with the clinical judgement of an orthopae-
dic surgeon. Using elbow radiography, the developed AI 
model may enable sensitive automated identification of a 
distal humerus fracture, the most prevalent kind of elbow 
fracture. In a testing scenario, a single pair of radiographs 
was analysed in roughly 1.6 s after 30 to 40 s of prototype 
loading. When the paradigm is used in clinical practice, this 
timescale is acceptable.

An objective test, more often based on external valida-
tion in other areas of medicine, is a critical tool to prevent 
the unreasonably high diagnostic performance of a predic-
tive model caused by skewed data sets [21]. This is, as far 
as we know, the first study in distal humerus fracture ortho-
paedic radiology to examine the diagnostic performance 
of a deep learning model using a test set. The reasonably 
good AUC values in the test set show that our CNN-based 
deep learning approach has application promise. Combin-
ing AP and lateral elbow radiographs as input, our model 
applied an approach to diagnostic imaging similar to that 
of a person. Furthermore, we used a training strategy simi-
lar to the way orthopaedic surgeons learn, rather than a 
multi-step growth procedure that begins with training on 
single view images. However, contralateral images were 
not examined in our model, despite the fact that their inter-
pretation usually provides orthopaedists with vital clinical 
information. The diagnostic performance of the model may 
be improved in the future by comparing it with healthy con-
tralateral sides.

Our investigation has certain limitations. First, nondistal 
humerus fractures and dislocations were not considered new 
types of elbow injuries. Our primary objective was to con-
duct a feasibility study on the use of deep learning in distal 
humerus fractures. We believed that instances of abnormali-
ties other than distal humerus fractures would be too rare to 
learn from our rather small data set. Second, we labelled the 
data according to orthopaedic physicians’ consensus. Ideal 
reference standards consisting of clinical outcome follow-up 
or advanced imaging modalities, such as CT and MRI, are 
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Graph 1   ROC curve for the diagnosis of DHF. a AI (deep learning 
model) compared to the reference performance of orthopaedician 
1, denoted by the green line. AUC 0.580 (95% CI, 0.544–0.617), 
p < 0.001. b Orthopaedician 1 compared to AI, represented by the 
green line. AUC 0.787 (95% CI, 0.747–0.827), p < 0.001
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difficult to obtain or not conducted at all. In actual clinical 
practice, an orthopaedic surgeon’s initial assessment deter-
mines whether a patient is discharged from the emergency 
room or needs more evaluation or treatment. In essence, this 
was a diagnostic assessment research with minimal data. 
Further prospective multi-institutional research is required 
to verify the performance and therapeutic utility of artificial 
intelligence employing deep learning.

We created an artificial intelligence model capable of 
evaluating both AP and lateral distal humerus radiographs 
and providing a diagnosis of distal humerus fractures com-
parable to that performed by orthopaedic surgeons in various 
phases of training. Our work demonstrates the feasibility and 
clinical validity of an AI algorithm in the investigation of 
distal humerus fractures.

Conclusion

To conclude, we developed a deep-learning model that is 
capable of analysing both AP and lateral elbow radiographs 
and delivering a diagnosis of distal humerus fractures rea-
sonably comparable to those of orthopaedic surgeons in vari-
ous stages of training. Our research has showed the specific-
ity and positive predictive value of a deep learning system 
for distal humerus fracture examinations.
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Graph 2   ROC curve for the diagnosis of DHF by orthopaedicians 
with variable years of experience compared to the AI model

Table 4   Area under the curve

Orthopaedician AUC​ 95% confidence interval P-value

1 0.823 0.790–0.856  < 0.0001
2 0.863 0.832–0.894  < 0.0001
3 0.545 0.500–0.590 0.053
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Graph 3   Graph depicting the ROC curves of the Orthopedics Sur-
geons

Table 5   Statistical parameters 
of the AI (deep learnings) 
model based on the confusion 
matrix

1 Sensitivity 61.48796499

2 Specificity 95.89041096
3 PPV 99.46902655
4 NPV 16.58767773
5 Accuracy 69.14660832
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