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Abstract
Purpose Accurately forecasting the occurrence of future covid-19-related cases across relaxed (Sweden) and stringent (USA and
Canada) policy contexts has a renewed sense of urgency. Moreover, there is a need for a multidimensional county-level approach
to monitor the second wave of covid-19 in the USA.
Method We use an artificial intelligence framework based on timeline of policy interventions that triangulated results based on
the three approaches—Bayesian susceptible-infected-recovered (SIR), Kalman filter, and machine learning.
Results Our findings suggest three important insights. First, the effective growth rate of covid-19 infections dropped in response
to the approximate dates of key policy interventions. We find that the change points for spreading rates approximately coincide
with the timelines of policy interventions across respective countries. Second, forecasted trend until mid-June in the USA was
downward trending, stable, and linear. Sweden is likely to be heading in the other direction. That is, Sweden’s forecasted trend
until mid-June appears to be non-linear and upward trending. Canada appears to fall somewhere in the middle—the trend for the
same period is flat. Third, a Kalman filter based robustness check indicates that bymid-June the USAwill likely have close to two
million virus cases, while Sweden will likely have over 44,000 covid-19 cases.
Conclusion We show that drop in effective growth rate of covid-19 infections was sharper in the case of stringent policies (USA
and Canada) but was more gradual in the case of relaxed policy (Sweden). Our study exhorts policy makers to take these results
into account as they consider the implications of relaxing lockdown measures.
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Understanding the implications of covid-19 policy interven-
tions remains a significant hurdle [1]. As of mid-May, on the
one hand, the covid-19 pandemic continues to devastate
economies—some estimates indicate that under current cir-
cumstances the economic downturn could be as much as
2.0% global economic growth per month [1]. On the other

hand, as of May 18, 2020, over 4.8 million people have been
infected and over 318,000 have died [2]. Clearly, policy
makers are struggling to balance trade-offs between economic
recovery and infection-related mortality [3]. While stringency
in policy interventions appears to be now globally accepted,
there remain variations in government responses to a phased
implementation and reduction in physical distancing policies.
Sweden acted relatively slowly seeking voluntary physical
distancing from citizens. But Germany, South Korea, Hong
Kong, among others followed a more stringent approach to-
ward physical distancing [4, 5]. The USA and Canada also
broadly followed a more stringent policy intervention.

Attempts are now being made to visualize counterfactual
scenarios that compare the impact of less and more interven-
tion strategies tailored around social distancing, school clo-
sures, and border control [6]. Efforts are also underway to
systematically track and compare worldwide government re-
sponses through a stringency index that monitors 16 interven-
tions in over 100 countries [7]. While various organizations
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are establishing mechanisms to monitor policy interventions,
leading scientific opinion and commentaries appear to be
struggling with how various policy interventions, biased in
favour of either relaxed or stringent policies, are impacting
occurrence of future cases. Furthermore, in the current land-
scape of widespread economic hardship and quarantine fa-
tigue, many states in the USA are drawing down suppression
measures, sometimes even in spite of increases in daily new
case-loads. These conditions in concert create a risk for a large
second wave of infections. Close monitoring of where health
care systems are currently being strained or have excess ca-
pacity, as well as where new cases are increasing or decreas-
ing, could help inform wise policy choices at a local level.

Thus, it appears that accurately forecasting the occurrence
of future covid-19-related cases across relaxed (Sweden) and
stringent (United States and Canada) policy contexts has a
renewed sense of urgency. Moreover, there is a need for a
multidimensional county-level approach to monitor the sec-
ond wave of covid-19 in the USA. We developed a robust
modeling framework using multi-method artificial intelli-
gence approach based on timeline of policy interventions to
evaluate impacts of stringency on a potential second wave of
infections.

Method

We modeled influence of covid-19 policy intervention bias
and present a one month forecast of covid-19 cases across
relaxed (Sweden) and stringent (United States and Canada)
contexts. Though we do not study the impact of individual
policies, we do account for the timelines of governmental
interventions that cluster various policies related to covid-19.
Such timelines proxy for the presence or absence of stringen-
cy. We see stringency through clustering of policies around
dates of key policy interventions, in USA (March 12, 2020,
March 23, 2020, and April 7, 2020), in Canada (March 12,
2020, March 20, 2020, and March 31, 2020), and in Sweden
(March 1, 2020, March 12, 2020, and March 30, 2020). We
use an Artificial Intelligence framework that triangulated re-
sults based on the three approaches—Bayesian susceptible-
infected-recovered (SIR), Kalman filter, and machine learn-
ing. We identified timelines of policy interventions based on
publicly available information [6, 7].

The policy interventions included in our analysis are school
closing, workplace closing, cancelled public events, restric-
tion on gatherings, closing public transport stay at home re-
quirements, restrictions on internal movements, international
travel controls, income support, debt contract relief, interna-
tional support, public information campaigns, testing policy,
contact tracing, emergency investment in health care, and in-
vestment in vaccines. Of these, Sweden had not actioned the
following policy interventions at all: cancelled public events,

closed public transport, and stay at home requirements. Of
those that were actioned, Sweden did better than its North
American counterparts only in income support, debt contract
relief, and contact tracing. Overall, Sweden’s policy has been
much more relaxed. However, relative stringency of these
policies across the USA, Canada, and Sweden measured by
the Oxford COVID-19 government response tracker
(OxCGRT) stringency index can be seen in Fig. 1 [7].

Bayesian SIR model

We started by performing Bayesian inference for the key ep-
idemiological parameters of an SIR model using Markov
chain Monte Carlo (MCMC) sampling [8]. To model influ-
ence of covid-19 policy intervention bias and present a
one month forecast of covid-19 cases across stringent (USA
and Canada) and relaxed (Sweden) policy interventions, we
built on outstanding work by Dehning et al. (2020) (Figs. 2a,
3a, and 4a). The Bayesian SIR model helped us investigate
influence of government response measures as seen through
timelines associated with relaxed and stringent policy inter-
ventions. We assumed a temporal change in the covid-19
spreading rates across these jurisdictions as a function of spe-
cific timeline of policy interventions. We calculated the
spreading rate based on (a) key policy interventions clustered
around specific timelines (i.e., dates), (b) reproduction num-
bers (R0) for Sweden, USA, and Canada on respective dates,
and (c) recovery rate that had a median recovery time of
eight days [6–9] The key parameters of the model included
the following: three normally distributed change points indi-
cating specific policy interventions, three log-normally dis-
tributed spreading rates across aforementioned change points,
log-normally distributed recovery rate, log-normally distribut-
ed reporting delay of eight days, and initially infected popu-
lation of 100.

Kalman filter

Next, we took a robustness check to test the Bayesian SIR
model’s results using a Kalman filter approach. Kalman filter
was pioneered by Rudolf Emil Kalman in 1960, originally
designed and developed to solve the navigation problem in
Apollo Project. Since then, it has found numerous technology-
based applications related to guidance, navigation, vehicle
control, object tracking, trajectory optimization, time series
analysis in signal processing, econometrics, among others.
To forecast covid-19 cases across USA, Canada, and
Sweden over a month, we used Kalman filter‘s recursive al-
gorithm that used time series measurement while accounting
for statistical noise, and produced estimations of unknown
variables (Figs. 2b, 3b, and 4b). We used daily cases (con-
firmed, death, and recovered) as a time series and fit a model
that tracked the series. Our data was derived from Johns
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Hopkins University’s Coronavirus Resource Center. Our al-
gorithm was adaptive as it did not need a lot of historical/
training data. Each day the algorithm was updated with new
observation; after fast parameter estimation, it generated pre-
dictions for the next timestamp. To predict longer periods, we
imitated an iterative online system that trained the model ev-
ery day and predicted the next day. Then, instead of getting
the feedback of the real value, we updated the next timestamp
value with the last prediction plus some calculated noise, and
predicted again. Eventually, we fitted a linear model to predict
the spread of COVID-19 along the time where the Kalman
predictors were the main features. See equations in the
Appendix.

Inferring potential for second wave across US
counties

Finally, while we forecasted covid-19 cases across Sweden,
USA, and Canada over a month, we also extrapolated avail-
able information using a multidimensional county-level ma-
chine learning approach to monitor the second wave of covid-
19 in the USA. To that end, we projected all US counties with
more than 100,000 residents onto axes of current hospital
capacity and week-over-week change in new cases (Fig. 2c).
The primary data source for our analysis was the New York
Times data repository maintained on GitHub. This data source
gave by county daily cumulative case and death counts. We
differenced the vector of daily cumulative cases to get new
cases per day and calculated the rolling sum and mean of that
quantity across various time windows to support further anal-
ysis. We then incorporated hospital bed count data from the
US Homeland Infrastructure Foundation-Level Data (HFLID)
repository. We processed this dataset into a total count of

general acute care and critical care beds by county and joined
it to the daily cases dataset. With daily cases and total hospital
beds, we then built metrics to estimate current bed capacity
and change in new cases for each county. Estimating bed
capacity required assumptions of the rate of hospitalization
among reported covid-19 cases, as well as an assumption of
the proportion of total hospital beds that are available to treat
covid-19 patients, and finally an assumption of length of stay
in the hospital. We assumed that 20% of reported cases would
require hospitalization based on a survey of states that report
total hospitalizations. Next, we assumed that 39% of total beds
would be available to treat covid-19 patients. This assumption
was informed by taking the mean of available beds across
hospital referral regions in a dataset put together by The
Harvard Global Health Institute (HGHI). Finally, a 12-day
length of stay was assumed, also informed by the HGHI
methods.

The 12-day rolling sum of new cases, starting from
three days prior to mitigate reporting delays, multiplied by
the hospitalization rate gave an estimate of the number of
currently hospitalized patients in each county. We subtracted
that quantity from the estimate of available beds and then
divided by available beds to get a proportion of open beds to
available beds. We then created a metric for the change in new
reported cases over time. We investigated multiple time hori-
zons but found the weekly interval to be both reasonably low
latency and stable. The daily data tended to have a lot of
variability, which was smoothed out by summing cases over
a week. We again indexed the rolling sum three days back to
mitigate reporting delays.

With these two metrics created, we leveraged a two-
dimensional plane to project the county-level data. In order to
provide a geographic context, we mapped a colour dimension to

Fig. 1 Mapping the Oxford
COVID-19 government response
tracker (OxCGRT) stringency in-
dex across USA, Canada, and
Sweden
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the nine US Census Bureau regions. Finally, we joined US
Census Bureau population estimates from the 2017 census and
mapped that data to the size dimension. A static snapshot of the
final chart is shown below. See equations in the Appendix.

Results

As of May 10, 2020, the forecasted trend until mid-June in the
USA was downward trending, stable, and linear. Furthermore,
the effective growth rate of covid-19 infections dropped in
response to the approximate dates of key policy interventions.
Specifically, the first change point for the spreading rate may
have occurred approximately around March 15, 2020, and the
second change point may have occurred approximately around
March 25, 2020. Regardless of the impacts, exponential growth

in the USA was still implied, and a Kalman filter robustness
check projects that the USA is likely to have close to two
million covid-19 cases by mid-June. US counties in New
England and Mountain states may be at the most risk for a
second wave surge in infections. However, counties in East
North Central and West North Central (typically referred to as
the Midwest) and in South Atlantic USA (North Carolina,
Virginia) are also at risk of a second wave (Figs. 2a, b, and c).

In Canada, the forecasted trend until mid-June appears to
be more stable and linear. Infection rates declined coincident
with Canada’s relatively stringent policy interventions.
However, Kalman filter results indicate that Quebec will still
be seeing a growth in covid-19 infections (Figs. 3a, and b).

Sweden’s forecasted trend until mid-June appears to be
non-linear and upward trending. Furthermore, the drop in
the effective growth rate of covid-19 infections appeared to

Fig. 2 a (Clockwise) Effective growth rate of covid-19 cases for the
USA, Bayesian SIR model forecast of new confirmed covid-19 cases
for the USA, and number of new covid-19 cases in the USA. b Kalman
filter prediction of confirmed covid-19 cases in the USA. c Estimated bed

capacity relative to weekly change in new cases in US counties. USA
counties that fall in the top right quadrant of the chart (e.g., New England,
Mountain States, Midwest, and South Atlantic) may be at the most risk
for a surge in infections
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have been only gradual around the dates of key policy inter-
ventions. Our findings suggest that infections did not slow
down as rapidly in Sweden compared with USA and
Canada. We infer that the likely reason is Sweden’s relatively
relaxed policy intervention (Figs. 1, 4a, b).

Discussion

Using an Artificial Intelligence framework, we modeled influ-
ence of covid-19 physical distancing policies across relaxed
(Sweden) and stringent (USA and Canada) contexts. Our find-
ings suggest three important insights. First, the effective growth
rate of covid-19 infections dropped in response to the approx-
imate dates of key policy interventions. The dropwas sharper in
the case of the USA and Canada that actioned stringent policies
but was more gradual in the case of Sweden that actioned a
more relaxed policy. We find that the change points for spread-
ing rates approximately coincide with the timelines of policy
interventions across respective countries. Second, forecasted
trend until mid-June in the USA was downward trending, sta-
ble, and linear. Sweden is likely headed in the other direction.
That is, Sweden’s forecasted trend until mid-June appears to be
non-linear and upward trending. Canada appears to fall some-
where in the middle—trend for the same period is flat. Third, a
Kalman filter based robustness check indicates that by mid-
June the USA will likely have close to two million virus cases,
while Sweden will likely have over 44,000 covid-19 cases.

Specifically, we studied 16 policy interventions in the
USA, Canada, and Sweden that ranged from school and work-
place closing and restrictions on public gatherings and trans-
port to testing and contact tracing policies. We found that
Sweden had neither cancelled public events and closed public
transport nor actioned stay at home requirements. Sweden

outperformed its North American counterparts only in income
support, debt contract relief, and contact tracing. Overall,
Sweden’s policy has been much more relaxed and this could
drive a higher number of covid-19 cases by mid-June.

In the case of the USA, the Bayesian SIRmodel predicts that
by mid-June, there will likely be between 20,000 and 28,000
covid-19 new confirmed cases reported daily. However, rela-
tive to the past, the forecasted trend appears to be more down-
ward trending, stable, and linear. Furthermore, we notice that
the effective growth rate of covid-19 infections appears to drop
around dates seeing key policy interventions characterized by
Dehning et al. (2020) as forms of mild distancing, strong dis-
tancing, and contact ban on March 12, 2020, March 23, 2020,
and April 7, 2020, respectively. Thus, as of May 10, 2020, we
find evidence that the virus was clearly slowed down through
USA’s relatively stringent policy interventions. Coinciding
with such policy interventions, the first change point for the
spreading rate may have occurred approximately around
March 15, 2020, and the second change point may have oc-
curred approximately around March 25, 2020. However, it can
be fairly assumed that despite these actions, exponential growth
was still implied. As a robustness check, our Kalman filter
approach indicates that the USA is likely to have close to two
million covid-19 cases by mid-June. However, the Kalman
filter also does indicate a gradual flattening of the curve.

Furthermore, we believe that when the human element is
considered, US counties that fall in the top right quadrant of
the chart (e.g., New England, Mountain States, and Midwest)
may be at the most risk for a surge in infections. These are
places where hospitals currently have capacity and decision
makers might feel better with relaxing suppression measures,
even though new cases are currently on the rise.

In the case of Canada, the Bayesian SIR model predicts that
by mid-June, the country may still have between 1000 and

Fig. 2 (continued)
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2500 covid-19 new confirmed cases reported daily. Thus, as of
May 10, 2020, we found evidence that the rate of new infec-
tions was decreasing (i.e., flattening of the curve) through
Canada’s relatively stringent policy interventions on
March 12, 2020, March 20, 2020, and March 31, 2020.
Coinciding with such policy interventions, the first change
point for the spreading rate may have occurred approximately
aroundMarch 14, 2020, and the second change point may have
occurred approximately around March 22, 2020. However, it
can be fairly assumed that despite these actions exponential
growth was still implied. To progress toward flattening the
curve, Canada needed to undertake the third policy interven-
tion, which it did take around March 31, 2020. As a robustness
check, our Kalman filter approach indicates that the Canadian
provinces of Alberta, Ontario, and Quebec are likely to have >
10,000, > 32,000, and > 69,000 covid-19 cases bymid-June. Of

these Canadian provinces, only Quebec appears to still be
showing a growth in covid-19 infections.

In the case of Sweden, the Bayesian SIR model predicts
that by mid-June, the country may still have upward trending
of 600 covid-19 new confirmed cases reported daily.
However, the forecasted trend appeared to be non-linear and
upward trending. Furthermore, we noticed that drop in the
effective growth rate of covid-19 infections appeared to have
been only gradual around dates seeing key policy interven-
tions, as described above (March 1, 2020, March 12, 2020,
and March 30, 2020). Thus, as of May 10, 2020, we find
evidence that the virus did not slow down as rapidly in
Sweden. We infer that the likely reason is Sweden’s relatively
relaxed policy intervention. Coinciding with such relaxed pol-
icy interventions, the first change point for the spreading rate
may have occurred approximately aroundMarch 7, 2020, and

Fig. 3 a (Clockwise) Effective growth rate of covid-19 cases for Canada, Bayesian SIRmodel forecast of new confirmed covid-19 cases for Canada, and
number of new covid-19 cases in Canada. b Kalman filter prediction of confirmed covid-19 cases in Alberta, Ontario and Quebec
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the second change point may have occurred approximately
aroundMarch 27, 2020. However, despite these actions expo-
nential growth was still implied. As a robustness check, our
Kalman filter approach indicates that Sweden will likely have
> 44,000 covid-19 cases by mid-June.

Our analysis has several strengths. We show that stringent
physical distancing policies are influencing the downward
covid-19 trend (as in the case of USA) or are flattening the
curve (as in the case of Canada). We also find that the relaxed
physical distancing policy might be influencing the upward
covid-19 trend (as in the case of Sweden). We base our anal-
ysis on changing covid-19 spreading rates triggered by specif-
ic policy interventions. Our greatest limitation is that we are
making a forecast on a rapidly evolving scenario. Though we
forecast the big picture and triangulate our analysis using a
novel AI framework based on timeline of policy interventions,
we may be missing out on impact of individual policies across
the USA, Canada, and Sweden.

Furthermore, we also make a novel rapid assessment of the
current status of the outbreak.We determineUS counties where
hospital resources are stretched thin, those with capacity, and
those with large increases or decreases in new cases. The data

visualization could be operationalized for decision making by
setting thresholds for turning suppression measures on or off
based on hospital capacity and new cases. These thresholds
would correspond to regions of the chart, and counties falling
within those regions could consider the policy recommenda-
tion. We feel that the assumptions made to calculate the metrics
are reasonable given the landscape of uncertainty and lack of
reliable data on true infection and adverse outcome rates; how-
ever, there are several improvements required to make the tool
sufficiently robust to inform policy decisions. We know that
age and presence of comorbidities have a significant effect on
hospitalization rate, so a model of county-by-county hospitali-
zation rate that used those factors as inputs could improve the
estimate of currently hospitalized patients. Similarly, bed ca-
pacity could be modeled at the county level, analogous to the
work that the HGHI team did for hospital referral regions.
Lastly, the week-over-week case delta metric currently assumes
a stable rate of testing and is susceptible to shifts when that
assumption is violated. It could be improved to account for
varying test rates if that data was available at the county level.

In conclusion, our study has made some headway in un-
derstanding the implications of covid-19 policy interventions.

Fig. 4 a (Clockwise) Effective
growth rate of covid-19 cases for
Sweden; Bayesian SIR model
forecast of new confirmed covid-
19 cases for Sweden; andNumber
of new covid-19 cases in Sweden.
b Kalman filter prediction of
confirmed covid-19 cases in
Sweden
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Though we do not study the impact of individual policies, we
do account for the timelines of governmental interventions
that cluster various policies related to covid-19. We show that
fall in effective growth rate of covid-19 infections was sharper
in the case of the USA and Canada that actioned stringent
policies but was more gradual in the case of Sweden that
actioned a more relaxed policy. Our study exhorts policy
makers to take these results into account as they consider the
implications of relaxing lockdown measures.
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APPENDIX

Equations for Kalman filter

The following equations are based on Bar Ilan University
module, 'Algorithms for Statistical Signal Processing'. We
greatly appreciate Prof. Sharon Gannot's generous support in
this regard. Kalman filter is a recursive algorithm suitable for
dealing with multivariable systems, time varying systems, and
non-stationary random processes. It can overcome the short-
comings and limitations of the classical Wiener filtering the-
ory. Consider the dynamic system as follows:

dn ¼ Φndn−1 þ wn; n ¼ 1; 2;⋯

Where dn is the state vector, Φn state transition matrix and
wn is the model noise.

The initial conditions are given d0 a random vector where

E d0f g ¼ m0

E d0−m0ð Þ d0−m0ð ÞT
n o

¼ P0

wn model noise is a white noise where

E wnf g ¼ 0

E wnwT
m

� � ¼ Qn m ¼ n
0 m≠n

�

E wndT0
� � ¼ 0; n ¼ 1; 2;⋯

The measurement equation is given as follows:

yn ¼ Hndn þ vn

WhereHn is the measurement matrix and vn is the measure-
ment noise.

Let bdnjn be the estimator of dn from the measurements

yn; n ¼ 1; 2; 3;⋯

The following are the estimation error and the covariance:

enjn ¼ bdnjn−dn

Pnjn ¼ E bdnjn−dn
� � bdnjn−dn

� �T
� �

¼ E enjneTnjn
n o

The posteriori estimate covariance matrix.

Initialization:

bd0j0 ¼ E d0f g ¼ m0

P0j0 ¼ E d0−m0ð Þ d0−m0ð ÞT
n o

¼ P0

Propagation equations:

bdnjn−1 ¼ Φn
bdn−1jn−1

Pnjn−1 ¼ ΦnPn−1jn−1ΦT
n þ Qn

Update equations:

bdnjn ¼ bdnjn−1 þ Kn yn−Hnbdnjn−1
� �

Pnjn ¼ I−KnHnð ÞPnjn−1 I−KnHnð ÞT þ KnRnKT
n

¼ I−KnHnð ÞPnjn−1

Kalman gain

Kn ¼ Pnjn−1HT
n HnPnjn−1HT

n þ Rn
� 	−1

Equations to infer potential for second wave across
US counties

The calculation for estimated bed capacity is shown below.

Est:Capacity ¼ total beds*0:39−∑−3
i¼−15new casesi*0:2

total beds*0:39

The proportional change in weekly cases was calculated as
shown below.
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Δnew cases ¼ ∑−11
i¼−18new casesi−∑−3

i¼−10new casesi
∑−11

i¼−18new casesi
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