
REVIEW ARTICLE

Clinical trials of intervertebral disc regeneration: current status
and future developments

Yi Sun1
& Victor Y. Leung1

& Kenneth M. Cheung1

Received: 6 November 2018 /Accepted: 20 November 2018 /Published online: 29 November 2018
# SICOT aisbl 2018

Abstract
Intervertebral disc (IVD) degeneration (IDD) is considered as one of the major causes for low back pain (LBP). However,
conventional surgical approaches for treating LBP do not aim to counter the degeneration. Biological interventions have been
investigated with an attempt to regenerate the IVD by restoring its matrices and cell activities. This review summarizes the current
clinical trials that explore the efficacy of covering cell-, growth factor-, and small molecule-based approaches. While investiga-
tions of growth factor- and small molecule-based therapies are still preliminary, intradiscal delivery of mesenchymal stromal cells
has been more widely adopted and shown positive results in addressing the pain and the associated physical disability, albeit to a
lower extent than observed in previous animal studies. Strategies that potentiate the endogenous disc progenitors may offer a
valid alternative to the exogenous cell transplantation. Identification of the novel biologics to arrest IDD phenotype may
potentiate disc repair in future. Large-scale, high-quality long-term trials should be conducted to clarify the safety and efficacy
of these therapies.

Keywords Intervertebral disc degeneration . Regeneration . Clinical trial . Mesenchymal stromal cells . Growth factor . Small
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Introduction

Intervertebral disc degeneration (IDD) is one of the most debil-
itating medical conditions and considered a major cause for low
back pain in addition to radicular symptoms [1–3].
Intervertebral discs (IVDs) are fibrocartilaginous tissues be-
tween vertebrae contributing to spinal mobility and shock ab-
sorption. The IVD is composed of an inner gelatinous nucleus
pulposus (NP) core and an outer ring of annulus fibrosus (AF),
sandwiched between the cartilaginous endplates (CEP) of the
rostral and caudal vertebral bodies. The NP consists of primar-
ily proteoglycans and collagen II in the extracellular matrix
(ECM). This matrix meshwork is established collectively by a
heterogenous NP cell population including notochordal and
chondrocyte-like cells [4]. Loss of NP cells, particularly the
resident progenitors, and consequently the disrupted balance

of synthesis and degradation of ECM, especially proteoglycans
which play an essential role in maintaining hydration of the
IVD, is thought to be one of the leading causes of IDD [4].
Abnormal expression of growth factors (e.g., TGFβ [5, 6], IGF
[6, 7]) and pro-inflammatory cytokines (e.g., IL-1 [8], TNF α
[9]) is also associated with the degenerative process. These
changes ultimately compromise the anatomical and mechanical
properties of IVD, resulting in a loss of disc height, disc defor-
mation, and spinal disability under load.

Surgical procedures, such as spinal fusion or disc
arthroplasty, are the last resort for treating IDD if conservative
therapies fail to relieve the symptoms [10, 11]. However, spi-
nal fusion needs long recovery time and may cause adjacent
level degeneration [12]. In addition to substantial health care-
related expenses, the surgery may also result in adverse com-
plications [13]. New biological approaches are therefore in-
vestigated aiming to control disc degeneration progression
and preserve the spinal kinematics in a minimally invasive
manner.

These approaches, often referred as regenerative medicine,
include growth factor-, gene-, and cell-based therapies [6, 14,
15]. They have been demonstrated to induce the repair of IVD,
primarily via NP regeneration, in various in vitro and
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preclinical studies. The efficacy of some of these approaches
in clinical settings have been demonstrated, therefore offering
hope to low back pain patients [16]. This review aims to revisit
the completed and undergoing clinical trials of the state-of-
the-art biologics for treating IDD and attempt to discuss the
direction of future regenerative strategies in light of the
findings.

Cell-based therapy

Cell-based therapies in clinical trial

Cell-based therapies, mostly by intradiscal delivery, have
drawn considerable attention over past decades [15–18]. The
major cell sources include notochordal [17], chondrocyte-like
NP cells [18], and mesenchymal stromal cells (MSCs) [15,
19]. In particular, initial clinical studies have utilized MSCs
due to their advantages over the other cell sources in terms of
production and possible auxiliary effects on suppressing in-
flammation [15, 16, 20–27] (Table 1).

Out of 12 reports, ten are related to MSCs, of which seven
have been completed with data disclosed, while the other two
propose the use of NP cell derivatives (clinicaltrials.gov:
NCT01640457 [20], NCT03347708). In contrast to adipose-
derived MSCs (NCT02338271 [21], NCT02097862 [22],
NCT03461458), bone marrow-derived (BM-) MSCs have
been more widely investigated (NCT01290367 [23],
NCT01860417 [24 , 2 5 ] , NCT03011398 [ 28 ] ,
NCT03692221, NCT03340818, etc. [26, 27]). Although allo-
geneic MSCs might induce weak and transient immune re-
sponse, indicated by anti-HLA antibodies at a detectable level
in serum within 12-month post-intradiscal injection, the ther-
apeutic efficacy appeared not dependent on HLA matching
[24, 25]. This may be presumably due to the suppressed host
immune responses by transplanted MSCs [29]. Indeed, allo-
genic BM-MSC may be of valid alternative as it allows one-
step treatment for patients. BM-MSCs implantation was ex-
plored in five trials and generally reported to provide signifi-
cant benefits in terms of pain relief for 12 and up to 36 months
and increased IVD hydration [23, 25–28]. Interestingly, IVD
height was usually not restored. Patient mobility and quality
of life was improved for up to a six year post-treatment [27]. It
is also noteworthy that a higher dosage of MSCs appeared to
result in better outcome, where fewer patients needed further
surgical intervention [23].

However, cautions should be taken when interpreting the
results due to the limited sample size and noncontrolled or
nonrandomized design. Two phase II trials have been com-
pleted using allogenic BM-MSCwith up to 36months follow-
up in 125 patients [23–25]. They are in blinded, randomized,
and controlled setup. However, the other five completed trials
using autologous MSCs were open-label and single-arm with

attempt to clarify the safety and tolerability of the treatment
[21, 22, 26–28]. To date, there are two undergoing autologous
MSCs trials in a total of 84 patients involving a more robust
design based on a double-blinded, randomized, and controlled
setup (NCT03692221, NCT03340818).

Limitations and future developments

Despite the encouraging findings from the clinical trials, the
limitations should be carefully considered in treating human
IDD via the cell-based therapy. For instance, inflammation
and endplate destruction have been reported in a goat degen-
eration model after injection of adipose-derived stromal vas-
cular fractions or purified stromal cells [30]. Although this
could be species (goat)- and source (adipose)-dependent and
no resembling observations were reported in current clinical
trials, such outcomes deserve attentions in future long-term
studies. Interestingly, platelet-rich plasma (PRP) supplement-
ed with MSCs could induce disc repair in a rabbit IDD model
without severe adverse effects [31]. Comella et al. also report-
ed no adverse effect in the clinical trial of PRP supplemented
with adipose-derived MSCs in a short-term (6 months) and
small-scale (n = 15) study [22]. This may suggest a synergic
effect of PRP and adipose-derived MSCs in treating IDD.

Human IVDs have distinct cellular compositions, biome-
chanics, and nutritional supply compared to various preclini-
cal models such as rodents, rabbits, and other large quadru-
peds [32]. However, insights obtained from these preclinical
studies may improve the therapies. Studies in animal models
suggested that the efficacy of MSCs in IVD repair may be
largely based on their intrinsic chondrogenic potential and
inhibitory effect on inflammatory cascades or endogenous cell
apoptosis [33–35]. However, IVD is an avascular tissue.
Either the implanted cells or newly regenerated cells need to
adapt to the low glucose supply, hypoxia, acidic, and hyper-
tonic environment. Otherwise, they may suffer from sup-
pressed metabolic activity or even cell death [36]. Consistent
with the limited nutritional supply in the IVD, our previous
study in rabbit lumbar discs indicated that delivering a large
quantity of MSCs could be detrimental [34]. Studies have
attempted to test other sources of stem cells for the reparative
effect, such as umbilical cord-derived MSCs [37]. Moreover,
priming of MSCs before implantation was also investigated,
such as genetically modified hTIMP-expressing BM-MSCs
which might elicit additional inhibitory effects on matrix deg-
radation [38] and MSC preconditioned by pentosan
polysulphate for better chondrogenic differentiation potentials
[39]. However, their efficacy awaits to be compared to the
unmodified MSCs.

On the other hand, preventing cell loss after implantation is
also a key concern. A study indicated that cell loss could reach
up to 90% after implantation due to the annulus failure [40].
However, injection at high doses appeared to avoid the issue,
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and that injection at early stage might minimize cell loss [41].
Various cell carriers have been developed to facilitate the
MSCs implantation as well as chondrogenic differentiation
[42–44]. For example, Zhou et al. generated a genepin cross-
linked type II collagen/chondroitin sulfate composite hydrogel
for MSCs delivery in a mouse IDD model [42]. Other exam-
ples were self-assembly peptide nanofibers [43] and collagen-
low MW (150-300KDa) hyaluronic acid hydrogel [44]. An
alternative is to develop deliver approaches that minimize
damage to the annulus, such as intravenous injection [45]
and transpedicular approach [46].

Altogether intradiscal injection of MSCs seems to be safe
and able to relieve the IDD symptoms in initial human trials.
However, long-term safety and efficacy are awaited to be clar-
ified by larger-scale and well-controlled studies. Preclinical
findings supported the use of cell sources alternative to
MSCs or disc cells, benefits of preconditioned or functionally
enhanced MSCs, and strategies that maximize cell engraft-
ment. Their safety and efficacy warrant further investigation
in humans.

Endogenous progenitors-based therapy

Strategies that can activate endogenous progenitors may be an
alternative approach to exogenous cell-based therapies.
Accumulative evidences have suggested the existence of disc
progenitors in NP, AF, and EP regions and their reduced ac-
tivity in aging and IDD [47, 48]. Cells clusters observed in NP
and AF lesions in different animal models and clinical lumbar
degenerative discs are indicative of an attempted self-repair by
resident stem cells [49]. These progenitors could offer an op-
portunity to overcome the practical and regulatory hurdles
related to cell implantation mentioned above. For example,
NP progenitors were in vitro differentiated and transplanted
for sciatic regeneration [50]. While Ishii et al. showed that, in
contrast to the MSCs, these disc progenitors presented a lower
proliferative capacity and differentiation potential [51]; further
study is required to understand their metabolic activities
in vivo and how these progenitors may be activated and mi-
grate to injury sites. The progenitor function and regulation in
IVDs has been reviewed by Clouet et al. [15]. In particular,
studies have highlighted the role of SDF1 in stem cell migra-
tion and GDF5/6 in progenitor differentiation, providing po-
tential implications for harnessing disc progenitor activity.

Growth factor-based therapy

Several growth factors have been reported to restore the bal-
ance of anabolic and catabolic activities in both in vitro and
animal studies (reviewed by Kennon et al. [6]). In particular,
studies have focused on the use of TGF β family members or
their modifiers [52, 53] (Table 2).Ta
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Kwon et al. evaluated a total of 50 subjects with symptom-
atic lumbar disc degeneration (Thompson grade 2–3) and
VAS > 40 mm and ODI >30% at first visit [53]. YH14618 is
biglycan fragment that binds to TGF β1 and arrest IDD in a
rabbit model [53]. YH14618were intradiscally injected into the
IVDs at three different dosages of 1, 3, and 6 mg/disc. Adverse
effects were reported by 27 patients in this study. Fifty percent
of the subjects were responsive to YH14618 treatment andVAS
scored − 2.18 from baseline after six months. ODI was reduced
by 12.38while placebo group by 6.67. Two patients (6mg/disc)
with MRI improvement were noted albeit no statistical signifi-
cance. Peniel 2000 is another biglycan-derived peptide that
regulates TGF signaling and reported to attenuate IDD in a
rabbit model [54]. These suggest that moderating TGF signal-
ing may have a role in modifying IDD.

Three ongoing phase II tr ia ls (NCT01158924,
NCT01124006, NCT01182337) investigating the efficacy of
GDF5 are documented. The outcomes are yet to be released.

Small molecule-based therapy

Compared to cell- or growth factor-based therapy, small mol-
ecules are barely degradable in vivo and commonly consid-
ered as a relatively economic approach.

Abaloparatide is parathyroid hormone (PTH)-related pro-
tein analog drug for treating osteoporosis (NCT03708926).
PTH has been shown to effectively attenuate disc degenera-
tion in aged mice [55]. A phase II clinical trial is being con-
ducted to investigate its effect in improving pain and physical
function in lumbar disc degeneration patients.

SM04690 is a Wnt pathway inhibitor capable to induce
chondrogenic differentiation of both MSCs and disc cells
and reported to regenerate disc structure in a rat IDD model
[56]. Samumed initiated this clinical trial to test its therapeutic
potential in alleviating pain and improving disc health
(NCT03246399). Three different dosages (0.03 mg,
0.07 mg, and 0.15 mg per disc) were intradiscally injected,
and the subjects monitored up to six months.

Small molecule therapy is broadly applied to treat various
pathological conditions, including osteoarthritis [56, 57] and
IDD [58–61] (Table 3). Several small molecules with their
molecular targets known or unknown have been proposed,
including IL17A inhibitor [58], epigallocatechin 3-gallate
[ 6 0 ] , r e s v e r a t r o l [ 5 9 ] , a n d n i c o t i n a m i d e
phosphoribosyltransferase inhibitor (APO866) [61] to inhibit
matrix degradation in animal models. Resveratrol could also
inhibit NP cells apoptosis [62]. Polyphenol epigallocatechin
3-gallat was shown with anti-inflammatory and anti-catabolic
activities and could reduce radiating pain [60]. Urolithin A
could inhibit inflammatory responses of NP cells and alleviate
IDD in rat [63]. However, as the key pathological events/
molecules for IDD and the target of these small moleculesTa
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are yet to be elucidated, their application in humans is debat-
able. Identification of effective small molecules with defined
molecular target is not only highly desirable for management
of IDD but also the understanding of IDD aetiology.

Conclusion

In summary, this review collects and summarizes the clinical
evidences for IVDs’ regeneration using cell-based, growth
factor-based, and small molecule-based therapies. MSCs-
based therapy has been more widely investigated in clinical
trials. Encouraging results have been obtained albeit at a lower
extent of efficacy than expected. Therapies that rely on
eliciting self-repair mechanism, such as endogenous progeni-
tor activation may be a valid alternative strategy. Small
molecule-based therapy is an area relatively underdeveloped
presumably due to the limited understanding of the degenera-
tive mechanism, and hence difficulty in pinpointing the regu-
latory targets. A combination of above regeneration strategies
as well as identifying degeneration stage-specific therapeutic
windows may be one of the ways to enhance disc repair
efficacy.

IDD is a chronic disorder with predeposition from aging
[64], genetic [65], and environmental risk factors, including
smoking [66], obesity [67], physical loading [68], etc. As the
regulatory target/pathway is still largely unknown [69], the
strategies likely require repeated administration to effectively
control the progression. Moreover, not all IDD patients have
LBP [1]. Whether IVD regeneration may effectively prevent
LBP and other associated IDD symptoms in long term, needs
are to be addressed by large-scale randomized controlled
studies.
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