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Abstract
Purpose The use of stem cells in regenerative medicine offers
hope to treat numerous orthopaedic disorders, including artic-
ular cartilage defects. Although much research has been car-
ried out on chondrogenesis, this complicated process is still
not well understood and much more research is needed. The
present review provides an overview of the stages of chon-
drogenesis and describes the effects of various growth factors,
which act during the multiple steps involved in stem cell-
directed differentiation towards chondrocytes.
Methods The current literature on stem cell-directed chondro-
genesis, in particular the role of members of the transforming
growth factor-β (TGF-β) superfamily—TGF-βs, bone mor-
phogenetic proteins (BMPs) and fibroblast growth factors
(FGFs)—is reviewed and discussed.
Results Numerous studies have reported the chondrogenic
potential of both adult- and embryonic-like stem cells and
the role of growth factors in programming differentiation of
these cells towards chondrocytes. Mesenchymal stem cells
(MSCs) are adult multipotent stem cells, whereas induced
pluripotent stem cells (iPSC) are reprogrammed pluripotent
cells. Although better understanding of the processes involved
in the development of cartilage tissues is necessary, both cell
types may be of value in the clinical treatment of cartilage
injuries or osteoarthritic cartilage lesions.
Conclusions MSCs and iPSCs both present unique character-
istics. However, at present, it is still unclear which cell type is
most suitable in the treatment of cartilage injuries.
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Introduction

Currently available surgical tissue repair techniques have been
classified as palliative (debridement, lavage), reparative (mar-
row stimulation techniques), or restorative (osteochondral
grafting, autologous chondrocyte implantation) [1]. The main
goals of surgical interventions are pain relief and improve-
ment of joint function. The optimal strategywill depend on the
size and location of the lesion, and the patient’s physical
condition and pre-operative status [2]. Each of these factors
should be carefully considered, since all surgical methods
have some limitations. Joint lavage and debridement—proce-
dures that wash out and remove debris, loosen cartilage frag-
ments, and act as inflammatorymediators—are considered the
first line treatment in smaller lesions and in low-demand
patients. Marrow stimulating techniques, such as
microfractures, are used to restore the cartilage surface by
creating a blood clot originating from subchondral bone blood
vessels. This technique is recommended in the case of defects
ranging in size from 2 to 4 cm², and brings improvement in up
to 67% of patients; however, this procedure is not suitable for
larger lesions, where it has a high failure rate [3]. Autologous
chondrocyte implantation (ACI) is presently the most ad-
vanced technique for larger lesions (2–10 cm²). ACI is a
two-step procedure. The first step involves tissue fragment
debridement and lavage of the lesion site accompanied by
cartilage biopsy. In the second step, the isolated chondrocytes
are cultured and implanted into the cartilage defect site [4]. In
the first generation ACI, a periosteal flap is used as a cover for
implanted cells; however, the periosteum often leads to hy-
pertrophic changes in the cartilage [5]. To avoid this undesired
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side effect, a recently proposed technique (second generation
ACI) employs commercially available biomaterial mem-
branes (scaffolds) as a cover for the implanted cells [6].
Application of an appropriate scaffold has been found to
enhance cell proliferation and maturation [7]. The chondro-
cyte proliferation rate is a function of the initial number of
cultured cells and the choice of appropriate articular cartilage
layer as a cell source. The best results are obtained when
chondrocytes are taken from the deeper zones and cultured
at low cell densities [8].

Despite improvements in the ACI technique, disadvantages
remain, most of which are related to the limited number of
chondrocytes available for the cell culture, and re-
differentiation of cells during tissue formation. To overcome
the limitations connected with allogenic and autologous tissue
grafts, research has turned to stem cell-directed therapies, a
relatively novel concept in regenerative medicine. This ap-
proach, based on the use of recombinant human bone mor-
phogenetic proteins (BMPs), will probably be routinely
employed in future because the use of such techniques would
eliminate the need to use autologous tissue for grafting [9].
However, relatively high concentrations of BMPs are required
to overcome the effect of BMP-antagonists, such as noggin
[10].

An interesting approach includes promotion of the mesen-
chymal stem cell (MSC)-directed chondrogenesis by co-
culture of MSC with chondrocytes. The chondrogenic cells
secrete many factors that stimulate MSC differentiation [11].
While several animal and clinical studies along these lines
have been conducted, better understanding of the molecular
events underlying the development of cartilaginous tissue is
necessary [12].

Chondrogenesis

Chondrogenesis at a cellular level

Chondrogenesis proceeds in two main stages: condensation
and differentiation. During the condensation stage, the
precartilaginous mesenchyme is divided into chondrogenic
and non-chondrogenic domains. The condensation starts with
cell movement followed by an increase in cell-packing densi-
ty. This process is associated with enhanced cell-to-cell con-
tacts and mutual interactions due to the adhesion molecules,
Ca2 - dependent N-cadherin and Ca2+- independent N-CAM,
as well as the gap junctions [13].

The differentiation stage comprises cell-matrix interac-
tions, facilitated by the binding of fibronectin to syndecan.
The increased cell proliferation and ECM remodeling is asso-
ciated with the appearance of tenascin, matrilins and
thrombospondins, such as, for example, cartilage oligomeric
protein (COMP), as well as with the disappearance of type I

collagen, fibronectin and N-cadherin. These events result in
the transformation of chondroprogenitor cells into fully dif-
ferentiated chondrocytes [14], while the prechondrogenic
clusters develop into the ECM components, including type
II collagen and aggrecan [15]. When chondrocytes enlarge,
they enter the hypertrophic phase. In this phase the ECM is
enriched in type X collagen and fibronectin. Then the
chondrogenic cells change their environment through miner-
alization by calcium salts. During endochondral ossification,
the chondrocytes undergo apoptosis followed by blood vessel
invasion. Next, bone osteoprogenitors and the cartilagenous
matrix are replaced by the mineralized matrix [16]. Another
significant event is the change in fibronectin expression, as
three different isoforms of this glycoprotein emerge [17]. The
most suitable markers of the stages in this process are the
various collagen types, with expression of type I, III and V
collagens specifically marking condensation of the mesenchy-
mal cells. Chondroprogenitor cell differentiation reveals the
expression of cartilage-specific collagens (types II, IX and
XI). Ultimately, the proliferating chondrocytes express type
VI collagen as well as matrilin 1, while type X collagen
indicates the hypertrophic zone [18].

Chondrogenesis is also connected with morphological
changes of the cells. The chondroprogenitors, which are elon-
gated and fibroblast-like, transform into spherical
chondroblast- and chondrocyte-like cells [19]. The changes
occurring at the cellular level result from the events taking
place at a molecular level.

Chondrogenesis at a molecular level

The principle regulators of chondrogenesis are themembers of
transforming growth factor β (TGF-β) superfamily, fibroblast
growth factors (FGFs), insulin-like growth factors (IGFs), and
members of the wingless-type (Wnt) signaling pathway [20].
The TGF-β superfamily members regulate cell proliferation,
differentiation and apoptosis during embryogenesis. They
include the secretory isoforms: TGF-β1, -β2 and -β3, with
TGF-β3 having the highest chondrogenic potential of all
isoforms, and their action results in rapid cell differentiation
[21]. The TGF-βs and BMPs bind to the extracellular domains
of specific receptors containing serine/threonine kinase activ-
ity in their intracellular domains, and require Sma and Mad
related (SMAD) proteins for signal transduction within the
cells (Fig. 1). Upon binding of the ligand to the receptor,
homodimeric complexes of the receptor are formed, resulting
in one subunit phosphorylating its partner subunit on serine/
threonine residues. This starts a cascade of events involving
phosphorylation of SMAD proteins. The TGF-β pathway
requires SMAD 2 and SMAD 3, whereas the BMP signaling
is dependent upon SMAD 1, 5 and 8. The phosphorylated
receptor-regulated Smads (R-SMAD) reacts with SMAD4 to
create a heterocomplex. The complex, consisting of R-SMAD
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and common-mediator Smad (Co-SMAD), enters the nucleus
and by binding to promoters of target genes, controls their
transcription (Table 1) [22].

Another way to regulate many cellular processes employs
the mitogen-activated protein kinase (MAPK) pathway using
the extracellular signal regulated kinases (ERKs), the C-Jun-
NH2-terminal kinases (JNKs) as well as the p38MAPK (Fig. 2)
[23]. Protein kinase A (PKA) potentiates these effects, acting
via phosphorylation of Ser/Thr residues of crucial substrates, as
well as by indirectly regulating the expression of cyclic
Adenosine 3, 5′-monophospahte (cAMP) responsive genes
via the cAMP response element binding protein (CREB),
which binds to the CRE sites in the promoters of target genes.
PKA also regulates chondrogenesis through activation of pro-
tein kinase C alpha (PKCα) [19] in cytosol and membrane
fractions of mesenchymal cells during chondrogenesis [24]. In
addition, PKA phosphorylates transcription factor Sox9 (sex
determining region Y box 9) resulting in its transfer to the
nucleus and augmentation of the transcriptional activity of these
genes [22, 23]. The expression of Sox9 is up-regulated by sonic
hedgehog transcription factor (SHH), which induces Bapx1
expression, which, in turn, indirectly up-regulates Sox9 expres-
sion. In cooperation with BMPs, a positive feedback loop is
formed between Bapx1 and Sox9, which influences the expres-
sion of chondrogenic factors [25].

Other members of the Sox family (L-Sox5 and Sox6) are
also involved in chondrogenesis. Sox9 and Runt-related tran-
scription factor2 (Runx2) are the principal regulators, but they
differ in function; while Sox9 leads to articular cartilage
formation, Runx2 is involved in hypertrophic maturation of

the cells [18]. Both factors are expressed throughout the entire
chondrogenic process, starting from mesenchymal condensa-
tion and ending with terminal chondrocyte hypertrophy. The
main function of Sox9 is to guarantee cell survival by activat-
ing the expression of type II collagen, alpha I gene (Col2a1),
and other early cartilage marker genes [26]. Sox9 acts through
its carboxyl terminal domain, which interacts with the CREB-
binding protein (CRBP)/p300 complex, inducing the expres-
sion of specific chondrogenic genes [27].

The role of growth factors in chondrogenesis

The influence of BMP subfamily signaling polypeptides re-
sults in various biological responses such as cell growth,
proliferation, differentiation, and apoptosis [28, 29]. BMP-2
is commonly found in cartilage and bone but generally not in
tendons [30]. It increases binding of the NF-Y/p300 complex
to Sox9 promoter, which results in Sox9 accumulation. In
addition, BMP-2 is involved in histone hyperacetylation and
methylation of the Sox9 promoter [31]. Recombinant human
BMP-4 induces early chondrogenesis through the mediation
of Runx2, while BMP-2 and BMP-7 stimulate cellular con-
densation. Moreover, BMP-4 stimulates the synthesis of type
II collagen, aggrecan, and the ECM proteins. It is worth
mentioning that BMPs, apart from promoting chondrogenesis,
are able to stimulate endochondral ossification [32]. BMP-1, -
2 and -3, differential splicing products of the Bmp-1 transcript,
in combination with BMP-7 (known as osteogenic protein-1
[OP-1]), enhance bone formation via osteoblast production
and control and remodel the ECM proteins whose distribution

Fig. 1 The transforming growth
factor (TGF)-β signaling
pathway. TGF-β binds to the
receptor TGF-β-RII. After
binding to TGF-β, TGF-β-RII
recruits and phosphorylates
TGF-β-RI, leading to activation
of Smad2 and Smad3 by
phosphorylation. This process is
inhibited by Smad6/7. Activated
Smad2 and Smad3 form
heterodimers with Smad4 and
translocate to the nucleus.
Together with co-activators, co-
repressors, and other transcription
factors, the Smad complex
regulates gene expression
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Table 1 Simplified demonstration of the most important stages of chondrogenesis

—————Dashed line symbolizes the fluent change between the stages

====Double line separates the ossification stage because this process is not directly involved in the formation of joint
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depends on matrix metalloproteinase (MMP) activity.
However, despite the increased use of BMPs to improve bone
healing, it was recently reported that administration of human
BMP-7 and autologous bone grafting is no better than autol-
ogous grafting alone in patients with congenital
pseudoarthrosis of the tibia [33].

The increase of Bmp-1 expression results in an increased
expression of type I collagen and osteocalcin [34]. BMP-6 is a
very effective regulator of MSC differentiation into osteo-
blasts during both development and adulthood. The endoge-
nous expression of BMP-6 is up-regulated by the EGF-like
factor and might contribute to the creation of bone-forming
cells from MSCs [35]. BMP-7 is a crucial factor in skeletal
development. Under pathologic conditions, BMP-7 plays a
protective role for normal and OA chondrocytes by improving
their survival and anabolic properties and by its ability to
repair damaged cartilage [36]. The cartilage-derived morpho-
genetic proteins CDMP-1, -2, and -3 (also known as BMP-14,
-13 and -12, respectively) are responsible for both evolution of
cartilaginous tissue during early limb development and the
formation of the articular joint cavity during development.
Moreover, they also play a very important role in the regen-
eration and maintenance of the articular cartilage [37].

Mammalian fibroblast growth factors (FGFs) are a family
of proteins considered paracrine regulators engaged in tissue
patterning and organogenesis during embryonic development.
FGF-18 has an anabolic effect on cartilaginous tissue, while
FGF-2 participates in cartilage homeostasis [38]. The Wnt
signaling pathway influences chondrogenesis via regulation

of FGF synthesis. The type of response depends on the Wnt-
2a and Wnt-2c proteins, which induce FGF-10 and FGF-8 at
early stages of development. The members of the FGF family
are engaged in limb initiation and limb bud outgrowth. The
most important FGF family member affecting chondrogenesis
is FGF-2, which functions as an effective mitogen for cell
types of mesenchymal origin. Although the action of FGF-2 in
chondrogenesis is not completely understood, it has been
suggested that this factor might enhance the differentiation
of human MSCs into chondrocytes [39]. Activated forms of
FGF-10 and FGF-8 act in positive feedback loops. FGF-10
affects the expression of Wnt-3a, thus influencing β-catenin
synthesis, and maintains its own expression via FGF-8 [40].
Homeobox (Hox) transcription factors are essential for acti-
vating expression of FGF-8 as well as SHH genes. The role of
these factors, encoded by theHoxA andHoxD gene clusters, is
crucial for the condensation stage of chondrogenesis [14].

IGFs play an important role in skeletal development. They
stimulate cell proliferation, and regulate apoptosis and expres-
sion of chondrogenic markers. The cellular response to IGFs
requires type I tyrosine kinase receptor (IGFIR). IGF binding
results in activation of four signaling pathways: MAP kinase,
extracellular signal-regulated kinase-kinase 1/2 (MEK 1/2),
extracellular signal-regulated kinase 1/2 (Erk 1/2) and
phosphatidylinositol-3-kinase-Akt (P13K-Akt) [41].

Osteoarthritis (OA) appears when an imbalance between
the synthesis and degradation of ECM components occurs,
primarily type II collagen, and aggrecan. MMPs are also
involved in this process [42]. FGF-18 and FGF-9, in associ-
ation with fibroblast growth factor receptor 1 (FGFR-1), in-
duce the production of vascular endothelial growth factor
(VEGF) and its receptor, VEGFR-1, thus promoting vascular
invasion of the tissue in the prehypertrophic and hypertrophic
zones [40]. Type II collagen is the best-known andmost useful
marker of the chondrocyte phenotype. Its synthesis is pro-
grammed by two RNA isoforms—the long (IIA) and the short
(IIB) isoforms—generated by alternative splicing. The long
form is characteristic of pre-chondrocytes, and the short one of
mature chondrocytes [43]. The end of the proliferative stage
and the emergence of the post-proliferative stage is accompa-
nied by the presence of parathyroid hormone-related peptide
(PTHrP), expressed in the periarticular region by proliferating
chondrocytes and perichondrial cells. The PTHrP receptor is
not expressed in undifferentiated cells but it is up-regulated in
MSCs that undergo chondrogenic differentiation [44]. The
Indian hedgehog (IHH) protein likely stimulates PTHrP pro-
duction in the periarticular growth plate, thus delaying the
switch from the proliferative to the hypertrophy phase.
Moreover, IHH supports chondrocyte proliferation via
PTHrP-independent arrangements [45]. The HH pathways
are involved in chondrogenesis, chondrocyte proliferation
and differentiation, as well as in OA development. IHH and
SHH are ligands of the HH pathway. SHH signaling induces

Fig. 2 Themitogen-activated protein kinase (MAPK) pathway involving
the extracellular signal regulated kinases (ERKs), the C-Jun-NH2-
terminal kinases (JNKs) as well as the p38 MAPK pathways regulates
many cellular processes including proliferation, apoptosis and
differentiation
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BMPs pathways and controlsMSC differentiation towards the
chondrogenic lineage in vivo [46]. Better control of the
chondrogenic process in connection with the use of stem cells
can contribute to more successful treatment of OA.

Evans [47] reviewed studies that used gene therapy to
repair damaged bones and cartilage, both in animal models
and in humans, using either non-viral or viral vectors. The
author found that several major strategies were successful, as
follows: (i) direct injection of DNA or vectors containing
genes encoding growth factors into injury sites; (ii) the use
of genetically modified allogeneic cell lines; and (iii) intra-
operative tissue harvesting (either intact or isolated cells)
followed by transduction with viral vectors and return to the
injury site. Furthermore, Evans concludes that chondrocytes,
either transduced or transfected by DNA cloned in an appro-
priate vector, stimulate chondrogenesis [47].

The use of stem cells in the treatment of cartilage defects

Mesenchymal stem cells

MSCs are multipotent stromal cells that can differentiate into a
number of different cell types. MSCs are non-hematopoietic
cells that originate from several sources, although the best-
characterized populations derive from bone marrow (BM-
MSCs). Besides BM-MSCs for cartilage repair cells have
been isolated from various tissues such as synovium, perios-
teum, adipose tissue or synovial fluid [12, 48, 49]. Among
these cell lines, synovium-derived MSCs (SMSCs) have been
recently recognized as an appropriate cell type with
chondrogenic potential and high proliferative capacity [49].
In vitro studies showed that the chondrogenesis process of
SMSCs could be successfully conducted using TGF-β1 and
BMP-2 [50]. Moreover, SMSCs could be also easily harvest-
ed, for example, during an arthroscopic examination of the
joint. Chondrocytes derived from the MSC are suitable for
application in regenerative medicine, since they are also easy
to isolate and manipulate [48]. During maintenance, prolifer-
ation, migration and subsequent differentiation, MSCs are
involved in the reciprocal transfer of many signals with
neighbouring cells [51–53]. Under appropriate culture condi-
tions, MSCs can differentiate into fibroblasts or adipogenic,
osteogenic, and chondrogenic lineages [54]. The classification
of MSCs is troublesome, due to both a lack of a clear defini-
tion and generally accepted selective markers. Nevertheless,
the basic identification standards include the following: ad-
herence properties, expression of cell surface antigens (such as
CD29, CD44, CD73, CD90, CD105, CD 106 and CD 166),
and the absence of hematopoietic markers [46, 55]. Although
chondrogenesis in vitro seems to be relatively simple, it was

shown that during directed differentiation of MSCs up to 300
genes are misregulated [56].

Stem cell homing involves an active recruitment of endog-
enous cells that can be found in the tissue niche. Endogenous
stem cell migration can occur in two ways. The first is through
the circulatory system, aided by interactions with microvas-
cular endothelial cells at a target site. This process includes
stem cell rolling, adhesion, chemotaxis, and invasion. The
second way, which is independent of blood flow, involves cell
trafficking and requires amoeboid cell movement [57].
Unfortunately, MSCs do not migrate easily in the blood-
stream. For this reason, translocation of MSCs from bone
marrow to peripheral blood is a challenge [58]. MSCs are
su i tab le for a l logene ic t ransp lan t due to the i r
immunoprivileged properties. In MSCs, the expression of
major histocompatibility complex I proteins (MHC I) is low
and there is no expression ofMHC II, which decreases the risk
of transplant rejection [59]. Apart from revealing
multipotency, MHCs can modulate immune response and
inflammation. In addition, they release trophic, anti-inflam-
matory, and immunomodulatory factors that exhibit pro-
regenerative properties [60]. Moreover, in contrast to mature
chondrocytes, MSCs can be expanded ex vivo to sufficiently
high numbers, making them an abundant cell source for
autologous cell therapies. Unfortunately, it is difficult to ob-
tain a pure population of stem cells, as well as precisely
control the direction of MSC differentiation [61]. Another
disadvantage is the relatively low percentage ofMSCs in bone
marrow; moreover, in the elderly, the cell proliferation rate of
isolated MSCs is often insufficient. Finally, in OA patients,
isolated MSCs have a lower differentiation rate, which is
another obstacle that needs to be overcome before the tech-
nique can become more widely used [62].

Induced pluripotent stem cells

Induced pluripotent stem cells (iPSCs) possess the capacity to
develop into derivatives of all three primary germ layers
(endoderm, mesoderm, and ectoderm). They have unlimited
self-renewal capacity, high developmental plasticity, and re-
duced immunogenic properties. These characteristics explain
the enormous interest in these cells, which can be used as
patient-specific cells to repair musculoskeletal tissues that
have limited regeneration potential, such as bone or cartilage
[63]. Most human iPSCs described in the literature originate
from fibroblasts. They are created by reprogramming involv-
ing forced expression of transcription factors Sox2, Oct3/4,
Klf4, and Myc in somatic cells [64]. The coordinated expres-
sion of pluripotency genes and/or an oncogene causes the re-
establishment of the transcriptional information and cell mor-
phology [65]. However, these similarities do not indicate that
iPSCs are equivalent to embryonic stem cells (ESCs) at a
molecular or functional level. As a result, it is necessary to
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further examine these cells, as well as themethods used for their
reprogramming. The first studies on the induction of iPSCs
were based on transduction of the cells with viral oncogenes.
However, this approach increases the risk of insertional muta-
genesis and tumor formation. Current methods to induce iPSCs
rely upon elimination of permanent transgene integration, Cre-
Lox mediated reprogramming, or mRNA/protein transfection
[66]. Unfortunately, non-integrating methods suffer from ex-
tremely low transduction efficiency, which amounts to 0.001%
in the case of adenoviruses [67]. ESCs will not be discussed
here because they will likely never be used in clinical medicine
due to ethical controversies. In contrast, the application of
iPSCs is non-controversial. Moreover, iPSCS have another
advantage over ESCs in that the genetic information derives
from the patient’s genome and thus immune rejection is less
probable [68]. However, the major drawback in the use of
iPSCs for tissue engineering is the difficulty in obtaining a
uniform cell population in the tissue of interest. This creates
the danger of teratoma formation from undifferentiated cells
[60]. Another drawback is the very low yield of the cells,
together with the fact that they do not emerge in culture until
three weeks after transduction [69]. It seems likely that iPSCs
may revolutionize tissue engineering, and research on iPSCs is
developing very quickly; however, this remains an emerging
field and much more research is required. Potential advantages
and disadvantages of the use of MSCs and iPSCs for transplan-
tation are presented in Table 2.

Concluding remarks

Although the application of stem cells, either adult or plurip-
otent, should revolutionize regenerative medicine in the near
future, further investigations are required before this technol-
ogy can be applied in clinical practice. Better understanding of

the molecular mechanisms underlying the cell differentiation
process will result in more efficient control of these processes,
including chondrogenesis. At present, it is difficult to decide
whether MSCs or iPSCs will be more suitable in providing
cells for transplantation. Nevertheless, the development of
iPSCs was a turning point in tissue engineering, which has
opened up new horizons and generated a great deal of hope.
The application of stem cells concerns not only the field of
medicine, but also other related branches of science such as
bioengineering, molecular biology and ethics, and, conse-
quently, close collaboration between scientists from different
fields. In the near future, stem cells may lead to a transition
from traditional to personalized medicine. Finally, in the fu-
ture, in silico models, which are widely-used in traditional
engineering sectors, may also play an important role in regen-
erative orthopaedics research [70] because such models facil-
itate the optimal selection of cell type, culture conditions, and
proper vectors for transfection or transduction studies and
clinical procedures.
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