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Abstract Stem cells have huge applications in the field of
tissue engineering and regenerative medicine. Their use is cur-
rently not restricted to the life-threatening diseases but also
extended to disorders involving the structural tissues, which
may not jeopardize the patients’ life, but certainly influence
their quality of life. In fact, a particularly popular line of research
is represented by the regeneration of bone and cartilage tissues
to treat various orthopaedic disorders. Most of these pioneering
research lines that aim to create new treatments for diseases that
currently have limited therapies are still in the bench of the
researchers. However, in recent years, several clinical trials have
been started with satisfactory and encouraging results. This
article aims to review the concept of stem cells and their char-
acterization in terms of site of residence, differentiation potential
and therapeutic prospective. In fact, while only the bonemarrow
was initially considered as a “reservoir” of this cell population,
later, adipose tissue and muscle tissue have provided a consid-
erable amount of cells available for multiple differentiation. In
reality, recently, the so-called “stem cell niche”was identified as
the perivascular space, recognizing these cells as almost ubiq-
uitous. In the field of bone and joint diseases, their potential to
differentiate into multiple cell lines makes their application

ideally immediate through three main modalities: (1) cells se-
lected by withdrawal from bone marrow, subsequent culture in
the laboratory, and ultimately transplant at the site of injury; (2)
bone marrow aspirate, concentrated and directly implanted into
the injury site; (3) systemic mobilization of stem cells and other
bonemarrow precursors by the use of growth factors. The use of
this cell population in joint and bone disease will be addressed
and discussed, analysing both the clinical outcomes but also the
basic research background, which has justified their use for the
treatment of bone, cartilage and meniscus tissues.
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“We have learned to recognize stem cells, not necessar-
ily from what they do in their dependent organism, but
rather by what we can make them do.”
(Pamela Gehron Robey; “Stem cells near the century
mark”. J Clin Invest. 2000)

Introduction

In the orthopaedic field, elements traditionally associated with
reparative principles are CD34- mesenchymal stem cells
(Fig. 1) [1, 2]. They are also called “mesenchymal stem cells”
(MSC) or “marrow stromal cells” or “multipotential stromal
cells” and are commonly characterized by positivity for the
surface markers CD73, CD90, and CD105, as suggested by
the International Society for Cellular Therapy [3], along with
other markers such as Stro-1, CD29, CD44, CD106 [4–6] and
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the recently described CD271, that corresponds to the nerve
growth factor receptor (NGFR) and seems to be very effective
in selecting bone marrow cells with specific inclination to-
ward the osteogenic and the chondrogenic lineages [7, 8].

The potential of MSC to differentiate into multiple cell
lines (such as chondrogenic, osteogenic, adipogenic and myo-
genic lines) makes their application ideally immediate in
different pathological conditions, where increased cellularity
may lead to an improvement of the healing process (Fig. 2). A
milestone in the understanding of this mechanism comes from

the work of Mark Pittenger [9], in which these cells were
isolated from bone marrow aspirates and subsequently differ-
entiated into the three main lines (osteogenic, adipogenic,
chondrogenic), and the work of Arnold Caplan [10]. Caplan
created the concept of the “mesengenic process” to elucidate
the differentiation of mesenchymal tissues from a single pop-
ulation of precursors, according to a pattern of progressive
phenotypic transitions (“stepwise transitions”), that shares
many similarities with the differentiation of the hematopoietic
line.

Understanding the differentiation potential of MSC was
contemporaneous with the recognition of their site of resi-
dence. Initially, only the bone marrow was considered as a
“reservoir” of this cell population, but later, properly proc-
essed adipose and muscle tissues have also provided a con-
siderable amount of cells available for multiple differentiation
and, consequently, with “mesenchymal” potential [11, 12]. In
reality, however, the view in which to reflect that concept is
much broader. Indeed, the microenvironment of mesenchymal
stem cells, called the “stem cell niche”, corresponds to the
perivascular space [6]. This fundamental insight explains how,
in vivo, MSC have effectively a systemic localization [13–15]
in all places where vessels and, consequently, a perivascular
space are present. It is assumed that the “pericytes”, observed
for some time by conventional histology, actually correspond
to mesenchymal cells in their perivascular microenvironment
[16]. This position is consistent both with their “systemic”
location and with their positive role, in vivo, to post-lesional
tissue regeneration processes. From the perivascular space, in

Fig. 1 “Hugging” CD34- mesenchymal cells on a monolayer plastic
substrate (original magnification: 40x)

Fig. 2 Osteogenic (a),
chondrogenic (b), and adipogenic
(c) differentiation of
mesenchymal stem cells from
bone marrow aspirate. a Calcium
deposits showed staining with
Alizarin Red. b Cell pellet with
the production of extracellular
matrix highlighted with Safranin
O staining. c Intracellular fat
vacuoles highlightedwith Oil Red
O staining. (a,c: original
magnification 40x; b: original
magnification 20x)
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fact, throughmechanisms regulated by the chemokine system,
in analogy with the lymphocyte migration behavior, these
cells can reach sites of injury and participate in reparative
processes. This “participation” has also recently become better
understood. Once the MSC have reached the site of injury,
they do not only differentiate towards the lines of the damaged
tissue, but are also “reservoirs of biological stimuli” (or, more
picturesquely, “injury drugstores” [17]), which can stimulate
the resident cell population towards cellular repair, as well as
immuno-modulating the local immune system, to reduce the
fibrous healing process and cellular apoptosis and to stimulate
angiogenesis. With this in action, a fundamental role in the
communication between MSC and cells of the wound micro-
environment is played by microvesicles containing
microRNAs which can activate programs in regenerative cell
populations surviving the injury site [18, 19].

Tissue regeneration in orthopaedic diseases, nonetheless,
may also involve contact between different cell populations
for bone and cartilage repair [20, 21]. Recently, a phenomenon
of “mutual cooperation” has been observedwhich includes the
sharing of both mesenchymal stem cells (CD34-) and CD34+
stem cells in the realization of a common goal: the vascular-
ization of bioengineered tissues [22]. This concept of “inter-
play” between different cell populations is very interesting
because it introduces the role of new players belonging to
seemingly distant cell lines from the mesenchymal area, such
as CD34+ cells and the cell populations derived from them.
This phenotypic gap is, indeed, only apparent, because many
in vitro and in vivo observations have demonstrated the wide
“crossover” of the CD34+ and CD34- cell populations. Oste-
oblast precursors were observed in CD34+ cells derived from
bone marrow aspirates [23]; administration of granulocyte
colony-stimulating factor (G-CSF) is able to promote osteo-
genesis and osseointegration to the bone-tendon interface
[24]; the in situ application of CD34+ cells has demonstrated
the ability to accelerate fracture healing [25] and, even in
humans, improvement in healing of tibial nonunion [26] and
cartilage lesions after treatment with microperforations [27].

In this experimental evidence one could imagine the foun-
dations of the trophic actions of the bone marrow concentrate
aspirate (BMC), which is widely used in orthopaedics, both at
the preclinical experimental level, and clinically, as the “readily
available” cell source. The BMC represents a cell source of
minimal manipulation and, therefore, easily justifiable and
directly applicable for clinical use, thus being categorized as
“instant cell therapy”. However, it is evident that the concen-
tration of both CD34- and CD34+ bone marrow precursors is
very low, because the cell “pellets” that are obtained by centri-
fugation also contain precursor cells of the hematopoietic line-
age in various differentiation phases, as well as terminal cells of
the white lines, and platelets. It is estimated that, with the most
modern systems, a concentration equal to 14.8×10²MSC/ml of
concentrated bone marrow could be achieved [28].

These theoretical bases, therefore, enable the outline of
three main modes for the use of MSC in orthopaedics:

1) Mesenchymal cells selected by withdrawal from bone
marrow, subsequent culture in the laboratory, and ulti-
mately transplant at the site of injury (extensive
manipulation);

2) Bone marrow aspirate, concentrated and directly im-
planted into the injury site (minimal manipulation);

3) Systemic mobilization of mesenchymal cells and other
bone marrow precursors (CD34+ hematopoietic cells) by
the use of “growth factors” such as G-CSF (negligible
manipulation).

The application at the site of injury can occur by: (i) direct
injection of cell suspension or (ii) by three-dimensional scaf-
folds infiltrated with candidate cells by direct absorption or
through laboratory culture.

Applications in orthopaedics and traumatology

Bone diseases

Apart from the historical usage, with the allogeneic transplant
procedure in the systemic disease known as “osteogenesis
imperfecta” [29, 30], followed by preclinical studies with
local delivery of bone marrow MSC [31], one of the first
applications of MSC to increase the bone healing process
was studied for the treatment of early-stage idiopathic
osteonecrosis. This disease is well suited for measuring the
efficacy of cell therapy because it is possible to clinically
monitor the improvement of the healing process by means of
MRI, in a very reliable manner. The groups of Hernigou and
Gangji have investigated the association of lesional “forage”
with local injection of concentrated bone marrow aspirate and
have obtained, even in the long term, promising results
[32–34], although limitations of this technique reside in the
early stages of the disease and in the quality of autologous
stem cells in patients who underwent prolonged corticoid
therapy [35]. The research has, simultaneously, suggested
alternatives that, albeit less immediate, could improve wound
repair further on. The local application of transgenic MSC for
HGF (Hepatocyte Growth Factor) during forage [36], and
systemic mobilization of MSC with G-CSF and Stem Cell
Factor [37] achieved promising results in small animal models
(rabbit).

Even for the treatment of long bone fractures there are
currently numerous centres, which are investigating the effect
of local injection of BMC during osteosynthesis as improving
healing factor by accelerating callus formation [38]. Although
the literature has not yet provided clear clinical evidence, basic
research supports this therapeutic concept. In mouse models, a
considerable improvement of callus formation has been
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achieved by systemic injection of autologous MSC through
the tail vein [39, 40]. The systemic administration also sug-
gests a wider therapeutic horizon, where the “homing” of
autologous mesenchymal stem cells previously expanded
in vitro becomes a sufficient means to guarantee the same
action at the site of fracture; however, this concept is only
currently applicable at a preclinical experimental level.

Another field of application is represented by atrophic
pseudarthrosis, where the lack of healing is not so much
caused by mechanical failure of the fixation construct but
mainly by the lack of cellularity in the lesion site [41]. Local
application of BMC was suggested by the Hernigou group,
which found that the effectiveness of therapy is dependent on
the number of bone marrow precursors conveyed to the site of
injury [42]. The delay in the consolidation of the “docking
site” during distraction osteogenesis in bone defects of signif-
icant size can be considered as a phenomenon similar to
atrophic pseudarthrosis. Recent works have suggested the
application of BMC associated with demineralized bone ma-
trix with satisfactory results [43], as well as the implant of
precultured autologous bone marrow MSC in autologous
fibrin clots [44].

In a broader sense, the same bone deficits, including those
secondary to traumatic injury, associated with surgical proce-
dures such as opening wedge osteotomy, as well as those
derived from the presence of benign growths, are a good
model system to test the action of MSC toward bone regener-
ation. In a clinical study, the BMC was applied, conveyed in a
scaffolds of collagen I to promote the healing of bone cysts
and enchondromas with restoration of cortical continuity of
the site of injury [45]. At the same time, basic research has
shown that it is possible, both in vitro [46] and in small
(rabbit) [47] and large (goat) animal models [48], to obtain
an efficient repopulation of cancellous and cortical allografts
by MSC isolated and expanded from bone marrow and, as a
consequence, to obtain an improvement in the healing of
critical bone lesions; even bone formation around the ten-
don–bone interface was improved by culturing bone-marrow
MSC in scaffolds made by interconnected porous calcium
hydroxyapatite ceramics [49]. This therapeutic concept of
scaffold “cellularization” by MSC from different sources is
broadly proposed in preclinical studies [50–58] and it could
also be crucial in humans, to improve the healing of critical
bone defects in different settings as revision arthroplasty [59,
60]. A recent clinical study by Marcacci et al. has demonstrat-
ed that isolated and expanded MSC have been used in com-
bination with macroporous scaffolds in bioceramics for the
treatment of critical bone defects, obtaining promising results
[61]. Despite the effectiveness of this approach, it is however
of limited use, because it is currently bound to the process of
in vitro expansion, necessary to obtain a sufficient number of
cells to populate the scaffold. This procedure inevitably leads
to a greater manipulation of cells and therefore remains in a

strictly experimental area, although recent in vitro and pre-
clinical evidence has shown the great potential of osteogenic
differentiation of MCS by means of growth factors from the
TGF-beta superfamily [62–64].

More easily applicable at the clinical level is the systemic
mobilization of bone marrow precursors by means of subcu-
taneous administration of G-CSF. This procedure has been
associated, in a recent clinical study, with an increase of the
processes of osteogenesis and osseointegration at the site of
osteotomy, following opening wedge valgus tibial osteotomy
[65]. This observation could be the basis for the use of
systemic mobilization by G-CSF of bone marrow precursors
to promote healing of bone lesions after surgery or secondary
to other diseases.

One of the most recent proposals to use the MSC applica-
tion was in the integration of replacement hip implants. In this
area, the only current valid observation was made by the
group of Giannini et al. [66]. In large animal models (goat),
they observed an increase in newly formed bone around the
prosthesis stem after four months of implantation of the pros-
thesis, where there was simultaneous administration of autol-
ogous MSC in the diaphyseal channel. These results, although
very interesting, still remain in the preclinical scientific inves-
tigation area.

Cartilage pathology

As part of the repair of chondral and osteochondral lesions,
tissue engineering has been proposing, for a number of years,
the use of MSC as a cell source for repair, along with the use
of different growth factors [67, 68], as an example from the
superfamily of transforming growth factor beta, the BMPs
(bone morphogenetic proteins) [69–72]. Evidence of preclin-
ical animal models have in fact confirmed the effectiveness of
this approach, although these studies have found that the
mechanism by which MSC promote cartilage regeneration is
not only directly, by differentiating into chondrocytes, but also
indirectly through “homing” at the site of injury and the
recruitment of precursor cells from the joint microenviron-
ment [73, 74]. In fact, in the joint microenvironment, popula-
tions of precursors cells have been observed not only in the
bone marrow, but also in the upper layers of cartilage (super-
ficial zone) [75, 76] and in the synovial tissue [77]. The
healing process may be conducted in a synergistic way by
the presence of various cell populations, against which the
MSC would act as “directors” in addition to “supporting
actors.”

In the experimental area, the high chondrogenic potential
of MSC transfected with anabolic growth factors such as
TGF-β (transforming growth factor beta) [78], FGF-2 (fibro-
blast growth factor 2) [79], the CDMP-1 (cartilage-derived
morphogenetic protein-1) [80] and even BMPs has been also
verified. Specifically, a chondrogenic differentiation has been
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obtained by transfecting MSC with BMP-2, BMP-4, BMP-7
and BMP-13 [81–89]. Intriguing properties of these BMPs has
been recently described regarding cartilage differentiation:
BMP-2 and BMP-4 seem to act as inducers of chondrocyte
hypertrophy and endochondral ossification, while BMP-13
appears to stimulate chondrogenesis and BMP-7 has been
observed to be able to prevent chondrocyte hypertrophy, while
maintaining the chondrogenic potential [84, 90, 91]. The
group of Madry and Cucchiarini represents one of the main
references in Europe in the field of gene transfection for
cartilage development [92]. The results obtained in vitro and
in vivo in small animal models (rabbit) are convincing in
having a faster chondral repair, and with characteristics closer
to those of articular hyaline cartilage, although these proce-
dures involve a high manipulation of cells, and are currently
only intended for preclinical use.

The first clinical study that demonstrated the efficacy of
MSC in the repair of cartilage lesions was performed by the
Wakitani group. The first cases were carried out in the early
1990s and later a trial was designed that followed patients for
more than 11 years [93]. The cartilage lesions were covered by
the periosteum, beneath which was placed a collagen gel
containing the population of MSC expanded in culture from
bone marrow aspirate. After 42 weeks, repair with metachro-
matic tissue was obtained, with characteristics similar to that
of hyaline cartilage. This study was certainly very courageous
and innovative. In fact, he anticipated the concept of “one-
stage” cellular repair at a time when the transplantation of
autologous chondrocytes in two stages was the more sophis-
ticated perspective to obtain a repair tissue similar to articular
cartilage. Despite its limitations, such as the presence of the
periosteum and large manipulation necessary to obtain the
MSC, the Wakitani study still remains a scientific reference
in the history of cartilage repair. Recently, in fact, an experi-
mental study performed by Haleem [94] demonstrated the
benefit of the introduction of MSC through a platelet and
fibrin gel in femoral chondral lesions, which was then sealed
with periosteum, in terms of clinical improvement and evi-
dence of repair tissue similar to cartilage at magnetic reso-
nance imaging.

Currently, however, as with bone lesions, the most wide-
spread clinical use of MSC for the repair of cartilage lesions is
related to the use of bone marrow. The reduced manipulation
required in obtaining this tissue in large quantities and the
ability to apply it in the “one-stage” procedure, makes it an
ideal cell source with a low cost. Slynarski et al. proposed the
application of fresh bone marrow onto chondral lesions,
sealing it with an autologous periosteal membrane; the re-
searchers observed a repair tissue with characteristics similar
to cartilage [95]. The orientation of most current clinical
research, however, involves the use of BMC to optimize the
number of available MSC, as recently reported by de
Girolamo et al. [96].

In fact, BMC appears to provide a valid cell source to
improve the healing of cartilage defects in preclinical models
[97] and both during microfracture technique, in which mem-
branes coveringmicrofractures are soaked with BMC as in the
modified AMIC technique described by Gigante et al. [98],
and during “one step” cartilage repair recently proposed by
Giannini et al., in which BMC carried by collagen or
hyaluronic acid-derivative scaffolds is used to fill debrided
chondral or osteochondral lesions [99]. The rationale for this
“one-step” approach is the ability to convey, through the bone
marrow aspirate concentrate, a patrimony of undifferentiated
cells containing both CD34- precursors and CD34+ hemato-
poietic precursors, thus transferring to the chondral defect all
the constituent elements of the bone marrow “stem cell niche”
in order to maintain the mutual synergy with respect to tissue
repair processes. This approach may be even improved by
transducing the bone marrow with adenoviral vectors contain-
ing cDNA growth factors as transforming growth factor-beta
1, as suggested in a preclinical study by Ivkovic et al. [100].

A more modern perspective, however, presents the use of
bone marrow in combination with non-expanded chondrocytes
to repair cartilage in a “one-step”method. The key insight is the
mutual synergy between chondrocytes and MSC, according to
which the chondrocytes would facilitate chondrogenesis in
MSC,while theMSCwould promote chondrocyte proliferation
of the neighboring population. In vitro and in vivo preclinical
studies by Hendriks have shown that in co-culture of three-
dimensional scaffolds, with 10 % of non-expanded
chondrocytes and 90 % of MSC from bone marrow, it is
possible to achieve production of glycosaminoglycans
(GAGs) equal to that of a culture with 100 % of chondrocytes
[101]. Similar results have been achieved by other studies
in vitro and in vivo [102, 103]. The advantage of this principle
is remarkable, and a recent trial by Bekkers et al. [104] showed
promising preclinical results in the goat model. To use the
chondrocytes in two-stage cartilage repair procedures, it is in
fact necessary to carry out the expensive procedure of isolation
and expansion in vitro to obtain sufficient numbers of cells.
According to this concept, however, a small number of primary
chondrocytes, obtained by lysis of the matrix from a biopsy of
cartilage, are combined with cells from bone marrow aspirate
concentrate, so that within a single surgical procedure, an
efficient cell pool for cartilage repair can be reached. This novel
technique, called “Instruct” (CellCotec), combines the insights
gained from the experience of transplantation of chondrocytes
with the modern concepts of cellular synergy, and has already
shown promising results in an initial European trial with ten
patients. In the future, it could prove to be a valuable alternative
to other “one-step” repair techniques.

Another different way of utilizing the potential of MSC is
the recruitment of cells in situ using nanostructured scaffolds.
The nanostructuring of a cell growth support enables the
observation of unexpected phenomena, as the cells, in contact
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with an interface comparable in size to the molecules of the
extracellular matrix, exhibit phenotypic and behavioral changes
dictated by the interaction with the cell surface nanostructure.
This nanostructuring opens up a new “world” where not only
cells, but also the scaffold may affect the principles of tissue
repair by interacting at a dimensional level, with the order of
magnitude of the same cell surface molecules. In this regard, an
in vitro study has demonstrated that the MSC in contact with
nanofibers of poly-L-lactide (PLLA) coated with nanoparticles
of hydroxyapatite are able to spontaneously express genes that
are characteristic of the chondrocyte line (such as aggrecan and
SOX-9), without being stimulated by chondrogenic growth
medium [105]. From “bench” to “bedside”, these concepts are
only just beginning to be applied, through the use of “biomi-
metic” scaffolds such as nanostructured Maioregen
(Finceramica, Faenza, Italy), equipped with a network of colla-
gen I and hydroxyapatite nanoparticles at increasing concentra-
tions towards the inner layers of the membrane. Studies in
animal models have already demonstrated the effectiveness of
this support for the conduct of local MSC in the treatment of
osteochondral lesions, resulting in satisfactory clinical and his-
tological findings [106]. The Maioregen, however, represents
just one of the first proposals for the application of the concepts
of nanostructuring for cartilage regeneration using MSC. Other
in vitro and in vivo studies in animal models are in fact propos-
ing new scaffolds able to “mimic” the architecture of the extra-
cellular matrix, consisting of poly-L-lactide or polycaprolactone
[107, 108], or composites of polycaprolactone-poly-L-lactide
(PLLA-b-PCL) [71], poly-DL-lactide-co-glycolide (PLGA)
[109], the previously described poly-L-lactide associated with
nanoparticles of hydroxyapatite [105] or with the association of
extracellular cartilage matrix and PLGA [110].

However, not only the synthetic artificial polymers are
proposed for scaffold in cartilage repair by means of stem
cells, but also other types of biomaterials and matrices have
been studied, such as carbohydrate-based scaffolds (i.e. aga-
rose, alginate, chitosan/chitin, and hyaluronate) and protein-
based scaffolds (collagen, fibrin, and gelatin) [89]. For exam-
ple, hyaluronic acid (HA) has been commonly employed and
it has been modified in different ways to obtain a resorbable
stable construct. The esterified derivative of HA, named
Hyaff-11 sponge, has been widely used in preclinical studies
[111] and, more recently, hydrogels made by photocrosslinked
hyaluronic acid containing MMP degradable peptide se-
quences have shown promising in vitro results [112], as well
as collagen type II-hyaluronan (HA) composite construct that
simulates the extracellular microenvironment of chondrocytes
[113]. Collagen alone, also, seems to be very appropriate for
cartilage differentiation; in the shape of a collagen I/III mem-
brane (i.e. Chondrogide) [114, 115] or as collagen micro-
spheres [116] or as injectable atelocollagen [117], it has been
shown to promote the chondrogenic pathway of the seeded
MSC. The chitosan, which derives from crustaceans such

shrimps, represents another interesting element for natural
resorbsable constructs, both in the shape of microfibers or
sponges or as an injectable gel [118, 119]. Finally, the
hydrogels (i.e. the gellan gum) may also constitute a promis-
ing alternative for the treatment of articular cartilage defects
due to their peculiar adhesive properties [120, 121].

A scaffold-free approach has been also hypothesized for
cartilage repair, based on the ability of bone marrow MSC to
self-assemble in vitro into tissue-engineered cartilage con-
structs (cell sheets) containing collagen type II and glycos-
aminoglycans. it has been described in literature by Murdoch
et al. in 2007 [122] and it is still a valid alternative to generate
chondrogenic constructs [123–125].

Intra-articular injection of MSC through a soluble carrier
may also be considered a scaffold free approach for cartilage
regeneration. This was suggested in a pilot study from Mur-
phy et al. in 2003 in a caprine model [126] and, later, in several
other preclinical models, which include rats [74], donkeys
[127], rabbits [128], pigs [73, 129], sheep [130] and monkeys
[131]. These studies were performed by means of MSC de-
rived not only from the bone marrow but also from other
sources such as synovial tissue, adipose tissue and skeletal
muscle, the latter after transduction of theMSCwith the genes
for a VEGF antagonist and the BMP-4 [132]. Following this
approach, clinical pilot studies and case reports have been
published in the last six years. Wong et al. [133] showed that
intra-articular injections of cultured autologous bone marrow-
derived MSC, in association with microfracture and medial
opening-wedge high tibial osteotomy three weeks before the
cell injection, led to clinical and MRI improvement of degen-
erative cartilage lesions in clinical pictures of knee medial
unicompartimental osteoarthritis. Similar results were obtain-
ed with the simple association of arthroscopic bone marrow
stimulation and MSC injection for the treatment of symptom-
atic knee and talar cartilage lesions in the studies of Lee et al.
[134] and Kim et al. [135]. Even the simple intra-articular
injection of bone marrow MSC showed some clinical and
MRI improvement in patients affected by knee osteoarthritis
in the studies of Centeno et al. [136], Emadedin et al. [137]
and Orozco et al. [138]. To further confirm the encouraging
perspective of this concept, a recent review of Peeters et al. has
stated that the use of culture-expanded stem cells in human
joints “appears to be safe and it is reasonable to continue with
the development of articular stem cell therapies” [139]. In this
regard, the time needed for a consistent cell adhesion (more
than 60 %) was determined as ten minutes in vivo in a
preclinical rabbit model [140]. Moreover, to improve cell
migration, the use of magnetic fields to “drive” stem cells
toward the cartilage defect has been recently proposed by
means of magnetically labeled MSC in a preclinical animal
model [141, 142]; this fascinating approach is promising in
terms of optimizing the “homing” of stem cells at the defect
sites and, ultimately, in ameliorating the repair process.
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Ultimately, a different approach has been recently intro-
duced by the study of Saw et al. [27]. They obtained cartilage
repair through the association of microfracture and delayed
(7 days) postoperative intra-articular injections of autologous
peripheral blood progenitor cells, collected after a course of G-
CSF administration. Along with several recent in vitro and
preclinical studies [143–145], this new concept suggests the
value of peripheral blood MSC for cartilage repair and the
potential of G-CSF both as a trophic factor and as an effective
tool for systemic mobilization of precursor cells.

Meniscal pathology

Regarding meniscal lesions, the use of MSC is still limited to
preclinical testing.

A scaffold-free approach has been described in the form of
intra-articular injection of MSC derived from either the bone
marrow or the synovial tissue. In the early experience of
Murhpy et al. in 2003 [126], they observed the regeneration
of the medial meniscus in caprine knee joints following direct
intra-articular injection of autologous bone marrow stem cells
and later, in 2006, Agung et al. confirmed the possibility of
injecting MSCs for the treatment of intra-articular tissue inju-
ries in a rat model [74]. Later, in 2009, Horie et al. introduced
the use of synovium derived MSC [146] and this cell popula-
tion is still a well-accepted alternative source of stem cells for
intra-articular therapy [147]. In their first preclinical model of
meniscectomy in mice, three months after the injection, Horie
et al. observed the onset of fibrocartilage tissue having histo-
logical features showing newly formed fibers with an orien-
tation similar to that of the native meniscus. Horie et al. also
obtained comparable positive results even with the use of a
xenogenic rat model using human bone marrow MCS [148].
Similar results have been also recently observed in preclinical
rabbit [149–151], sheep [130] and porcine models [152] and
in a human clinical randomized trial [153]. These observations
sustain a promising potential role of MSC injections for
improving meniscus regeneration both through the simple
injections of the cell solution and, as recently demonstrated,
though the administration of cell aggregates [154].

The delivery of MSC through scaffolds represents another
interesting experimental approach for the repair of meniscal
lesions. In the works of Yamasaki et al., in vitro in 2005 [155]
and in a preclinical rat model in 2008 [156], the meniscus
itself was considered a potential carrier for rat bone marrow
MSC obtaining promising histological and biomechanical
results. Nevertheless, many different scaffolds have been pro-
posed during recent years [157] such as type I collagen
sponges [158], fibrin glue [159], hyaluronan-collagen or
hyaluronan/gelatin composites [160]. In vitro, a meniscal-
like tissue was obtained by cultivating MSC in a scaffold
consisting of protein derived from silk, in the presence of
TGF-β 3 [161] or in scaffolds made of collagen with a

cancellous structure [162]. In a recent preclinical study in
rabbit, meniscal defects were created with critical dimensions
in the avascular area, and were treated using a hyaluronan-
collagen based composite scaffold [163]. Better results were
observed bymeans of meniscal-like tissue after treatment with
mesenchymal stem cells and scaffolds compared to that of
cell-free implants or platelet rich plasma-seeded implants.
These results confirm the essential role of MSC in the regen-
eration of meniscal tissue.

Thus, from this perspective, the importance of three-
dimensional nanostructured scaffolds has also been demon-
strated in vitro. Indeed the concept of nanostructuration is a
relevant conditioning element for the behavior of MSC as the
spatial orientation of the nanofibers inside the scaffolds is
considered a key factor in determining the phenotype of
seeded MSC. In an in vitro study, MSC seeded on nanostruc-
tured scaffolds in polycaprolactone consisting of fibers with a
precise spatial alignment showed increased proliferation and
increased synthesis of extracellular matrix compared to scaf-
folds made of nanofibers distributed in a random order [164].

Future developments: iPS cells, umbilical cord cells
and adipose-derived stem cells

Mesenchymal stem cell therapy is inevitably a perspective still
at the experimental level, although it is associated with fasci-
nating results. In this context, basic and preclinical research
still has a key role in identifying the mechanisms and the ideal
application of these cells in repairing damaged joints, to avoid
the risks associated with “enthusiastic” clinical applications
considered as being hasty. Despite numerous worldwide trials,
a routine clinical application is in fact a distant prospect. Still,
there are also three horizons of research that seem promising
for the near future.

The first consists in the generation of induced pluripotent
stem cells (iPS) by introducing a number of transcription
factors into fibroblasts. In mice, this result was obtained by
introduction of Octamer-4 and SOX2, proteins involved in the
replication of embryonic stem cells: c-Myc, which regulates
the expression of approximately 15 % of all genes, and
Krüppel-like factor 4, a factor involved in cell differentiation
and in the arrest of the cell replication cycle [165]. This
method opens up a great number of possibilities that would
allow, in theory, the reprogramming of cells normally consid-
ered stable, such as fibroblasts, turning them into pluripotent
cells capable of undergoing multiple differentiation pathways,
and which can participate in the repair of musculoskeletal
tissues [166]. Moreover, these cells can be differentiated into
a chondroblastic and osteoblast lineage and have shown, in
preclinical models, a considerable capacity of improving car-
tilage repair when implanted at the defect site [167].

The second horizon is represented in the use of
umbilical cord cells [168]. Different studies in the

International Orthopaedics (SICOT) (2014) 38:1787–1801 1793



literature have shown that cells with mesenchymal po-
tential can be drawn. Cells derived both from the arter-
ies and the veins (perivascular cells), from the
Wharton’s jelly, from the external membrane of the cord,
along with the actual cord blood cells, all showed multiple
differentiation potential.

Cells with the greatest osteogenic and chondrogenic poten-
tial seem to be those derived from the perivascular space [169]
and from cord blood [170, 171], but also those derived from
cord stroma have been shown in vitro to have osteogenic and
chondrogenic differentiation capacity [172]. However, there
are some discrepancies in the differentiation of the MSC from

Fig. 3 Osteogenic (a),
chondrogenic (b), adipogenic (c),
and myogenic (d) differentiation
of mesenchymal stem cells from
umbilical cord (28 days of
culture). a Calcium deposits
highlighted by staining with
Alizarin Red. b Cellular pellets
with the production of
extracellular matrix, highlighted
by staining with Safranin O. c
Intracellular fat vacuoles
highlighted by Oil Red O
staining. d Positive
immunofluorescence for
myogenin (nuclei stained with
DAPI)

Fig. 4 Osteogenic and
chondrogenic differentiation on
tridimensional scaffolds. UC-
MSC in Orthoss scaffold (30 days
of culture), stained with Alizarin
Red. a UC-MSC in Chondrogide
scaffold (28 days of culture), in
hypoxic condition (b) and in
normoxic condition (c), stained
with Safranin-O. UC-MSC in
Hyaff-11 scaffold (28 days of
culture), in hypoxic condition (d)
and in normoxic condition (e,
stained with Safranin-O
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umbilical cord blood compared to their counterparts based in
the bone marrow. MSC from cord stroma show slower
chondrogenic differentiation in culture and generally an infe-
rior osteogenic potential than MSC from bone marrow. This
potential, however, seems to increase when the cord MSC are
grown in three-dimensional supports. In addition, the
adipogenic differentiation of MSC from the umbilical cord is
characterized by the development of small lipid vacuoles,
probably in analogy with brown adipose tissue, in contrast
to those produced by MSC from bone marrow, which are
more similar to those of white adipose tissue [173] (Figs. 3
and 4).

The advantage of using umbilical cord stroma as a source
of MSC is potentially significant. In fact, even without
selecting a particular population of cells, but utilizing the cord
in toto, it is possible to obtain, with simple cell culture
methods, a substantial quantity of cells that can be used for
musculoskeletal repair processes. In addition, theoretically,
the use of the umbilical cord as a source of MSC is ethically
acceptable and economical since the material would otherwise
be discarded during the process of childbirth. Finally, the
immunosuppressive potential ofMSC from the umbilical cord
[174] make these cells very immuno-privileged with respect to
allogeneic use, as already tested in vivo in a combination
allogeneic stem cell therapy for neurological lesions of the
spinal cord [175]. Thanks to these characteristics, one can
imagine the potential use of these cells that would enable in
the future the collection in accredited “stem cell factories” of a
virtually unlimited population of MSC from different umbil-
ical cords available for homologous use, eliminating costly
culture and cell expansion procedures. For all these reasons,
cells from umbilical cords, along with induced pluripotent
cells, may represent key elements in the near future for the
treatment of diseases of the bones and joints.

Finally, a third alternative source for the isolation of mes-
enchymal stem cells is represented by the subcutaneous adi-
pose tissue isolated by liposuction [176]. Adipose tissue is a
complex consisting of mature adipocytes embedded in a ex-
tracellular matrix together with the connective tissue sur-
rounding the vessels, named Stromal Vascular Fraction

(SVF). The SVF, obtained by lipoaspiration, contains, along
with perivascular stem cells, a heterogeneous population of
mononucelar cells as preadipocytes, fibroblasts, vascular
smooth muscle cells, endothelial cells, resident monocytes
and macrophages, and lymphocytes. For about two decades,
this undifferentiated SVF has become the object of attention
by researchers working on regenerative medicine, because it
represents a rich source of stem cells (ASCs, Adipose-derived
StemCells) [177] to improve cartilage, bone and tendon repair
[178–183]. The simple SVF extraction procedure, the mini-
invasiveness and reproducibility of the approach, along with
the relatively short time for the isolation and the high yield,
produces an abundant number of cells with minimal discom-
fort to the patient. This therefore renders the SVF of adipose
tissue a very attractive source in many areas of modern
medicine.

In addition, some comparative studies have shown that the
ASCs, purified from the other components of the SVF, did not
differ morphological ly, immuno-phenotypical ly,
clonogenically or in their differentiation capacity from MSC
isolated from bone marrow [184] (Fig. 5). ASCs, under ap-
propriate and specific stimuli (Table 1), are in fact able to
differentiate in vitro into the osteogenic, adipogenic,
chondrogenic and tenocyte lineages [185, 186]. Some factors,
such as donor age, sampling technique, location

Fig. 5 Monolayer ASCs culture
visualized with an optical
microscope (a) (original
magnification 20x) and with
macroscopic vision on the culture
dish (b)

Table 1 Factors used experimentally to promote the differentiation of
ASCs into various cell lines

Type of differentiation Differentiation factors

Adipogenic Insulin, IBMX, dexamethasone, indometacin

Chondrogenic BMP-6, BMP-7, FGF-2, TGF-β1, TGF-β2,
TGF-β3, dexamethasone, IGF-1

Osteogenic 1,25(OH)2D3, β- glycerophosphate, ascorbic
acid, BMP-2, dexamethasone, valproic acid

Cardiomyogenic IL-3, IL-6, SCF

Vascular/endothelial Specific microenvironment?

Neurogenic Valproic acid, insulin, hydrocortisone, EGF,
FGF

Myogenic Specific microenvironment?
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(subcutaneous or visceral adipose tissue) and the different
in vitro culture conditions can influence both the rate of
proliferation and the differentiation capacity of ASCs. Cur-
rently, in humans, the peculiar commitment between the var-
ious anatomical sampling sites have not yet been fully de-
scribed in terms of functionality of the MSC. Nevertheless, a
rrecent study of Lopa et al., from the group of de Girolamo
and Moretti, have demonstrated the superior chondrogenic
potential of ASCs from knee infrapatellar fat pad compared
to those from subcutaneous adipose tissue, that seem to dis-
play a superior osteogenic commitment [187]. However, since
the different anatomical districts possess unique metabolic
properties, such as the lipolytic activity and fatty acid compo-
sition, it is easy to suppose that the donor site will influence, in
the medium to long term, the characteristics of the transplant.

In addition, several preclinical studies show that ASCs are
able to differentiate in vivo into the osteogenic lineage, as
demonstrated by the production of specific mineralized matrix
and the expression of osteoblast specific markers such as
osteopontin and alkaline phosphatase. After osteogenic differ-
entiation, ASCs are able to acquire some functional properties
typical of osteoblasts, such as responsiveness to stress and
mechanical loading by increasing the expression of alkaline
phosphatase, collagen I and mechano-sensor genes following
exposure to a given stress load. These results show that the
ASCs possess the potential to differentiate into mechano-
sensitive osteoblast-like cells, and thus may be a valuable tool
for skeletal muscle tissue engineering [185, 188]. The
chondrogenic potential of ASCs has also been widely dem-
onstrated in vivo in recent works that show the contribution of
ASCs in regeneration of chondral and osteochondral defects
in animal models [120] and in case series [189, 190].

In conclusion, mesenchymal cells now represent a cell
source effective for the treatment of various diseases in ortho-
paedics and traumatology. Derived from bone marrow, umbil-
ical cord or from adipose tissue, they are the subject of numer-
ous studies for the characterization of their potential clinical
use. It is likely that over the next few years they will be used
more and more extensively in an effective and safe manner.
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