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Abstract
Purpose Previous studies have shown that blocking the
endplate nutritional pathway with bone cement did not result
in obvious intervertebral disc degeneration (IDD) in mature
animal models. However, there are very few comparable stud-
ies in immature animal models. As vertebroplasty currently is
beginning to be applied in young, even biologically immature
patients, it is important to investigate the effect of cement
blocking at the endplate in an immature animal model.
Methods Two lumbar intervertebral discs in eight immature
pigs were either blocked by cement in both endplate pathways
or stabbed with a scalpel in the annulus fibrosus (AF) as a
positive control, and with a third disc remaining intact as a
normal control. Magnetic resonance imaging (MRI) and his-
tology study were performed.
Results After three months, the cement-blocked discs exhib-
ited severe IDD, with the percentage of disc-height index
(DHI), nucleus pulposus (NP) area, and NP T2 value signif-
icantly lower than the normal control. These IDD changes
were histologically confirmed. Post-contrast MRI showed
diseased nutritional diffusion patterns in the cement-blocked
discs. Moreover, the degenerative changes of the cement-
blocked discs exceeded those of the injured AF positive
controls.

Conclusions The endplate nutritional pathway was interfered
with and diseased after three months of bone cement interven-
tion in an immature porcine model. Severe interference in the
endplate nutritional pathway in an immature porcine model
caused IDD. These findings also draw attention to the fact that
interference in endplate nutritional pathways in immature or
young patients may affect the vitality of adjacent discs.
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Introduction

Intervertebral disc degeneration (IDD) is characterized by
impairment of disc structure and loss of proteoglycan and
water content in extracellular matrix (ECM) [1, 2]. IDD
changes start in childhood and may cause biomechanical disc
dysfunction and low back pain symptoms later in life [3].
While the pathology of IDD is not fully understood, insuffi-
cient nutritional supply to the disc has been proposed as a
possible initiator of IDD [4].

Intervertebral discs are the largest avascular organs in
humans; they obtain nutrition from adjacent vertebral bodies
by means of diffusion through the endplate [5]. In acute
animal studies (studies completed in the course of a few
hours), blockage of this pathway resulted in an obvious de-
crease in diffusion transportation to the nucleus pulposus (NP)
[6, 7]; the endplate pathway was found to be the main nutri-
tional route in comparison to the other annulus fibrosus (AF)
pathways [6]. In in-vitro studies, an insufficient nutritional
environment leads to a significant reduction in disc matrix
gene expression and loss of ECM and may even cause disc
cell death [8, 9]. In humans, association between IDD and
decreased blood supply in the adjacent vertebral body has also
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been found [10]. These findings suggest that IDD arises from
the altered nutrition supply.

Blocking the endplate nutritional pathway with bone ce-
ment for a certain period (several months to 1.5 years) pro-
duced no obvious IDD in several adult animal models
[11–13]. Interfering in the endplate pathway does not seem
to affect the health of adjacent discs in mature animal models.
However, there have been far fewer studies in immature
animal models. As vertebroplasty is currently beginning to
be employed in younger patients, including a biologically
immature 16-year-old [14], and is no longer limited to older
patients, it is vitally important to investigate the effect of
interference in the endplate nutritional pathway in an imma-
ture animal model.

Materials and methods

Surgical procedure

Eight Danish landrace immature pigs were used for the study
(all females, three months old, weight approximately 35 kg).
The experimental procedures were approved by the Danish
Animal Welfare Committee. Under general anaesthesia, the
pigs were placed in supine position. After routine sterilization
and draping, a left-sided retroperitoneal approach was used to
expose the lumbar spine. The psoas muscle was gently de-
tached from the intervertebral discs, and care was taken
to keep the segmental artery intact. Due to variability in
the number of lumbar vertebrae in pigs (five, six or seven), the
disc level was selected with reference to the lumbosacral
junction [15]. This reference level was set as disc 7 and the
others cranial to this level were then marked in descending
order to disc 0.

Similarly to the design of a previous study [11], disc 0 was
kept intact and served as a normal control, and disc 4 or disc 5
was interfered with either by scalpel or cement as follows.
One disc was stabbed with a no. 23 scalpel at the left antero-
lateral part at a depth of 6 mm (just reaching the NP; in a pilot
study, we measured the AF width to be about 6 mm) as a
positive control [15, 16]. In the other disc, a slice defect was
created in the vertebral body both caudally and cranially
to the disc by drilling and curetting. The slices were
made parallel and close to the endplates without violating
the integrity of the endplates. Using a custom-made injection
gun, the defects were then filled with bone cement
(polymethylmethacrylate [PMMA] 64.4 %, benzoyl per-
oxide 0.6 %, barium sulfate 35%,WilliamCook Europe ApS)
and checked by means of fluoroscopy to ensure that
there was no cement leakage into the canal or disc.
Hemostasis was secured and the abdomen was closed in
layers. The pigs were housed in separate boxes and fed a
standardized food recipe.

Magnetic resonance imaging (MRI) procedure
and evaluation

MRI was performed under general anesthesia on a clinical
Philips Achieva 1.5-T scanner (Philips Healthcare, Best,
Netherlands). Before surgery and at termination, sagittal T1-
and T2-weighted, T2-weighted 3D scan, and a sagittal T2
mapping scan (multi-echo spin echo; matrix 248 × 248; field
of view 300 × 300 mm; repetition time 1.0 second; eight
echoes with echo time 15–120 milli-seconds; two excitations)
were performed. At termination, after manual injection of
0.3 mmol/kg gadolinium (OMNISCAN™, Amersham Health
AS, Oslo), post-contrast T1-weighted images were obtained at
intervals of 0.5, five, and ten minutes and then every
ten minutes for a total of 110 minutes. All images were
analysed using a custom programmed software written by
one of the authors (SR).

The blocking area was defined as the percentage of maxi-
mum cement area (% block-area) in the vertebral body parallel
to the endplate in T2-weighted 3D images of both sides.
Degree of IDD was assessed as follows [17]: Severe (score=
3): evident reduction in the NP area, decrease in NP signal
intensity (SI) along with collapse of the AF; Mild (score=2):
moderate reduction in the NP area, less severe decrease in NP
SI, collapse of the AF frequently found; Normal (score=1): no
changes in SI and disc morphology. The change of disc height
index (DHI) was expressed as percentage of DHI (% DHI)
(%DHI=postoperative DHI / preoperative DHI × 100) as
previously described in the literature [18–20]. The change in
NP area was calculated as percentage of NP area (% NP-area)
in the middle axial position of the disc on T2-weighted 3D
images (%NP–area=postoperative NP area / preoperative NP
area × 100). T2 value within the NP was calculated by
means of a T2 decay equation [19]. Contrast enhance-
ment within the NP was calculated as percentage of contrast
enhancement (% CE) (% CE=(SIpost – SIpre) / SIpre × 100).
Time-intensity curves were drawn according to % CE and
each time point [21].

Histology

The animals' disc segments were removed at termination and
fixed with 70 % ethanol for seven days, dehydrated in a series
of ethanol concentrations, and embedded in methyl methac-
rylate. Sections of 7 μm were stained with hematoxylin-eosin
(HE), picrosirius red for collagen and toluidine blue for pro-
t eog lycan . They were then examined us ing a
photomicroscope (Olympus, Tokyo, Japan).

Statistical analysis

The data are expressed as the mean±standard deviation. Data
of % DHI, % NP-area, and NP T2 value were compared using
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one way-ANOVA analysis between the different inter-
ventions. Significance level was defined as P less than
0.05.

Results

All eight pigs tolerated the surgical procedure well and were
neurologically intact. One pig had an incisional hernia post-
operatively and was immediately euthanised. The other seven
pigs continued to the end of the three-month observation
period.

The location of each intervention, cement blocking area,
and IDD degree are listed in Table 1. In general, these cement-
blocked discs had severe IDD, with obviously diminished disc
height and NP area. Moreover, the color-coded T2 maps
showed lower NP T2 value in the cement-blocked discs and
scalpel-stabbed discs, as compared to the normal controls
(Fig. 1). The % DHI of 70.59 ± 13.09 %, % NP-area of
53.25 ± 11.05 %, and the NP T2 value of 188.43 ± 75.66 ms
in cement-blocked discs were significantly lower than those of
the normal controls (P=0.003, P<0.001, P<0.001, respective-
ly). The scalpel-stabbed discs had less severe changes in these
three parameters (Fig. 2).

Table 1 Disc location, cement
blocking area, and intervertebral
disc degeneration (IDD) degree
after three months of different
interventions

Number Cement Scalpel Normal

Disc Blocking area (%) IDD degree Disc IDD degree Disc IDD degree

1 4 27.09 2 5 2 0 1

2 4 35.01 3 5 1 0 1

3 5 30.32 3 6 2 0 1

4 4 32.31 3 5 2 0 1

5 5 46.20 3 4 2 0 1

6 5 50.56 3 4 2 0 1

7 5 50.93 3 4 2 0 1

Average 38.92±10.05 2.86±0.38 1.86±0.38 1.00

Fig. 1 The specimens, MRI T2-weighted sagittal and axial images, and color-coded MRI T2 mapping images of discs after three months of intervention.
The nucleus pulposus (NP) signal, disc height, NP area, and NP T2 value obviously diminished in cement-blocked disc (the first row)
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In post-contrast MRI images (Fig. 3), the enhancement of
normal discs was seen as uniform enhancement bands parallel
to the endplate and slowly moving towards the centre as time
passed. In the cement-blocked discs, there were two different
patterns. One pattern in five discs had enhancement bands
with small pooling of dye at the edge. Another pattern in two
discs had no visualized diffusion bands but rapid extensive
pooling of the dye in the center. The corresponding time-
intensity curve (Fig. 4) showed decreased diffusion or very
early peak enhancement of the two patterns in cement-blocked
discs, as compared to normal controls. No obvious diffusion
difference was found between scalpel-stabbed discs and the
normal discs.

Histological images of HE staining are shown in (Fig. 5a,
d, g). In the cement-blocked discs, degenerative changes were
obvious, including loss of NP cells, bulging and collapse of AF,
and loss of the normal boundary between AF and NP. In the
scalpel-stabbed discs, changes were mainly in the AF tissue
with derangement of collagen fibers. No changes were detected
in the normal controls. We continued by applying specific

staining for the disc ECM components of collagen and proteo-
glycan (overview in Fig. 5b, e, h, c, f, i). The cement-blocked
discs showed collapse of AF (Fig. 5i), a thin endplate with little
ECM (Fig. 5k), and very few NP ECM (Fig. 5l). The scalpel-
stabbed discs showed disorganized AF as well as ECM loss in
endplates in NP (Fig. 5m–o). The normal controls were healthy
with regular fibrous lamellae, uniformly thick endplate, and
with plentiful amounts of ECM in the NP (Fig. 5p–r).

Discussion

IDD is multifactorial. Abnormal loading, acute injury, even
certain medical treatments such as stiff spinal fixation with
resultant adjacent disc degeneration, can accelerate IDD [22].
As bone cement is widely used in vertebroplasty or balloon
kyphoplasty, procedures that are performed in locations close
to the endplates, concerns about the possible role of cement in
interference in endplate nutritional pathways are reasonable.
In our study, we demonstrated that bone cement blockage

Fig. 2 The % DHI, % nucleus
pulposus (NP)-area, and NP
T2 value of discs in different
interventions. * Indicates
significant difference between
the intervened discs and the
normal controls, P<0.01

Fig. 3 The serial T1-weighted post-contrast MRI images of discs in
different interventions. In cement-blocked disc, pattern 1 had enhance-
ment bands parallel to the endplate, with small pooling of dye at the edge
of bands; pattern 2 had no visualized diffusion bands but rapid extensive

pooling of the dye in the center at five minutes. In scalpel-stabbed and
normal discs, uniform enhancement bands parallel to the endplate slowly
moved towards the centre as time passed
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interference in endplate nutritional pathways caused IDD in an
immature porcine model.

In a clinical setting, vertebroplasty treatment is mainly
employed in older patients, whose discs are already aged or

degenerated. Whether or not employing this method in young
or even immature patients with much healthier discs is prudent
requires further investigation. In our experiment, we found
obvious adjacent IDD in an immature porcine model in

Fig. 4 Time-intensity curve. Left, pattern 1 of cement-blocked discs (n=5) had enhancement less than normal discs; Right, pattern 2 of cement-blocked
discs (n=2) had very early peak enhancement as compared to normal discs

Fig. 5 Histological images of
discs in different interventions.
(a-i) Overview of the discs in
different histological staining.
(j–r) Images with higher
magnification. Picosiruis red
staining viewed under polarized
light: (j) irregular and collapse
AF (arrow); (m) irregular fibrous
lamellae (arrow); (p) regular
fibrous lamellae. Toluidine blue
staining: (k) disorganized
endplate with loss matrix (arrow);
(n) focal thinning of the EP
(arrow); (q) uniformly thick EP
with organized ECM; (l) very few
matrix in NP (arrow); (o) matrix
loss in NP; (r) normal matrix
in NP
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conjunction with blockage of the endplate by bone cement.
Previously, similar studies in mature animal models did not find
IDD. After unilaterally blocking endplates in an adult dog
model, Hutton, et al. [12] did not find any visible IDD, but
found slightly abnormal histological changes. After unilaterally
blocking, and even breaking, endplates in a mature goat model,
Verlaan et al.[13] did not find histological evidence for IDD.
This negative result might be attributable to the fact that the
other side of the endplate pathway continued to provide ade-
quate nutrition. Krebs et al. [11], after injecting bone cement
covering 80% of the length of both sides of the endplates in the
sagittal plane in a 7.2-year-old ewe model, found no significant
IDD either. This might be because the cancellous bone mixed
into the bone cement continuously provides a degree of blood
supply for discs. Moreover, in the same study, new bone
formation around the cement indicated that in the gap of bone
and cement, a nutritional supply still existed. While these
studies provided knowledge in relation to nutritional condi-
tions, they did not provide further post-intervention data.

In our experiment, we scraped the cancellous bone near the
endplate and fully filled the void by injecting bone cement in a
manner similar to balloon kyphoplasty. In this way, we thor-
oughly blocked both endplate pathways. This was also similar
to the method reported in previous acute in vivo studies of
inserting a foil close to and parallel with the endplate to block
the endplate nutritional route, resulting in significantly de-
creased diffusion to the disc [6, 7]. In our study, the relatively
complete blockage on both sides of the endplate pathway,
with no gap inside the cement, may be more likely to cause
IDD. Furthermore, discs from our immature porcine model
were still in the developing stage and probably demanded
more nutrition in comparison to mature animal models.
Previously, Ibrahim et al. [23] found that diffusion through
the endplate was significantly greater in immature animals
compared to mature animals. Greater nutritional demands
may make these discs more vulnerable to changes in nutrition
supply, possibly leading to more positive results. Previous
studies reporting that injury to the endplates results in IDD
in an immature model [17], but not in a mature animal model
[13], supports to some extent the notion that the immature
model is sensitive to interference in the nutritional pathway.

IDD is commonly characterized by MRI with reduced
signal strength in T2-weighted images in NP, collapse of the
annulus, and reduced disc height [24]. In our experiment,
these characteristics were clearly observed in the cement-
blocked discs. We used MRI T2 mapping to analyse changes
in disc matrix composition. Compared to the normal controls,
NP T2 values significantly declined in the cement-blocked
discs. This result was consistent with previous studies [2, 3]
where the lower T2 value reflects more severe disc degener-
ation, and reductions in T2 values indicate reduction of ECM
and water content. We were able to conclude that the cement-
blocked discs were pathologically degenerated. Diffusion

study offers a powerful means of understanding the circum-
stances of disc nutrition. As Rajasekaran et al. have previously
described, the pattern with decreased diffusion indicates de-
creased nutrition supply to the disc, while the pattern with
vascularization phenomenon indicates very severe IDD with
totally abnormal diffusion [4, 21, 25]; both of these indicated
that the endplate nutritional pathway was interfered with and
diseased as a result of bone cement intervention.

Histological examination showed obvious IDD changes
including the collapse of AF, ECM loss in the NP, and
endplate lesions in both the cement-blocked discs and
scalpel-stabbed discs. These results were consistent with the
MRI findings, and confirmed that discs had degenerated after
cement interference in endplate nutritional pathways.

The limitation of the present study is the thermal effect of
bone cement, which may cause tissue necrosis, which in turn
may also more or less contribute to the positive findings.
Because previous similar studies using PMMA cement in
adult animals did not cause obvious abnormal histological
changes [11–13], and the bone cement in our study was
located at some distance from the endplate (Fig. 1), this effect
might be minimal but can not be absolutely excluded.

Conclusions

In an immature porcine model, endplate nutritional pathways
were interfered with and diseased after three months of bone
cement intervention. Severe interference in endplate nutrition-
al pathways in an immature porcine model caused IDD.
Although such serious blocking is rarely seen in connection
with vertebroplasty, the results of this experiment also draw
attention to the fact that interference in endplate nutritional
pathways in immature or young patients may affect the vitality
of adjacent discs.
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