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Abstract
Chordoma is a rare and aggressive bone tumor. An accurate investigation of tumor heterogeneity is necessary for the 
development of effective therapeutic strategies. This study aims to assess the poorly understood tumor heterogeneity of 
chordomas and identify potential therapeutic targets. Single-cell RNA sequencing was performed to delineate the tran-
scriptomic landscape of chordomas. Six tumor samples of chordomas were obtained, and 33,737 cells passed the quality 
control test and were analyzed. The main cellular populations identified with specific markers were as follows: chordoma 
cells (16,052 [47.6%]), fibroblasts (6945 [20.6%]), mononuclear phagocytes (4734 [14.0%]), and T/natural killer (NK) cells 
(3944 [11.7%]). Downstream analysis of each cell type was performed. Six subclusters of chordomas exhibited properties of 
an epithelial-like extracellular matrix, stem cells, and immunosuppressive activity. Although few immune checkpoints were 
detected on cytotoxic immune cells such as T and NK cells, a strong immunosuppressive effect was exerted on the Tregs 
and M2 macrophages. In addition, the cellular interactions were indicative of enhancement of the TGF-β signaling pathway 
being the main mechanism for tumor progression, invasion, and immunosuppression. These findings, especially from the 
analysis of molecular targeted therapy and tumor immune microenvironment, may help in the identification of therapeutic 
targets in chordomas.
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Introduction

Chordoma is a rare, aggressive, and locally invasive bone 
tumor. It originates from notochordal remnants [1]. Chor-
domas are treated by bloc excision, which is the standard 

treatment option. In patients with recurrence or patients who 
undergo subtotal or piecemeal excision, radiotherapy is rec-
ommended [2]. Many patients with chordoma undergo mor-
bid surgeries and eventually die from tumor recurrence; the 
5- and 10-year survival rates are 67.6% and 39.9%, respec-
tively [3, 4]. Thus, the treatment strategies are limited [5]. 
Novel and effective treatment methods are needed.

Tumor heterogeneity is depicted by different cellular 
populations in the complex tumor microenvironment 
(TME) of chordomas. These include cancer cells, vascu-
lar cells, fibroblasts, and immune cells. Intertumoral and 
intratumoral heterogeneity refers to heterogeneity between 
patients with the same histological type, and within a sin-
gle patient, respectively. Tumor heterogeneity is a key 
challenge in tumor treatment resistance [6]. Clinical stud-
ies on molecular targeted therapy (MTT) in chordomas 
have identified potential therapeutic targets: PDGFR, 
EGFR, HER2, VEGFR, etc. [7]. However, the therapeu-
tic effect of these MTTs is limited, and the response rate 
of apatinib and sorafenib is only approximately 3.7%. 
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Moreover, sorafenib has significant toxicity; 77.8% and 
4.8% of patients develop Grades 3 and 4 toxicities, respec-
tively [8]. Immune checkpoint inhibitors are an effective 
treatment option for cancers such as sarcomas, but their 
efficacy is limited to mismatch repair-deficient tumors [9]. 
However, programmed cell death-1 or programmed cell 
death-ligand 1 (PD-L1) inhibitors have clinical benefits 
in some patients. Tumor heterogeneity is the main reason 
for the diverse responses to these drugs [10]. The com-
plex TME explains the high heterogeneity. TMEs com-
prise cellular populations, such as cancer cells, vascular 
cells, fibroblasts, and immune cells [11]. The TME of 
chordomas consists of immune cell populations, including 
immune checkpoints [12] and vascular endothelial cells 
[13]. However, it is difficult for bulk gene analyses to pro-
vide an accurate reflection of the TME [14]. Therefore, the 
heterogeneity of chordomas is not well studied, and novel 
assessment methods are needed.

Single-cell RNA sequencing (scRNA-seq) may eluci-
date the mechanisms underlying carcinogenesis and the 
molecular features of cancers. It may provide a clearer 
description of the TME at the cellular level, allowing more 
effective therapeutic strategies for tumors [15]. scRNA-seq 
is used to delineate the complex tumor heterogeneity in 
several malignancies such as glioblastomas [16], liver can-
cers [17], lung cancers [18], renal cell carcinoma [19], and 
head and neck cancers [20]. However, the knowledge on 
tumor heterogeneity and cellular interactions in chordomas 
is limited. We used an scRNA-seq sequencing platform 
(10 × Genomics) to describe the tumor landscape of chor-
domas. This study aimed to assess tumor heterogeneity 
and identify potential therapeutic targets in chordomas.

Materials and methods

Chordoma samples

Six patients who underwent surgery at Xuanwu Hospi-
tal, Capital Medical University, Beijing, China, from July 
2019 to April 2020 were included in this study. None of 
the patients received preoperative radiation therapy, chem-
otherapy, or other targeted therapy. Using the 2013 World 
Health Organization classification of bone tumors, all 
the patients were diagnosed with classic chordomas [21] 
(Fig. S1A). On immunohistochemistry [22], all chordoma 
cells had strongly positive TBXT (brachyury) expression 
(Fig. S1B). The samples were obtained from fresh tumors 
intraoperatively. Written informed consent was obtained 
from all the patients. The study was approved by the Eth-
ics Committee of the Xuanwu hospital of Capital Medical 
University (No.2016033).

sc‑RNA sequencing

Single-cell transcriptomic sequencing was performed (Capi-
talbio Technology Corporation, http:// www. capit albio tech. 
com). Following the manufacturer’s instructions for Single 
Cell 30 Library and Gel Bead Kit V2 (10 × Genomics), 
cell suspensions were loaded on a Chromium Single Cell 
Controller (10 × Genomics, San Francisco, CA) to gener-
ate single-cell gel beads in emulsion. After Drop-seq drop-
let collection, cDNA amplification and sequencing library 
preparations were carried out as described previously [17], 
and the libraries were sequenced on Illumina HiSeq X Ten. 
The libraries from one batch of droplets were sequenced 
separately for Drop-seq data from chordoma cells.

Cell filtration, clustering, and downstream analysis

Downstream analysis was done using the Seurat package 
(version 3.2.0) [23] in R software (version 4.0.2), which 
helped in preprocessing to clustering, dimension reduction, 
visualization, and differential gene expression. In process-
ing, raw gene expression matrices were imported and filtered 
using the following standards: (1) cells expressing at least 
200 genes and genes expressed by at least 3 cells and (2) 
cells with a mitochondrial percentage below 25% (Fig. S2A, 
B). A total of 33,737 high-quality cells were included in 
the downstream analysis. Furthermore, the Seurat package 
was used to normalize and integrate expression data and 
remove the batch effect. The new integrated matrix was used 
to scale, run the principal component analysis, and visualize 
the landscape with UMAP.

Cell type annotation

We adopted 19 clusters and identified all cluster markers 
using the Seurat package. Cell types were annotated to 
known biological cell types using canonical marker genes. 
The SingleR package [24] (version 1.3.6), CellMarker web-
site [25], and inferCNV package (version 1.5.0) were used. 
The TBXT gene, a specific feature of chordomas, was also 
used to annotate the tumor cells.

Functional enrichment analysis

After the annotation of each cell type, a functional enrich-
ment analysis was performed to identify differentially 
expressing genes between different clusters for Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG). This analysis illustrated the biological processes 
and potential functions of different cells using the cluster-
Profiler package (version 3.17.0) [26] and the org.Hs.eg.db 
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package (version 3.11.4). The p-value cutoffs of GO and 
KEGG were both 0.05. The top 10 terms of the results were 
visualized in a bar or dot plot.

Pseudotime

Trajectory analysis was performed using the monocle 
package (version 2.17.0) [27]. Tumor cells, mononuclear 
phagocytes, and fibroblasts were included. The following 
parameters of each group were analyzed: lowerDetection-
Limit = 0.5, min_expr = 0.1, and num_cells_expressed ≥ 10. 
For visualization, the plot_cell_trajectory function was used 
to plot the potential trajectory according to pseudotime, Seu-
rat clusters, and the data.

Cellular communications

The CellChat package (version 0.0.1) was used to analyze 
cell-to-cell interactions [28]. Most ligand–receptor interac-
tions were mainly identified using the KEGG signaling path-
way database and recent peer-reviewed experimental studies. 
The main steps of inference of intercellular communications 
included: (1) identification of differentially expressed signal-
ing genes, (2) calculation of an ensemble average, and (3) 
calculation of intercellular communication probability.

Results

Overall landscape of the chordoma tumor samples

The raw sequencing data could be obtained at the Genome 
Sequence Archive for Human (GSA-Human), and the access 
ID is HRA000513 (https:// ngdc. cncb. ac. cn/ gsa- human/s/ 
GokpM dli). Six tumor samples (from four male and two 
female patients) were included in the scRNA-seq profiles 
(Fig. 1A). The patients’ age range was 17–49 years. The 
tumor sites included the following: the sacrum (n = 1), 
mobile spine (n = 3), and skull base (n = 2). Details of the 
characteristics of six chordomas are shown in Supplemental 
Table 1. After strict filtering, 33,737 cells were included in 
the final analysis. After normalization of gene expression 
and principal component analysis, these cells were divided 
into 18 clusters using the UMAP method (Fig. 1B). The 
18 clusters were equally distributed among the six samples, 
indicating a smaller batch-corrected effect (Fig. S3A). The 
clusters were further assigned to seven known cell lineages, 
which were chordoma cells (6392 [47.6%]), mononuclear 
phagocytes (4734 [14.0%]), T/natural killer (NK) cells (3944 
[11.7%]), fibroblasts (6945 [20.6%]), endothelial cells (404 
[1.2%]), B cells (780 [2.3%]), and neutrophils (878 [2.6%]) 
(Fig. 1B–D). The marker genes for the seven cellular popula-
tions are shown in Fig. 1B, and the characteristic genes are 

shown in Supplemental Table 2. Downstream analyses of 
the B cells, neutrophils, and endothelial cells were not per-
formed due to their small numbers. The variation in the cel-
lular populations was investigated between patients (Fig. 1E) 
and within patients (Fig. S3) and indicated a potential clini-
cal significance, especially in tumor location. Primary tumor 
location was a strong prognostic factor and was related to the 
extent of surgical resection [29].

Transcriptomic tumor heterogeneity of tumor cells 
in chordoma

A total of 16,052 tumor cells were identified according to 
the chordoma-specific marker, TBXT. These chordomas 
cells were further assigned to six clusters with differently 
expressed genes (DEGs) (Fig. 2A and B). There was a high 
degree of within-patient (Fig. 2A) and between-patient (Fig. 
S4A) tumor heterogeneity; this means that we found six dif-
ferent clusters with different phenotypes in the overall study 
population. Meanwhile, each patient had a tumor with spe-
cific cellular characteristics. These six tumor subclusters 
varied with tumor location (Fig. S4B). The GO analysis 
investigated the biological function of DEGs, which mainly 
influence immune responses, such as leukocyte migration, 
regulation, chemotaxis, regulation of B-cell activation, and 
humoral immune response (Fig. 2C). These results suggest 
that the tumor heterogeneity explained the varied immu-
nologic tumor microenvironment. Next, the expression of 
major histocompatibility complex class I genes and PD-L1/
PD-L2 expression on chordoma cells (Fig. S4C) were ana-
lyzed. However, most tumor cells did not express major his-
tocompatibility complex genes or PD-L1—these findings 
discourage the use of programmed cell death-1 inhibitors 
for chordomas.

There were 6950 chordoma cells in subcluster 0; 
these cells had the largest tumor population (43.3%). 
They were mainly involved in the extracellular matrix 
(ECM) organization by GO analysis (Fig. S4D), which 
was characterized by CTGF, COL2A1, COL6A3, and 
COL5A2 (Table S3). They were considered matrix tumor 
cells (mTCs, mTCs–C0–CTGF). Cluster 1 (4408 cells 
[27.5%]) displayed a high expression of genes related to 
metabolism of metal ions: MT1X, MT2A, and MT1G. 
The enrichment analysis revealed metal ion-related path-
ways (Fig. S4D). Cluster 1 cells were considered epi-
thelial tumor cells (eTCs-C1-IGFBP3). Cluster 4 was 
involved in nuclear division (Fig. S4D), i.e., active tumor 
cell proliferation. The biomarkers for cancer stem cells 
(CSCs) were expressed in this cluster. Biomarkers such 
as STMN1[30, 31], UBE2C[32], and PTTG1 [33] [34] 
are associated with tumor cell survival, clonality, and 
tumorigenicity in several malignancies. This subclus-
ter was considered to consist of stem tumor cells (sTCs, 
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mTCs–C4–STMN1). The pseudotime analysis showed 
that subcluster 4 was in the early tumor stage. Clusters 
2, 3, and 5 did not express CDKN2A, which is absent in 
several chordomas [35] (Fig. S4E). Next, we conducted 
a pseudotime analysis of six clusters to investigate their 
developmental trajectories: clusters 2, 3, and 5 were in a 
more advanced stage (Fig. 2D, Fig. S4F). A close relation-
ship between CDKN2A loss and tumor immune microen-
vironment changes was seen in a prior study [36]. Sub-
clusters 2 and 5, which had CDKN2A loss, were involved 
in immune functions. As mentioned above, chordomas 

showed great tumor heterogeneity, which indicates that 
the pathogenesis and phenotype might be varied. Regard-
ing the clinical treatment, different patients with a risk of 
recurrence responded differently to the same targeted drug 
for chordomas [37]. Therefore, MTT plays a crucial role 
in the personalized treatment of chordoma. The MTT tar-
get expression in chordomas was analyzed. This included 
EGFR, HER2, PDGFR, VEGF, VEGFR2, and stem cell 
factor receptor (KIT) (Fig. 2E). VEGF and VEGFR2 were 
the most upregulated, indicating their potential as thera-
peutic targets.
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T/NK cell clustering and subtype analysis

Unsupervised clustering was performed for 3944 T/NK 
cells; they were divided into five subclusters with their 
unique signature genes (Fig. 3A, B). Cluster 2 was com-
posed of NK cells (374 cells, 9.5%) marked with KRF1, 
and others were T cells (3570 cells [90.5%]) with CD3E 
expression (Fig. 3C). High tumor heterogeneity was asso-
ciated with T/NK cells among patients (Figure S5a) and 

tumor location (Fig. S5b). C0, C1, C3, and C4 were CD4 + T 
(2,298 [64.4%]), CD8 + T (953 [26.7%]), CD4- and CD8- 
double-negative (160 [4.5%]), and Treg (159 [4.4%]) cells, 
respectively. The specific markers for the immune cells 
identified above were CD4, CD8, and foxp3, respectively 
(Fig. 3C). A cluster of double-negative T cells was found 
(Fig.S5C), which was involved in systemic inflammation and 
tumor damage [38]. Only 160 double-negative T cells were 
detected, and these were not included in the downstream 
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analysis. The C1-CD8 + T and C2-NK + showed a high level 
of cytotoxic activity, which was characterized by GZMA, 
GZMK, GNLY, PRF1, and IFNγ (Fig. 3B, Table S4). More-
over, few immune checkpoints were expressed on these cyto-
toxic immune cells (Fig. 3D). There was overexpression of 
CTLA4, TIGIT, and TIM3 on Tregs (Fig. 3D), which are 
the main immunosuppressive mechanisms and therapeutic 
targets for chordomas.

Mononuclear phagocyte clustering and subtype 
analysis

To investigate the heterogeneity among macrophages, 3698 
tumor-associated macrophages (TAMs) were clustered into 
six subgroups (Fig. 4A): C0 (1414 [29.9%] cells), C1 (1061 
[22.4%] cells), C2 (807 [17.0%] cells), C3 (743 [15.7%] 
cells), C4 (367 [7.8%] cells), and C5 (342 [7.2%] cells). C0 
and C1 were the most populated, and they were associated 
with M2 subtype polarization because they exhibited high 
levels of CD68 + CD163 + CD204 + expression (Fig. 4B). 
In addition, VEGFA was heavily expressed in these cells 
in cluster 1 (Table S3). M2-subtype TAMs secrete VEGFA, 
which promotes tumor growth [39]. In the GO analysis, 
this cluster was involved in the regulation of angiogenesis 
(Fig. 4C). Subcluster 1 was composed of inflammatory 

chemokines such as CCL3, CXCL2, and CXCL3 (Table S5), 
consistent with the GO analysis findings (Fig. 4C). The 
release of these proteins by TAMs may promote inflam-
matory response and tumor development. Clusters 0 and 1 
represented an M2-like TAM cluster. Moreover, the genes 
S100A8, S100A9, and S100A12, which encode calcium-
binding proteins, were expressed by the cells in cluster 2 
(Table S3) [40]. Activated mononuclear cells can release 
these proteins, which promote inflammatory responses 
in vivo. Thus, these data indicate that C3 may have a pro-
inflammatory and anti-tumor role in chordomas. C4 and C5 
indicate nuclear division and neutrophil activation, respec-
tively (Fig. 4C). CD47 and TIM3 were expressed on TAMs 
(Fig. 4D); however, other immune checkpoints were not 
(data not shown).

Distinct fibroblast subpopulations in human 
chordomas

There were 6945 fibroblasts identified with the specific 
markers, and these cells were further divided into six sub-
clusters (Fig. 5A). All six subclusters expressed high levels 
of canonical fibroblast markers such as ACTA2 (a-SMA), 
COL1a2, and PDGFRb, confirming their identity as 
fibroblasts (Fig. 5C). These subclusters exhibited distinct 
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transcriptomic signatures (Fig. 5B, Table S6). There were 
2600 cells in subcluster 0, which had the largest popula-
tion of fibroblasts (37.4%). The subclusters were charac-
terized by ECM signatures, including collagen molecules 
(COL1A1, COL3A1, COL4A1), POSTN, and LUM. Fur-
thermore, the GO analysis for this subtype was related to 
ECM and collagen fibril organization (Fig. 5D). They were 
considered as matrix cellular-associated fibroblasts (mCAFs, 
mCAFs–C0–POSTN; Fig. 5B, C). Subcluster 1 consisted 
of 1185 fibroblasts and was the most populated (17.1%). 
The significant genes that were upregulated in this subtype 
were IL1RL1, CCL3, CCL4l2, CCL8, and others (Table S6). 
The GO analysis confirmed that this subtype was involved 
in cell chemotaxis and T-cell activation; they were con-
sidered inflammatory CAFs (iCAFs, iCAFs–C1–IL1RL1; 
Fig. 5B, C). The C2 subcluster consisted of 910 fibroblasts 
and was marked with CRABP2, which was associated with 
osteogenic differentiation. In the GO analysis, C2 was 
involved in ossification and cartilage development; there-
fore, they were considered bone development regulation 

CAFs (bCAFs, bCAFs–c2–IL1RL1; Fig. 5B, C). Subclus-
ter 3 was made of 796 fibroblasts. The marked genes were 
CST1 and ANGPTL4. There was a relationship between 
the GO analysis of this C3 and regulation of vasculature 
development. The C3 was then regarded as vascular CAFs 
(vCAFs, vCAFs-c3-MCAM; Fig. 5B, C). However, C5 and 
C3 had similar functions because the marker genes of C5 
were characterized by microvasculature signature genes 
(MCAM, MYH11, GJA4, and RGS5). Subcluster 5 fibro-
blasts expressed mainly epithelium-specific marker genes 
such as KRT19 and KRT8; they were considered epithe-
lial-to-mesenchymal transition (EMT)-like CAFs (eCAFs, 
eCAFs–c5–KRT19; Fig. 5B, C).

The TGFβ signaling pathway was enriched 
by the interplay among the CD4 + T cells, fibroblasts, 
and macrophages

We first analyzed the overall cellular interactions based on 
ligand–receptor pairs. The most active pathway in the TME 
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of chordomas was the TGFβ signaling pathway (Fig. 6A, 
Fig. S6). TGFB1-TGFBR1/TGFBR2 and TGFB1-ACVR1/
TGFBR1 contributed most to this communication network 
(Fig. 6D), which was consistent with the results of previ-
ous studies in which TGFB1 was a potent TGFβ ligand in 
cancers [41]. Moreover, TGFβ signaling played a key role 
in tumor progression by its different effects on multiple 
cell types, including malignant and non-cancerous cells 
within the TME [42]. This showed that TGFβ was mainly 
produced and released by fibroblasts and macrophages 
in chordomas (Fig. 6B). However, this TGFβ signaling 
pathway network was very active among macrophages, 
fibroblasts, tumor cells, and CD4 + T cells (Fig.  6C). 
Although few Tregs were detected, they expressed some 
immune checkpoints that exerted strong immunosuppres-
sive activity (Fig. 3D). The TGFβ signaling pathway was 
one main reason for transforming CD4 + T cells into Tregs 
in the TME of chordomas. Cytotoxic immune cells, such 
as CD8 + T cells and NK cells, did not express immune 
checkpoints, resulting in no effect on TGFβ (Fig. 3D) [43, 
44]. The chordoma cells exhibited properties of the ECM, 
epithelial cells, and stem cells (Fig. S4D). The enhanced 
TGFβ signaling was associated with malignant biological 
processes of ECM, tumor stem cell properties, and EMT 

[45–47]. Therefore, the malignant cells were mainly influ-
enced by the TGFβ pathway in chordomas.

Discussion

In this study, we first delineated the transcriptomic landscape 
of chordomas by scRNA-seq. The cellular populations of the 
TME in chordomas included tumor cells, fibroblasts, and 
immune cells; this varied within and between tumors, indi-
cating high tumor heterogeneity. Moreover, tumor heteroge-
neity varied with tumor location, suggesting novel mecha-
nisms for different clinical outcomes based on the chordoma 
site. Molecular therapy targets and immunotherapy biomark-
ers were also analyzed, and potentially valuable therapeutic 
targets were shown. The cellular interactions enhanced the 
TGFβ signaling pathway: this was the main mechanism for 
tumor progression and invasion and immunosuppression 
in chordomas. This study is the first to investigate tumor 
heterogeneity at the single-cell level, and it provides new 
insights into mechanisms of tumor development and possible 
therapeutic strategies for chordomas.

Chordoma cells accounted for approximately half of 
the total cellular populations and were made up of six 
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subclusters. These subclusters conferred malignant cell 
properties such as ECM, epithelial-like, stem cell, and 
immunosuppression. There were 4408 (27.5% of total 
tumor cells) chordoma cells in subcluster 1, which were 
related to epithelial cells. Previous studies revealed a dual 
epithelial–mesenchymal differentiation of chordomas [48], 
and these subclusters were likely to resist chemotherapy 
and radiotherapy. Biomarkers  (CD133+,  CD15+, WNT5, 
ABTG2, and MYCBP) of CSCs are found in chordomas 
[49], but these markers were absent in the tumors in the 
present study. Instead, the biomarkers of CSCs, such as 
STMN1, UB2C, and PTTG1 in hepatocellular carcinoma, 
breast cancer, and prostate tumors were detected [30–34]. 
The pathological mechanisms of these markers should 
be investigated in future studies. In addition, VEGF and 
VEGFR-2 were the most upregulated in chordomas. These 
results are consistent with the clinical evidence that chordo-
mas respond objectively to sorafenib and apatinib [7].

Our results showed a complex immune TME of chor-
domas, consisting of macrophages, T cells, and NK cells. 
The  CD8+ T cells and NK cells showed a high cytotoxic 
activity, characterized by GZMA, GZMK, GNLY, PRF1, 

and IFNγ. Two cytotoxic immune cells were devoid of 
immune checkpoints. However, a strong immunosuppressive 
activity was observed, which was mainly exerted by Tregs 
and macrophages. CTLA4, TIGIT, and TIM3 were highly 
expressed by Tregs in our study. Tregs have been detected in 
human chordoma samples and associated with poor clinical 
outcomes due to their strong immunosuppressive activity 
[50, 51]. TAMs mainly exhibited the M2-subtype, which is 
involved in angiogenesis and immunosuppression. As CD47 
and TIM3 are highly expressed by TAMs, immunotherapy 
may suppress the pro-tumor development role of TAMs in 
chordomas.

Cellular interactions showed that the TGFβ signaling 
pathway played a key role in tumor development, tumor inva-
sion, immunosuppression, and CSCs. According to previous 
reports, fibroblasts and macrophages are the main sources of 
TGFβ in chordomas [52–54]. Chordoma cells are strongly 
influenced by TGFβ in several malignant biological factors 
such as ECM, CSC properties, and epithelial-like character-
istics [55, 56]. Furthermore, in the present study, the TGFβ 
signaling pathway also negatively affected the immune cells, 
which were  CD4+ T cells. The  CD4+ T cells were the largest 
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immune cell population in chordomas.  CD4+ T cells may be 
transformed into Tregs or Th0 cells under the influence of 
certain cytokines or chemokines [57].  CD4+ T cells were 
affected by the TGFβ signaling pathway and developed into 
Tregs in this study. Together, these results indicate that the 
TGFβ signaling pathway is a fundamental mechanism for 
tumor development and immunosuppression in chordomas.

This study had some limitations. First, the results and 
conclusions were based on sequencing data and were not 
validated by experiments and clinical trials. However, the 
primary study objective was to provide a landscape of chor-
domas, and our results showed this tumor’s heterogeneity. 
Second, the TGFβ signaling pathway was found to play a 
critical role in chordoma progression by promoting tumor 
invasion, immunosuppression, and CSCs. There are no 
existing reports on TGFβ signaling pathway in chordomas. 
Therefore, the results of the TGFβ signaling pathway in 
chordomas may not be conclusive and need further research.

Our findings provide a large transcriptomic landscape 
and details of the single-cell resolution of chordomas. This 
study is an established resource for elucidating chordoma 
diversity. However, details of the mechanisms and efficacy 
of therapeutic options still need to be further explored in 
experimental and clinical studies.
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