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Abstract
Purpose Pancreatic adenocarcinoma (PAAD) is one of the most common causes of death among solid tumors, and its patho-
genesis remains to be clarified. This study aims to elucidate the value of immune/stromal-related genes in the prognosis of 
PAAD through comprehensive bioinformatics analysis based on the immune microenvironment and validated in Chinese 
pancreatic cancer patients.
Methods Gene expression profiles of pancreatic cancer patients were obtained from TCGA database. Differentially expressed 
genes (DEGs) were identified based on the ESTIMATE algorithm. Gene co-expression networks were constructed using 
WGCNA. In the key module, survival analysis was used to reveal the prognostic value. Subsequently, we performed func-
tional enrichment analysis to construct a protein–protein interaction (PPI) network. The relationship between tumor immune 
infiltration and hub genes was analyzed by TIMER and CIBERSORT. Finally, it was validated in the GEO database and in 
tissues of Chinese pancreatic cancer patients.
Results In the TCGA pancreatic cancer cohort, a low immune/stromal score was associated with a good prognosis. After 
bioinformatic analysis, 57 genes were identified to be significantly associated with pancreatic cancer prognosis. Among 
them, up-regulation of four genes (COL6A3, PLAU, MMP11 and MMP14) indicated poor prognosis and was associated 
with multiple immune cell infiltration. IHC results showed that PLAU protein levels from Chinese pancreatic cancer tissues 
were significantly higher than those from adjacent non-tumor tissues and were also associated with tumor TNM stage and 
lymph node metastasis.
Conclusion In conclusion, this study demonstrates that PLAU may serve as a new diagnostic and therapeutic target, which 
is highly expressed in Chinese pancreatic cancer tissues and associated with lymph node metastasis.
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Introduction

Pancreatic adenocarcinoma is one of the highly malignant 
and aggressive solid tumors, characterized by atypical symp-
toms, insidious location, rapid disease progression and poor 
prognosis. According to the American Cancer Society 2021 
report, the 5-year survival rate of pancreatic cancer patients 
is only 8% [1]. Currently, surgical resection is still the only 
possible treatment to cure pancreatic cancer [2], and Gemcit-
abine or other biologically targeted therapies are given after 
surgery. However, most patients develop Gemcitabine resist-
ance [3], resulting in recurrence and chemotherapy failure. 
Therefore, the discovery of new biomarkers of pancreatic 
cancer is essential for early diagnosis and development of 
new drug targets.

In pancreatic cancer tissues, malignant tumor cells 
account for only a small portion of the tumor compo-
nents, with the majority of the rest being extracellular 
matrix [4], pancreatic stellate cells and fibroblasts prolifer-
ate [5]. In addition, pancreatic cancer has an extensively 

immunosuppressive microenvironment that promotes cancer 
cell proliferation by directly suppressing antitumor immunity 
or evading immune surveillance [6–8]. In clinical treatment, 
disrupting this immunosuppressive network and promoting 
the tumor-killing activity of immune effector cells have the 
potential to improve patient outcomes. There several immu-
notherapies for pancreatic cancer currently undergoing clini-
cal trials, including immune system modulators targeting 
T cell receptors [9], immune checkpoint inhibitors, CAR-T 
cell therapy and tumor vaccines. Various immunotherapies 
have been tested in pancreatic cancer patients; however, 
most approaches failed to show clinical effects as found in 
other malignancies [10, 11]. Therefore, understanding the 
molecular mechanisms in the immune microenvironment of 
pancreatic cancer may provide new therapeutic opportunities 
for patients.

Estimation of STromal and Immune cells in MAlignant 
Tumours using Expression data (ESTIMATE) is a new algo-
rithm proposed by Yoshihara and his colleagues in 2013 
[12]. It uses gene expression data to calculate the score of 
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stromal/immune cells in tumor tissues to further predict 
tumor purity. This computational method is currently used 
to explore the immune microenvironment of leukemia [13], 
stomach adenocarcinoma [14], hepatocellular carcinoma 
[15] and so on. In this study, we will use this algorithm to 
understand the unrevealed part of the immune microenviron-
ment of pancreatic cancer.

In this research, the gene expression profile data of pan-
creatic adenocarcinoma patients were obtained from TCGA 
(excluding special pathological types). R software and 
WGCNA were used to identify the DEGs associated with 
prognosis. Subsequently, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses were performed for these DEGs, and 
differential genes were integrated through PPI network to 
find Hub genes related to prognosis. Finally, it was validated 
in the Gene Expression Omnibus (GEO) database and Chi-
nese pancreatic cancer tissues.

Materials and method

Database and ESTIMATE score

The RNA-Seq expression profiles and corresponding clini-
cal information of PAAD patients were obtained from the 
TCGA database sharing data portal (https:// portal. gdc. 
cancer. gov/). The gene expression datasets GSE78229 
and GSE85916 were downloaded from the GEO data-
base (https:// www. ncbi. nlm. nih. gov/ geo/). The dataset of 
GSE78229 was coming from GPL6244 platforms (HuGene-
1_0-st] Affymetrix Human Gene 1.0 ST Array) and contains 
50 PAAD patients. The dataset of GSE85916 was based on 
GPL13669 platforms (Affymetrix Human Genome U219 
Array) and contains 80 PAAD patients.

ESTIMATE is a tumor purity assay algorithm that uses 
gene expression data to predict the presence or absence of 
infiltrating stromal/immune cells in tumor tissue. Stromal 
and immune scores are calculated based on single-sample 
gene set enrichment analysis. Stromal, immune and ESTI-
MATE scores for each sample in the TCGA-PAAD cohort 
were downloaded from the official website (https:// bioin 
forma tics. mdand erson. org/ estim ate/). Association analy-
sis of tumor patient survival was performed between these 
scores.

Identification of DEGs based on immune 
and stromal score

All PAAD patients were classified into two groups (high 
group vs low group) based on an immune/humoral score 
of 0 as the threshold. Data analysis was performed through 
employing the package edgeR. The inclusion criteria for 

identifying DEGs were set as FC|Fold Change|> 1 and adjust 
P < 0.05.

Weighted correlation network analysis (WGCNA)

WGCNA analysis is a bioinformatics analysis method used 
to describe patterns of gene association between different 
samples. Genes with similar expression patterns can be 
clustered to analyze the relationships between modules and 
specific traits or phenotypes. DEGs co-expression networks 
were performed utilizing the WGCNA package, and clus-
tering results are shown as a color-assigned dendrogram of 
genes with similar traits in the same module. To identify 
prognostically relevant modules, heatmaps of module–trait 
relationships between age, gender, OS (overall survival) and 
survival, and P values were plotted.

DEGs function analysis

To analyze the function of the above DEGs, GO enrich-
ment analysis and KEGG pathway enrichment analysis were 
performed using the website of Database for Annotation, 
Visualization and Integrated Discovery (DAVID, https:// 
david-d. ncifc rf. gov/). GO enrichment analysis included 
biological processes (BP), cellular components (CC) and 
molecular functions (MF); P < 0.05 was considered statisti-
cally significant.

PPI network establishment and Hub gene 
identification

The string database was used to analyze the protein informa-
tion and PPI network information of DEGs (https:// string- 
db. org/) [16]. MCODE is a plug-in for Cytoscape [17] to 
construct functional modules for clustering in gene (protein) 
networks.

Survival analysis

We constructed Kaplan–Meier survival curves of these 
DEGs, and according to log-rank test, we found which DEGs 
were significantly negatively correlated with overall survival 
(P < 0.05).

Relationship between tumor immune infiltration 
and hub genes

We analyzed the correlation between hub genes and six 
tumor-infiltrating immune cells by TIMER (http:// timer. 
comp- genom ics. org/), which contains data from all tumor 
samples in TCGA. We also explored the correlation between 
hub genes and 22 immune cells using CIBERSORT[18].

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://bioinformatics.mdanderson.org/estimate/
https://bioinformatics.mdanderson.org/estimate/
https://david-d.ncifcrf.gov/
https://david-d.ncifcrf.gov/
https://string-db.org/
https://string-db.org/
http://timer.comp-genomics.org/
http://timer.comp-genomics.org/
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Immunohistochemical (IHC)

Tissue microarray of Chinese pancreatic cancer was pur-
chased from SHANGHAI OUTDO BIOTECH CO., LTD. 
The IHC staining of PLAU (1:200) was performed following 
the manufacturer’s protocol. Tissue microarray were boiled 
in citrate buffer (pH 6.0) 10 min for antigen retrieval. The 
staining intensity score defined by two independent experi-
enced pathologists as follows: negative (0), weak (1), mod-
erate (2) and strong (3). Percentage scores were defined as 
1 (1–25%); 2 (26–50%); 3 (51–75%); and 4 (76–100%). We 
divided the all tissue into high (score ≤ 6) and low (score > 6) 
groups according to the final score. Final score = intensity 
score multiplied by percentage scores.

Statistical analyses

All data were analyzed by R studio (version 3.6.1) and 
GraphPad prism 8.0.2. Data were analyzed using the log-
rank test and Chi-square test. Statistical significance was 
set at P < 0.05.

Results

Immune and stromal scores correlated with overall 
survival

The complete gene expression profile and clinical informa-
tion of 177 cases of PAAD were obtained from TCGA data-
base. The age of PAAD ranged from 35 to 88 years old, with 
a median age of 65 years. There were 97 males (54.8%) and 
80 females (45.2%).

The immune, stromal and ESTIMATE scores of each 
sample were obtained from the ESTIMATE website. The 
immune scores ranged from −1559.87 to 3037.78, the 
stromal scores ranged from −1843.32 to 2179.19, and the 

ESTIMATE scores ranged from −3178.36 to 4435.59. To 
explore the potential relationship between immune/stromal 
scores and patient survival rate, we divided PAAD patients 
into high and low groups according to the score of zero and 
performed Kaplan–Meier survival analysis. Results showed 
that patients with lower immune scores tended to have a bet-
ter prognosis than those with higher levels (Fig. 1A).

Identification of DEGs based on immune scores 
and stromal scores in pancreatic adenocarcinoma

To elucidate the relationship between gene expression pro-
files and immune status, package edgeR was performed to 
identify sets of genes that were significantly up- and down-
regulated between the two groups with high/low immune 
scores and stromal scores. For both immune and stromal 
scores, use |log (Fold Change)|> 1 and adjust P value < 0.05 
as cutoff criteria. A total of 1760 up-regulated genes and 
155 down-regulated genes were identified in the immune 
score group (Fig. 2A), and 1670 up-regulated genes and 
129 down-regulated genes were identified in the matrix 
score group (Fig. 2B). The DEGs with significant differ-
ence between the two groups were shown in the heatmap 
(Fig. 2C, D). After comprehensive bioinformatics analysis, 
the crossover genes in the two gene sets were identified, 
containing 1433 up-regulated and 67 down-regulated genes 
(Fig. 2E, F).

Functional enrichment analysis of DEGs

The DEGs with |Fold Change|> 2 was selected for GO and 
KEGG analysis at the DAVID website. The GO enrich-
ment analysis results include cellular component (CC) (Fig. 
S1A), molecular function (MF) (Fig. S1B) and biological 
process (BP) (Fig. S1C). For BP, DEGs were predominantly 
enriched in complement activation, receptor-mediated endo-
cytosis, immune response and so on. For CC, DEGs were 

Fig. 1  The relationship between immune status and overall survival 
in PAAD. PAAD patients were divided into two groups according to 
high and low immune/stroma/ESTIMATE scores. A, Kaplan–Meier 
curve shows the overall survival of the high and low immune score 

groups. B, Kaplan–Meier curve shows the overall survival of the high 
and low stromal score groups. C, Kaplan–Meier curve shows the 
overall survival of the high and low ESTIMATE score groups
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mainly enriched in extracellular region, extracellular space 
and plasma membrane. For MF, DEGs were mainly enriched 
in antigen binding, serine-type endopeptidase activity and 
immunoglobulin receptor binding. KEGG pathway enrich-
ment analysis showed that DEGs were predominantly 
enriched in phagosome, cytokine–cytokine receptor inter-
action and chemokine signaling pathway (Fig. S1D).

WGCNA and identification of key module

The up-regulated and down-regulated DEGs are analyzed by 
WGCNA. When the soft threshold of the network is 5, the 
co-expression network and the scale-free network have the 
best fit. The results showed that DEGs could be divided into 
8 modules according to their functions, of which the most 
significant modules positively correlated with over survival 
(OS time) was blue (Fig. 3).

Survival analysis of genes in blue module

To clarify the relationship between genes in blue module 
and overall survival of pancreatic cancer patients, we con-
structed Kaplan–Meier survival curves for these differential 
genes, 57 of which were significantly correlated with overall 
survival according to the log-rank test (P < 0.05) (Fig. S4, 
Table S1).

Visualization of gene expression patterns 
and functional enrichment analysis

We visualize the expression patterns of 57 prognostic-related 
genes and their chromosomal location (Fig. S2). Accord-
ing to fold change value, the top 5 up-regulated genes are 
COL10A1, MUC16, CXCL5, GREM1 and EPYC are dis-
tributed on chromosomes 6, 19, 4, 15 and 12, as well as sig-
nificantly negative correlated with overall survival. The top 
four down-regulated genes FOXA2, DNASE1L2, EPHA10 
and WFIKKN1 are located on chromosomes 20, 16, 1 and 
16, as well as significantly positive correlated with overall 
survival. Subsequently, we conducted GO and KEGG analy-
sis. The most important GO terms in biological processes, 
cell components, molecular functions and KEGG pathways 
are shown in Fig. 4.

Construction of PPI network and identification 
of prognostic‑related gene

The 57 prognostic-related genes were selected to construct 
the PPI network via using the STRING database (Fig. 5A). 
The protein network information obtained from the String 
database was then imported into Cytoscape 3.8.0 for visual 
analysis to calculate the network and topological character-
istics of each node. The most important subnetworks of the 
entire protein network were constructed based on the plug-in 
of MCODE (Fig. 5B, C). In all protein networks, the size of 

Fig. 2  Identification of differentially expressed genes (DEGs) based 
on immune/stromal scores in pancreatic adenocarcinoma. A, B, Two 
respective volcano maps of the two groups. Red indicates genes with 
fold change > 1 and adjust P < 0.05, blue represents genes with fold 
change < -1 and adjust P < 0.05, and gray indicates that the remaining 

genes are not significantly different. C, D, Heat map of two groups 
of significantly differentially expressed genes, with red representing 
high expression and blue representing low expression. E, F, Intersec-
tion of two groups of differentially expressed genes
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the node represents the degree. The above-combined analy-
sis shows that the protein interaction network contains 16 
central genes (MMP14, LOX, SERPINE1, DKK1, WNT2, 
TWST1, FOXA2, WNT7A, COL6A1, COL10A1, COL6A3, 
COL12A1, SNAI2, FGF2, MMP11 and PLAU).

Validated analysis in GEO database

Further, we determine the prognostic value of 57 genes in 
other databases (Fig. 6). Two independent data sets were 
downloaded from the GEO database and validated for analysis 
(GSE78229 and GSE85916). Then, 19 genes were validated 
to be inversely related with the PAAD survival (SERPINB2, 
MMP14, GJB2, SCEL, MMP11, IL1RN, COL6A3, ANXA1, 
AQP9, CXCL5, GREM1, DCBLD2, SEMA7A, MUC16, 
CHST11, MSN, TGM2, PLAU and FRMD6) (Table S2).

Association of prognostic genes’ expression 
with tumor purity and immune infiltration

Combining PPI and GEO data validation, we identified 
four prognosis-related genes. We used TIMER to explore 

the potential association between PAAD prognosis-related 
gene expression and tumor purity and immune cell infiltra-
tion (Fig. S3). COL6A3, PLAU, MMP11 and MMP14 were 
all weakly negatively correlated with tumor purity. On the 
contrary, there was a partial positive correlation between 
these four genes and infiltration of CD8 + T cells, CD4 + T 
cells, dendritic cells, B cells, neutrophils and macrophages.

Additionally, based on PAAD gene expression data, we 
explored the correlation between four hub genes and 22 
types of immune cell infiltration. As shown in Fig. 7, the 
expression levels of COL6A3, PLAU, MMP11 and MMP14 
were positively correlated with macrophages M0, while the 
levels of PLAU were negatively correlated with T cells CD4 
memory resting. These results suggest that hub genes may 
play an essential role in the regulation of immune cells.

Clinical experimental validation

Some researchers have shown that MMP11 and MMP14 
were overexpressed in pancreatic cancer compared to normal 
tissues. So, we verified the expression of PLAU in Chinese 
clinical specimens by IHC. IHC results showed that PLAU 

Fig. 3  Weighted correlation network analysis (WGCNA). A, Analysis 
of the scale-free fit index (left) and the mean connectivity (right) for 
various soft-thresholding powers. B, Gene clustering dendrograms. 

C, Topological overlap heat maps. D, Heat map of correlations 
between modules and clinical features
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Fig. 4  Chord diagram demonstrates GO and KEGG analysis of prognosis-related genes. A, biological processes (BP), B, cellular components 
(CC) and C, molecular functions (MF). D, KEGG pathways
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Fig. 5  Construction of PPI network and identification of key subnet-
work. A, PPI network with 41 nodes and 81 edges was constructed 
based on the STRING database and Cytoscape software. The color of 
the nodes represents the degree in the network. Two important sub-

network modules were identified based on the level of importance. B, 
The subnetwork contains 8 nodes and 12 edges. C, The subnetwork 
contains 8 nodes and 11 edges

Fig. 6  Genes of prognostic value were validated in the GEO database. Representative genes were significantly negatively correlated with overall 
survival
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protein levels from pancreatic adenocarcinoma tissues were 
significantly higher than adjacent non-tumorous tissues 
(Fig. 8). In addition, PLAU protein levels positively cor-
related with node metastasis and TNM stage, but not with 
gender, Age, or tumor size (Table 1).

Discussion

Severe immunosuppression in the immune microenviron-
ment of pancreatic cancer is critical for its resistance to 
immunotherapy, including immune checkpoint blockade 
and cytokine therapy [19, 20]. In this study, we analyzed 
the prognostic value of immune microenvironment-related 
genes in pancreatic cancer. We divided the microarray data-
set obtained from TCGA into high and low groups based 
on immune/stromal scores. First, commonly DEGs in the 
two groups were identified. Next, we used bioinformatics to 
explore the function of these genes in depth. This includes 
GO, KEGG enrichment analysis, PPI network construction 
and Hub gene identification. Finally, prognosis-related gene 
validation using GEO database.

Based on sample immune/stromal scores, we found that 
immune score was significant in terms of overall survival 
with pancreatic cancer. In pancreatic cancer, immune, 
stromal [21] and extracellular components are critical in 
influencing proliferation, metastasis, and treatment resist-
ance [22–24]. The immune cell hosts involved in pancreatic 
cancer pathology are regulatory T cells (Treg) [25], bone 
marrow-derived suppressor cells(MDSCs) [26] and den-
dritic cells [27]. These cells and cancer cells can secrete IL-6 
[28], IL-10, TGF-β cytokines that contribute to maintain the 
immunosuppressive microenvironment of pancreatic cancer. 
Stroma components can stimulate the proliferation of immu-
nosuppressive cells and blood vessel formation and promote 
the metastasis of pancreatic cancer [29, 30].

In addition, we carried out enrichment analysis on the 
identified DEGs. Consistent with the published data, these 
DEGs are enriched in several GO and KEGG terms, such 

as complement activation, immune response, extracellular 
region/space, chemokine signaling pathway, ECM–recep-
tor interaction and PI3K-Akt signaling pathway, which have 
confirmed their involvement in the progression of pancreatic 
cancer [31–34].

The co-expression network was constructed by WGCNA 
and the key module was identified as the blue module. In 
the blue module, genes associated with prognosis of pancre-
atic cancer were also enriched by GO and KEGG analysis 
showing that these genes were enriched in collagen, fibrous 
tissue, extracellular matrix, cytokine activity and recep-
tor activation. In pancreatic cancer, fibroblast proliferation 
forms a physical barrier that makes it difficult for drugs and 
immune cells to reach the tumor [35, 36]. Reconstruction of 
the extracellular matrix promotes pancreatic cancer growth 
by activating multiple cytokines [37]. In addition, a type 
I collagen-dominant phenotype during extracellular matrix 
remodeling tends to stimulate angiogenesis and neurogen-
esis to promote neointima formation, which is beneficial 
for tumor metastasis [38]. Abundant extracellular matrix 
components are associated with neural tissue infiltration in 
pancreatic cancer [39, 40]. Combining the results of GO 
and KEGG analysis above, we suggest that these DEGs are 
closely related to pancreatic carcinogenesis.

Through PPI construction and validation analysis of the 
GEO database, we identified four hub genes involved in the 
prognosis of pancreatic cancer, namely COL6A3, PLAU, 
MMP11 and MMP14, to explore their diagnostic and prog-
nostic value. Matrix metalloproteinases are closely associ-
ated with extracellular matrix remodeling and play an impor-
tant role in progression and invasion in solid tumors [41], 
MMP11 and MMP14 are often up-regulated in pancreatic 
cancer [42–44]. Type VI collagen (COL6) is often linked to 
type I collagen protofibrils to form a network of microfibrils 
[45], which may prevent drugs from reaching cancer. VI 
collagen also inhibits apoptosis and oxidative stress dam-
age [46, 47], and promotes tumor cell growth. COL6A3 has 
been reported to be involved in the pathogenesis of various 
cancers, such as ovarian cancer [48] and breast cancer [49]. 

Fig. 7  The correlation between hub genes and 22 immune cell types. Colors are Pearson correlation coefficients, numbers are p-values, signifi-
cant in green (P < 0.05)
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But, its underlying mechanism in pancreatic cancer remains 
unclear.

PLAU belongs to the PA family of serine proteases and 
converts plasminogen to plasmin. PLAU can degrade or 
remodel proteins that build the extracellular matrix [50], 
which leads to the release or activation of various types 
of growth factors that promote the migration and inva-
sion of cancer cells. PLAU also activates several signaling 
pathways, including JAK-STAT, ERK and MAPK, which 
enhance tumor cell proliferation [51]. PLAU plays an 
essential role in the metastasis and infiltration of a variety 
of tumors, such as breast cancer and glioma [52, 53]. But, 
its role in the diagnosis and prognosis of pancreatic cancer 
remains unclear.

Our study revealed that PLAU was highly expressed 
in PAAD, positively correlated with macrophage M0 and 
negatively correlated with T cell CD4 memory resting. 

Macrophages are one of the most abundant immune cells 
in the tumor microenvironment and exert antitumor or pro-
tumor effects according to different differentiation phe-
notypes [54]. The high expression of PLAU in pancreatic 
cancer may be related to macrophage differentiation, as in 
colon cancer [55]. In esophageal squamous cell carcinoma, 
PLAU can increase IL-8 expression and recruit MDSCs 
to maintain tumor growth [56]. PLAU can also maintain 
the immunosuppressive function of Treg through STAT5 
and ERK signaling pathways [57]. Taken together, PLAU 
may be involved in the pathogenesis of pancreatic cancer 
by regulating macrophage differentiation and maintaining 
an immunosuppressive microenvironment.

Most of the data included in TCGA were from Cauca-
sians. To further verify the correlation between PLAU and 
PAAD, we performed IHC staining of 85 pairs of Chinese 
clinical PAAD tissues. The results showed that PLAU was 

Fig. 8  Representative immuno-
histochemistry picture showing 
PLAU higher expression in pan-
creatic adenocarcinoma tissues. 
The left row represents tumor 
tissue, and the right row rep-
resents adjacent non-tumorous 
tissues. Scale bar = 500um
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highly expressed in PAAD tissues, which was consistent 
with the results obtained from the TCGA database. In 
addition, we found that high expression of PLAU in PAAD 
was also associated with tumor TNM stage and lymph 
node metastasis, which further demonstrated that PLAU 
may involve in the invasion and metastasis of PAAD.

Although there have been several published papers 
exploring prognostic genes in pancreatic cancer, our study 
has the following novel findings. First, we sequentially 
used the edge R package and WGCNA to identify immune-
related prognostic genes. Second, we first performed bio-
informatics analysis using TCGA and GEO databases and 
then validated our result with Chinese clinical samples. 
Third, our results show that PLAU protein expression cor-
relates with nodal metastasis and TNM staging.

In conclusion, we performed an integrated bioinformat-
ics analysis of the expression matrix of pancreatic cancer 
patients in TCGA based on the immune microenvironment. 
The in-depth exploration of DEGs led to the identification 
of four genes that may have prognostic value. Further vali-
dation in Chinese clinical samples revealed that PLAU was 
highly expressed in PAAD tissues and was associated with 
tumor staging and lymph node metastasis. This study may 
unveil new insights into the complex crosstalk network in 
the pancreatic cancer microenvironment and provide new 
targets for pancreatic cancer therapy.

Conclusions

We performed a comprehensive bioinformatic analysis of 
a dataset of pancreatic adenocarcinoma patients in TCGA 
based on the immune microenvironment and identified 
four genes that may have prognostic value. Among them, 
PLAU was significantly associated with tumor TNM 
stage and lymph node metastasis in Chinese pancreatic 
cancer patients, which affected the prognosis of PAAD 
patients. Our findings have clear implications for PLAU 
as a biomarker to predict the prognosis of PAAD patients 
and provide a new target for the treatment of pancreatic 
cancer. However, further clinical studies are still needed 
to validate these findings.
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