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Abstract
Background In the past few years, immunotherapy has changed the way we treat solid tumors. People pay more and more 
attention to the immune microenvironment of laryngeal squamous cell carcinoma (LSCC). In this study, our immunotherapy 
research took advantage of the clinical database and focused our in-depth analysis on the tumor microenvironment (TME).
Methods This study evaluated the relationship between the clinical outcome and the local tissue and overall immune status 
in 412 patients with primary LSCC. We constructed and validated a risk model that could predict prognosis, assess immune 
status, identify high-risk patients, and develop personalized treatment plans through bioinformatics. In addition, through 
immunohistochemical analysis, we verified the differential expression of CTSL and KDM5D genes with the largest weight 
coefficients in the model in LSCC tissues and their influence on the prognosis and tumor-infiltrating lymphocytes (TILs).
Results We found that interstitial tumor-infiltrating lymphocytes, tumor parenchymal-infiltrating lymphocyte volume, tumor 
infiltrates lymphocytes of frontier invasion, and the platelet-to-lymphocyte ratio (PLR) were independent factors affecting 
the prognosis of patients with LSCC. A novel risk model can guide clinicians to accurately predict prognosis, identify high-
risk patients, and formulate personalized treatment plans. The differential expression of genes such as CTSL and KDM5D 
has a significant correlation with the TILs of LSCC and the prognosis of patients.
Conclusion Local and systemic inflammatory markers in patients with laryngeal squamous cell carcinoma are reliable prog-
nostic factors. The risk model and CTSL, KDM5D gene have important potential research value.

Keywords Laryngeal squamous cell carcinoma (LSCC) · Intratumoral infiltrating lymphocytes (iTILs) · Infiltrating 
lymphocyte volume (TILv) · Tumor infiltrates lymphocytes of frontier invasion (TILf) · Immunotherapy
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Introduction

Laryngeal squamous cell carcinoma (LSCC) is currently one 
of the most common head and neck malignancies and the 
second most common cancer in respiratory tumors after lung 
cancer [1]. There are approximately 151,000 new cases of 
LSCC worldwide, accounting for approximately 5.7–7.6% of 
systemic tumors [2]. Despite the development of improved 
strategies and more accurate treatments, the 5-year survival 
rate for LSCC has unfortunately decreased from 66 to 63% 
in the past 40 years [3]. To improve the living conditions of 
patients with LSCC, precision medicine is imperative.

In addition to surgical removal of the tumor, patients 
with LSCC with distant metastasis and focal recurrence 
accompanied by risk factors are usually assisted with 
cisplatin-based chemotherapy. Various immunotherapies 
are currently being studied as alternative options to the 
treatment of the disease [4, 5]. The emergence of check-
point inhibitors has brought revolutionary changes to the 
outlook of the head and neck squamous cell carcinoma 

therapy, shifting it from cancer-centered to immune-cen-
tered research. The latest encouraging progress in can-
cer immunotherapy includes activating the host’s natural 
immune defense capabilities to effectively identify, target, 
and destroy cancer cells, which gives people some hope in 
the fight against LSCC [6–9].

Researchers have made great progress in understanding 
the immune microenvironment of LSCC [10]. The deci-
phering of tumor immunology and molecular structure 
may help determine the subset of immunogenic LSCC and 
identify potential predictive markers to select patients for 
immunotherapy [11]. Besides malignant cells, the LSCC 
solid tissue also contains various other innate immune cells 
(granulocytes, mast cells, and monocytes/macrophages), 
adaptive immune cells (T cells and B cells), fibroblasts, 
and endothelium cell. These cell interactions promote the 
inflammation and/or immunological state of tumor tis-
sues through cell-to-cell contacts and/or the production of 
cytokines and chemokines. The tumor-infiltrating lympho-
cytes are a mixture of T cells, B cells, natural killer (NK) 
cells, macrophages, and other innate cells in different pro-
portions, with the highest content of T cells [12]. Innate 
and adaptive immune responses can detect the presence of 
cancer cells. Dendritic cells swallow dying cancer cells and 
present antigens to T cells, which then migrate to tumors to 
fight tumor growth (Fig. S1). Thus, there is a clear, rational 
underpinning of the hypothesis that a high-grade in situ 
immune response may be associated with better tumor con-
trol [13]. TILs mainly appear in the human body to indicate 
the existence of the host, thus reflecting the dynamic process 
of cancer immunity [14, 15].

The International Immuno-Oncology Biomarker Working 
Group introduced guidelines for the assessment of TILs in 
solid tumors in 2017 and developed a standardized method-
ology for visual assessment of TILs on H&E sections [16]. 
Further studies showed that these criteria were reproducible 
and applicable to daily practice [17]. Although the histo-
logical evaluation of TILs in our H&E-stained samples did 
not reveal different subgroups of lymphocytes, it may still 
be a useful biomarker for evaluating tumor behavior [18]. 
However, this methodology is a single-factor assessment of 
the local immune status of the tumor and does not involve 
the tumor–stroma ratio and the percentage of TILs at the 
invasion front. Recognizing the multifaceted involvement 
of the TILs in LSCC, we propose the concepts of tumor 
parenchymal-infiltrating lymphocyte volume (TILv) and 
tumor infiltrates lymphocytes of frontier invasion (TILf). 
TILv was calculated using the formula TILv = % stroma 
in tumor × % stromal iTILs. In this study, we conducted a 
detailed assessment of the immune response in the three-
dimensional structure of the tumor and analyzed the rela-
tionship between iTILs and TILv and TILf in LSCC overall 
survival (OS) and recurrence-free survival (RFS).
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Tumor-infiltrating lymphocytes refer to lymphocytes that 
leave the blood and migrate into the tumor and are an impor-
tant part of the TME. High TILs in local tumor tissues ben-
efited from the enrichment of peripheral circulating immune 
cells [19, 20]. Therefore, host inflammation is also a key 
factor in tumor progression, the status of which can be indi-
cated by peripheral blood cell counts [21]. We constructed a 
validation model based on the preoperative peripheral blood 
cell count and evaluated the prognostic value of the host 
inflammatory response to LSCC patients.

In order to further explore the specific molecular mecha-
nisms that lead to differences in TILs, we conducted a bio-
informatics analysis of LSCC data in the Cancer Genome 
Atlas (TCGA) and the International Cancer Genome Con-
sortium (ICGC). We defined a molecular prediction model 
based on the co-expression module of TIL-related genes and 
identified key genes that are significantly associated with 
TILs and prognosis. Figure S2 is our specific analysis flow-
chart. These findings are of great significance for predicting 
the prognosis of LSCC and the development of stratified 
immunotherapy.

Methods

Patients

This study retrospectively analyzed 412 cases. These 
patients were pathologically diagnosed with LSCC from 
December 2011 to December 2014 and underwent laryn-
gectomy at the Head and Neck Nasopharyngeal Surgery 
Department of the Tumor Hospital of Harbin Medical 
University or the Head and Neck Department of Tumor 
Hospital of the Chinese Academy of Medical Sciences. 
It was reviewed and approved by the ethics committees 
of the two institutions and was carried out in accordance 
with the principles of the Declaration of Helsinki and its 
amendments. All participants provided informed consent 
to participate in the study. The clinical data (sex, age, 
BMI, history of drinking and smoking, tumor location, 
differentiation, TNM, T-stage, and N-stage) and follow-up 
information (clinical outcome and survival time) were col-
lected from the electronic medical records. The prescribed 
inclusion criteria were as follows: (1) LSCC confirmed by 
histopathology; (2) no history of anticancer treatment; (3) 
complete clinical, laboratory, imaging, and follow-up data; 
(4) the remaining paraffin-fixed tissue was sufficient, and 
the structure is clear; (5) had at least one slice to assess the 
edge of tumor invasion; (6) no history of other malignant 
tumors and no distant metastasis. In this study, a total of 
412 patients with LSCC were enrolled. There were 2–3 
pathological tissue slices in each case, and a total of 1112 
pathological tissue slices were reviewed. The samples were 

reviewed by two pathologists in a double-blind manner, 
and the patients were staged according to the eighth edi-
tion of the American Joint Committee on Cancer (AJCC) 
staging system. (7) Blood routine tests, which were based 
upon a single blood sample of each patient, were measured 
by an autoanalyzer (Sysmex XE-2100, Kobe, Japan). Data 
on peripheral blood cell counts, including platelets, neu-
trophils, lymphocytes, monocytes, eosinophils, and baso-
phils, were extracted from the results of the first blood 
routine tests (limit to 30 days prior to surgery).

Experimental methods [suggestion: use 
past tense or imperative mood]

Tumor tissue sampling and laryngeal cancer tissue 
wax block preparation

(1) Surgically excised laryngeal tissue specimens were cut 
and fixed with 10% formalin solution; (2) 3*3*0.5 cm tissue 
blocks were cut from the laryngeal cancer tissue and placed 
in a tissue embedding box and placed in 10% formalin solu-
tion; (3) laryngeal cancer tissue blocks were dehydrated by 
gradient alcohol of low concentration to high concentration; 
(4) laryngeal cancer tissue blocks were soaked in xylene 
to remove alcohol transparent tissue; (5) laryngeal cancer 
tissue blocks were embedded in paraffin to make laryngeal 
cancer tissue wax blocks.

Preparation of white slices of laryngeal cancer 
tissue

(1) Section the laryngeal cancer tissue wax blocks in 
4-μm-thick slices with a microtome; (2) place the slices in 
30 °C water and flatten with a glass slide; (3) bake the slides 
at 72 °C for 1–2 h.

Hematoxylin–Eosin staining (H&E staining)

(1) White slices of laryngeal cancer tissue are deparaffinized 
in xylene solution; (2) white slices are hydrated with high- 
to low-concentration gradient alcohol; (3) white slices are 
stained with hematoxylin; (4) after washing, the sections 
are placed in hydrochloric acid alcohol to return to blue 
and differentiated in the differentiation solution; (5) after 
the sections are rinsed, they are dehydrated in low- to high-
concentration gradient alcohol; (6) the sections are stained 
in alcohol and eosin; (7) the sections are placed dehydrate in 
pure alcohol; (8) place the slices in xylene to be transparent; 
(9) use neutral resin to seal the slices after drying.
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TILs histological scoring in laryngeal cancer 
tissues

We evaluated TIL-related parameters according to the scor-
ing method introduced by the International Immuno-Tumor 
Biomarker Working Group recently [22]. The evaluation 
of iTILs does not include any stromal areas that are not 
directly related to the tumor. In addition, areas of fibrosis 
or central necrosis are not included in the iTILs assessment. 
The percentage of iTILs was evaluated in two areas of each 
sample (the front and the center of the tumor invasion). The 
TILs working group guidelines recommend “Don't focus on 
hot spots” [22]. Therefore, the average value of TILs in the 
region should be used when reporting iTILs, TILv, and TILf. 
We evaluated at least five regions to assess the average value 
of TILs. As recommended, we used the whole untrimmed 
tumor sections. Each case in our study had at least one rep-
resentative section (4–5 µm). Low-quality tumor sections, 
such as tumor sections without tumor–stroma interface, were 
excluded.

Follow‑up methods

For each patient, extensive demographic, clinicopathologi-
cal, and treatment information were extracted from the elec-
tronic medical record system. The demographic data and 
clinicopathological characteristics of the patients were col-
lected from the database of two agencies. All patients who 
met the inclusion criteria were followed up by a combina-
tion of inpatient case review and telephone through January 
2020. The median follow-up time was 59.9 months (range 
1.9–83.2 months). The median OS time was 68.1 months 
(95% CI: 65.6–70.5). The primary outcome was OS from 
diagnosis to death, and the second outcome was RFS from 
cancer diagnosis to disease recurrence or metastasis or can-
cer-specific death, whichever came first.

Bioinformatics analysis of TILs

(1)Clinical sample and data collection

Gene expression quantification data (FPKM and counts 
format) for LSCC were downloaded from TCGA (https:// 
portal. gdc. cancer. gov/). Then, 111 LSCC samples were 
obtained. The RNA expression matrix was extracted sepa-
rately by annotations using the Gencode (GENCODE v 26) 
GTF file and normalized. Genes whose expression was “0” 
in 90% of LSCC patients were removed. Clinical data were 
downloaded from the UCSC Xena website (https:// xena. 

ucsc. edu/). To analyze the correlation of TIL-related gene 
expression signatures with the prognosis of LSCC patients, 
we filtered the samples without survival information, and 
finally, all samples were included in the prognostic analysis.

Gene expression quantification and single nucleotide 
polymorphism data for LSCC were downloaded from 
ICGC (https:// dcc. icgc. org/). Then, 85 LSCC samples were 
obtained. The RNA expression matrix was extracted sepa-
rately by annotations using the Gencode (GENCODE v 26) 
GTF file. Genes whose expression was “0” in 90% of LSCC 
patients were removed. Clinical data were downloaded from 
ICGC (https:// dcc. icgc. org/).

(2)Single‑sample Gene Set Enrichment Analysis

An immune gene chip was downloaded from GSEA (http:// 
softw are. broad institute.org/gsea/index.jsp), and ssGSEA 
was performed for LSCC data by GSVA and the GSEABase 
package of R.

(3) Construction of WGCNA Co‑Expression Modules 
related to TILs

Weighted gene co-expression network analysis (WGCNA) 
is an analytical method to identify gene co-expression 
networks based on the topological overlap. The clusters 
of highly interconnected genes were determined by hier-
archical clustering based on the connectivity and covari-
ation coefficients of the genes. Eigengene expression pat-
terns within each module are condensed into a “Module 
eigengene (ME).” MEs in the same cluster are considered 
to have a high correlation, consistent expression patterns, 
and similar biological functions, which help further explore 
the functions of different clusters [23]. We used the “good-
SamplesGenes” function in the “WGCNA” R package to 
check the missing values of gene expression. After excluding 
genes with an average expression amount less than 1, genes 
with top 25% variance were performed WGCNA analysis 
to construct co-expression modules [24]. The power value 
is an important soft threshold parameter for defining highly 
positive correlations among genes in the same module. The 
“WGCNA” R package was employed to test the independ-
ence and average connectivity of different modules under 
different power values, and the power value corresponding to 
an independence index of R2 = 0.9 was selected. The mini-
mum numbers of genes in the Gene module were set to 30 
[25]. The “WGCNA” R package was used to cluster thou-
sands of genes into different modules (identified by arbitrary 
colors). Based on TILs, the correlation between modules 
and TILs was calculated, and modules related to TILs were 
screened to obtain TIL-related genes (WGCNA hub genes) 
with P < 0.05 as the statistical significance threshold.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://xena.ucsc.edu/
https://xena.ucsc.edu/
https://dcc.icgc.org/
https://dcc.icgc.org/
http://software.broad
http://software.broad
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(4)mRNAs Position and Function Annotation

The Gencode (GENCODE v 26) GTF file is used to annotate 
the position of genes on chromosomes. Further, we visu-
alized the results using the “karyoplote” R package. Gene 
ontology (GO) analysis was performed on the WGCNA hub 
genes to annotate the biological processes (BP), the cellular 
component (CC), and the molecular function (MF) in which 
they are involved. Meanwhile, Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis was used to annotate the 
signaling pathways associated with these WGCNA-genes. 
These analyses were performed by the R software package 
“clusterProfiler,” with P < 0.05 as the threshold of statistical 
significance. The “ggplot2” R package was used to visualize 
the GO and KEGG enrichment results [26].

(5) Construction and evaluation of signatures based 
on WGCNA genes

Univariate Cox regression analysis was performed on these 
WGCNA-Genes in the TCGA cohort, and WGCNA hub 
genes with p < 0.05 were considered prognostic-related 
WGCNA hub genes and used for subsequent analysis. 
Lasso Cox regression analysis was performed on the above-
mentioned prognostic-related WGCNA hub genes. Eventu-
ally, an optimal model composed of 19 WGCNA hub genes 
was determined. Subsequently, the optimal model based 
on WGCNA-Genes signature of each patient was calcu-
lated. [Based on the optimal model, the WGCNA hub gene 
signature of each patient was calculated subsequently.] In 
the 3-year overall survival TCGA cohort, time-dependent 
receiver operating character curve (ROC) analysis was used 
to determine the optimal cutoff value for the WGCNA hub 
genes signature [27]. Patients were divided into high- and 
low-risk groups according to the cutoff value for further 
analyses. The log-rank test was used to evaluate the overall 
survival difference between the low-risk group and the high-
risk group, and the KM survival curve was drawn. ROC 
curve analysis was used to evaluate the sensitivity and speci-
ficity of WGCNA hub genes. An ROC curve, including the 
clinical characteristics, was drawn, and the AUC was cal-
culated. Finally, univariate and multivariate Cox regression 
analyses were used to investigate whether the prognostic 
value of the WGCNA hub genes was affected by other clini-
cal characteristics.

(6) Construction and evaluation of nomograms

We combined the clinical characteristics of the TCGA 
data set with the WGCNA hub genes signature to con-
struct a nomogram. We used the C index to evaluate the 

discriminative power of the nomogram and drew a calibra-
tion chart and decision curve analysis (DCA) to evaluate the 
accuracy of the nomogram.

(7) Estimation of immune infiltration

Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data (ESTIMATE) is a tool 
for predicting tumor purity and the presence of infiltrating 
stromal/immune cells in tumor tissues using gene expres-
sion data. ESTIMATE algorithm is based on single-sample 
gene set enrichment analysis (ssGSEA) and generates three 
scores.

Firstly, the immune infiltration assessment was performed 
using the “microenvironment cell population count (MCP-
counter)” method [28]. Using the normalized FPKM expres-
sion matrix converted by log2 as input, the absolute abun-
dance scores of ten immune cell and stromal cell populations 
are generated through the “MCP-counter” package. Research 
shows that immune cell infiltration assessed by the MCP-
counter algorithm performs well when comparing between 
samples [29]. Subsequently, Cell type Identification by Esti-
mating Relative Subsets of RNA Transcripts (CIBERSORT) 
was used to infer the relative proportion of 22 infiltrating 
immune cells in each sample for supplementation.

(8) Analysis of the Immunosuppressive Molecules 
Expressing Related to immune checkpoint inhibitors 
(ICIs)

To study the relationship between the model and the expres-
sion level of genes related to ICIs, we performed ggstatsplot 
package and violin plot visualization.

(9) Exploration of the Significance of the Model 
in the Clinical Treatment

The difference in the ICIs between the high- and low-risk 
groups was compared by Wilcoxon signed-rank test. The 
results are shown as violin plots using gglpot2 in R.

(10) Gene set enrichment analyses

Gene set enrichment analyses (GSEA) software (version 
4.0.1) was used to perform gene set enrichment analysis 
between the high-risk and low-risk groups. KEGG and 
Hallmark were used to identify enriched terms between the 
high-risk group and the low-risk group. P < 0.05 and false 
discovery rate (FDR) < 0.05 were considered statistically 
significant.
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Immunohistochemistry

The expressions of cathepsin L (CTSL) and lysine (K)-
specific demethylase 5D (KDM5D) on the laryngeal 
cancer tissue were performed by immunohistochemistry 
(IHC) staining. Tissue sections were incubated with a 
primary antibody against CTSL (1:100, ProteintechTM) 
or KDM5D (1:200, Affinity) at 4 ℃ overnight and then 
incubated with horseradish peroxidase combined with goat 
anti-rabbit antibody (PV-6001, ZSGB) at room tempera-
ture for 30 min. Tissue sections were stained using DAB 
and counterstained with hematoxylin.

The results of the experiment were analyzed by two 
doctors and two pathologists. The rules are as follows: 7, 
about 50% of tumor cells are strongly stained; 6, about 
50% of tumor cells are weakly stained; 5, about 25% of 
tumor cells are strongly stained; and 4, about 25% of 
tumor cells showed weak staining; 3,5–25% of tumor cells 
showed strong staining; 2, about 5–25% of tumor cells 
showed weak staining; 1, < 1% of tumor cells showed low 
or no staining; 0, no staining was detected in the tumor 
cells (0%). Samples with a staining score of 0–2 were con-
sidered low expression, while samples with a score of 3–7 
were considered high expression.

Data analysis

We first divide the patients into two groups according 
to the best cutoff point for iTIL, TILv, TILf level, or the 
hematological index. The cutoff points were determined 
by the surv_cutpoint function in the survival R package; 
overall survival status was used as the dependent variable 
(0, alive;1, death). We report the mean and standard devia-
tion or count and frequency of continuous and categori-
cal variables, respectively. The differences of continuous 
covariates and categorical covariates between groups 
were compared using Student’s t test and Chi-square test, 
respectively.

We then conducted univariate and multivariate Cox 
regression analyses and reported hazard ratios (HRs) 
and 95% confidence intervals to assess the association 
between iTILs, TILv, TILf, the hematological index, and 
the prognosis of LSCC patients. The likelihood ratio back-
ward stepwise method was used for the multivariate Cox 
regression analysis. Kaplan–Meier curves and log-rank 
tests were then conducted to compare the OS rates between 
groups. Two-sided statistical significance was defined as 
P < 0.05. All other statistical analyses were performed 

using R software 4.0.3 (Institute for Statistics and Math-
ematics, Vienna, Austria).

Results

Patient characteristics

A total of 412 patients are eligible for this study. There were 
336 males (81.6%) and 76 females (18.4%). Most subjects 
had a current or history of smoking (72.1%). As shown in 
Table 1, 52.2% of patients had supraglottic squamous cell 
carcinoma, and 47.8% of patients had glottal laryngeal squa-
mous cell carcinoma. Most patients have localized early 
tumors (T1 or T2) (65.3%), but most of them are moderately 
or poorly differentiated (59.0%) (Table 1).

The prognostic value of tumor local inflammation 
infiltration indicators peripheral blood 
inflammatory markers

In our study, 226 patients had lower iTILs (Fig. S3a), and 
186 patients had higher iTILs (Fig. S3b). The 5-year OS 
rate of the high iTILs group (50.5%) was significantly 
higher than that of the low iTILs group (42.5%, P < 0.001, 
Fig. 1a). According to the TILv stratification of patients, 126 
patients had lower TILv (Fig. S3c), and 286 patients had 
higher TILv (Fig. S3d). The 5-year OS rate of the high TILv 
group (48.3%) was significantly higher than the low TILv 
group (41.3%, P < 0.001, Fig. 1b). Lastly, we stratified the 
patients again according to TILf, 142 patients having lower 
TILf (Fig. S3e) and 270 patients having higher TILf (Fig. 
S3f). The 5-year OS rate of the high TILf group (47.8%) 
was significantly higher than the low TILv group (42.9%, 
P < 0.001, Fig. 1c). In conclusion, the levels of iTILs, TILv, 
and TILf are closely related to the improvement of patient 
survival outcomes. In addition, we also evaluated the predic-
tion accuracy of the three indicators for OS, and the ROC 
curve shows the good prediction performance of our three 
indicators (Fig. 1d). The statistical analysis of the relation-
ship between iTILs, TILv, and TILf levels and the disease 
recurrence did not find any significant correlation. In the 
univariate cox analysis, BMI ≥ 24, poorly differentiated, 
supraglottic carcinoma, high T, N stage or TNM, low iTILs, 
TILv, and TILf levels were identified as predictors of poor 
prognosis. Next, we included statistically significant indica-
tors into the multivariate analysis, and the results showed 
that BMI (P = 0.041, HR: 0.642, 95% CI: 0.420–0.983), 
iTILs (P < 0.001, HR: 0.502, 95% CI: 0.338–0.746), TILv 
(P < 0.001, HR: 0.462, 95% CI: 0.318–0.672), and TILf 
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Table 1  Multivariate and 
univariate analysis of OS and 
patient baseline characteristics

Bold values indicate the parts that are statistically significant (P < 0.05)

Items No. (%) Univariate Multivariate

HR 95% CI P-value HR 95% CI P-value

Gender
Male 336 (81.6%) ref ref ref
Female 76 (18.4%) 1.023 0.649–1.613 0.923
Age (yr.)
 < 60 223 (54.1%) ref ref ref
 ≥ 60 189 (45.9%) 1.34 0.935–1.920 0.111
BMI (kg/m2)
 < 24 273 (66.3%) ref ref ref ref ref ref
 ≥ 24 139 (33.7%) 0.578 0.381–0.879 0.011 0.642 0.420–0.983 0.041
Smoking
No 86 (20.9%) ref ref ref
Yes 297 (72.1%) 1.128 0.749–1.699 0.564
Alcohol
No 226 (54.9%) ref ref ref
Yes 186 (45.1%) 1.034 0.800–1.388 0.796
Initial Site
supraglottic 215 (52.2%) ref ref ref
glottic larynx 197 (47.8%) 1.397 0.972–2.007 0.07
Differentiation
Low–moderate 268 (65.0%) ref ref ref ref ref ref
high 114 (27.7%) 0.59 0.374–0.931 0.023 0.697 0.430–1.129 0.142
T-stage
T1 135 (32.3%) ref ref ref ref ref ref
T2 209 (50.7%) 1.536 0.982–2.401 0.059 1.452 0.625–3.372 0.386
T3 52 (12.6%) 2.314 1.328–4.031 0.003 1.182 0.426–3.286 0.748
T4 16 (3.9%) 2.24 0.927–5.410 0.073 1.068 0.215–5.315 0.936
N-Stage
N0 316 (76.7%) ref ref ref ref ref ref
N1 35 (8.5%) 1.302 0.672–2.521 0.434 0.656 0.236–1.824 0.42
N2 61 (14.8%) 3.297 2.195–4.954  < 0.001 1.426 0.256–7.944 0.686
TNM Stage
1 119 (28.9%) ref ref ref ref ref ref
2 150 (36.4%) 1.358 0.790–2.335 0.267 0.93 0.341–2.531 0.886
3 71 (17.2%) 2.175 1.217–3.888 0.008 1.937 0.580–6.460 0.282
4 72 (17.5%) 4.24 2.484–7.236  < 0.001 2.156 0.308–15.095 0.439
iTILs
Lower 226 (54.9%) ref ref ref ref ref ref
Higher 186 (45.1%) 0.463 0.313–0.685  < 0.001 0.502 0.338–0.746  < 0.001
TILV
Lower 126 (30.6%) ref ref ref ref ref ref
Higher 286 (69.4%) 0.468 0.326–0.673  < 0.001 0.462 0.318–0.672  < 0.001
TILf
Lower 142 (34.5%) ref ref ref ref ref ref
Higher 270 (65.5%) 0.537 0.374–0.770  < 0.001 0.585 0.405–0.845 0.004
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Fig. 1  Correlation analysis of inflammatory markers and prognosis a, 
b, c, Kaplan–Meier curves showed that high iTILs(b), fTILs(c), and 
TILV(d) density correlated with superior OS of patients with LSCC, 
P-values calculated by log-rank test. d A receiver operating char-

acteristic (ROC) curve analysis for iTILs, TILv and TILf. e, f, g, h 
Kaplan–Meier curves showed that high LMR (e), low PLR (f),NLR 
(g), and SII (h)correlated with superior OS of patients with LSCC. 
P-values calculated by log-rank test



1207Cancer Immunology, Immunotherapy (2022) 71:1199–1220 

1 3

(P = 0.004, HR: 0.585, 95% CI: 0.405–0.845) levels showed 
significant statistical significance (Table 1). Therefore, we 
can consider that high iTILs, TILv, and TILf levels are inde-
pendent predictors of a good prognosis.

The Kaplan–Meier curve is shown in Fig. 1e–h. The 
5-year OS rate of the high lymphocyte-to-monocyte ratio 
(LMR), platelet-to-lymphocyte ratio (PLR), neutrophil-to-
lymphocyte ratio (NLR) and systemic immune-inflammation 
index (SII, platelets × neutrophils/lymphocytes) group was 
significantly higher than that of the low group (all P < 0.05). 
In the univariate Cox analysis, high PLR, NLR, and SII were 
significantly correlated with better OS (Table 1). In the mul-
tivariate Cox analysis, PLR is still statistically associated 
with better OS in LSCC patients (P < 0.05, HR: 0.585, 95% 
CI: 1.000–1.006), which indicates that PLR is LSCC inde-
pendent prognostic indicators (Table 2).

In the TCGA database, the TILs of LSCC patients are 
related to the prognosis

We first retrieved the transcriptome data and clinical charac-
teristics of LSCC from the TCGA database. Excluding sam-
ples with repeated sequencing and zero survival time, a total 
of 111 tumor samples were included in the study. We used 
the GTF file to annotate the probes and the “mean” method 
to delete duplicate gene names. According to immune 
gene sets, we analyze tumor samples by immune-related 
single-sample gene set enrichment analysis (ssGSEA) and 
use heat maps for visualization (Fig. S4a). Next, the sam-
ples were grouped according to the enrichment of TILs, 
and the KM curve showed that LSCC patients with high 
TILs had longer survival times than those with low TILs 
(P < 0.001) (Fig. 2a). We continued to use the Pearson cor-
relation test to evaluate the correlation between TILs and 
survival time. As shown in Fig. 2b, the survival time of 

patients gradually increased with the increase in TILs score 
(R = 0.23, P = 0.013).

Screening of gene co‑expression modules 
related to TILs and functional analysis of module 
characteristic genes

We eliminated genes with low expression levels and selected 
the top 25% of the genes with variance variation rates. We 
cluster the samples to identify whether there are any obvi-
ous outliers. The height cutoff value was set to 120, and 102 
samples were included in our analysis (Fig. S5a). After pre-
liminary sorting, we constructed the WGCNA co-expression 
module of 6322 genes from 102 samples. To construct a 
WGCNA network, we first calculated the soft thresholding 
power β, to which the co-expression similarity is raised to 
calculate adjacency. We used the pick soft threshold func-
tion in WGCNA for the network topology analysis. The soft 
thresholding power β was set at 5 in the subsequent analysis 
because the scale independence reached 0.9 and had rela-
tively high-average connectivity (Fig. S5b). We constructed 
the gene network and identified modules using the one-step 
network construction function of the WGCNA R package. 
To cluster splitting, the soft thresholding power was set at 5, 
the minimum module size was set at 30, and the deep Split 
was set at 2 (which implies a medium sensitivity). Finally, 17 
genes’ co-expression modules were constructed (Fig. S5c). 
We mapped the relationships between the identified mod-
ules (Fig. S5d). The heatmap depicts the topological overlap 
matrix (TOM) among all genes included in the analysis. The 
light color represents a high overlap, and the progressively 
darker red color represents a decreasing overlap. The results 
of this analysis indicated that the gene expression was rela-
tively independent between modules. We correlated modules 
with the TILs and immune checkpoint (ICP) scores of LSCC 

Table 2  Association between 
predictive factors and overall 
survival of LSCC

Bold values indicate the parts that are statistically significant (P < 0.05)

Items No. (%) Univariate Multivariate

HR 95% CI P-value HR 95% CI P-value

NLR (%)
Low 351 (85.2%) ref ref ref ref ref ref
High 61 (14.8%) 1.092 1.041–1.145  < 0.001 0.884 0.732–1.069 0.203
LMR (%)
Low 66 (16.0%) ref ref ref ref ref ref
High 346 (84.0%) 0.962 0.877–1.056 0.419
PLR (%)
Low 331 (80.3%) ref ref ref ref ref ref
High 81 (19.7%) 1.004 1.002–1.005  < 0.001 1.003 1.000–1.006 0.037
SII (%)
Low 360 (87.4%) ref ref ref ref ref ref
High 52 (12.6%) 1.001 1.000–1.005  < 0.001 1.001 0.999–1.001 0.185
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Fig. 2  Analysis of the prognostic value of TILs and enrichment anal-
ysis of TIL-related genes a Patients in the high TILs’ group experi-
enced a longer survival time, tested by the Kaplan–Meier test. b The 
survival time of patients with LSCC longer as the TILs increased 
(R = 0.23, P = 0.013). c Module–trait associations. Each row cor-
responds to a module, and each column corresponds to a trait. Each 
cell contains the corresponding correlation and P value. The table is 

color-coded by correlation according to the color legend. d The Venn 
diagram was used to extract the intersection of ICP and TIL-related 
genes, and 802 common genes were obtained. e The genes involved 
in the blue module were analyzed by KEGG. The node size reflects 
the gene count, and the node color reflects the P value. f Gene Ontol-
ogy analysis of the genes involved in the blue module regarding bio-
logical process, cellular component, and molecular function
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samples and searched for the most important associations. 
The analysis results show that the blue module is signifi-
cantly associated with TILs and ICPs (P < 0.0001) (Fig. 2c 
and Fig. S4b, S4c).

The Venn diagram shows the intersection of the ICP-
related gene set and the TIL-related gene set (Fig. 2d), and 
finally, 802 genes are obtained. We found that these genes 
are mainly concentrated in chr1 and chr19 (Fig. S5e). In 
order to understand the composition of these genes in the 
cell and the biological functions they perform, we performed 
GO and KEGG enrichment analysis on 802 WGCNA hub 
genes. KEGG results showed that they are mainly involved 
in the regulation of pathways including cytokine–cytokine 
receptor interaction, chemokine signaling pathway, T cell, 
and B cell receptor signaling pathway, PD-L1 expression, 
and PD-1 checkpoint pathway in cancer (Fig. 2e). GO results 
show that 802 WGCNA hub genes are mainly enriched in 
biological processes, such as T cell activation, regulation 
of immune effector process and lymphocyte proliferation; 
cellular component, such as MHC protein complex, immu-
nological synapse, and MHC class II protein complex; 
and molecular functions such as immune receptor activity, 
cytokine receptor binding, and cytokine receptor activity 
(Fig. 2f). The P values of the above enrichment analysis 
results were all P < 0.05.

Predictive model construction and evaluation

We included 111 TCGA samples in the survival correla-
tion analysis. Univariate Cox analysis was performed on 
these WGCNA hub genes (P < 0.05), and 69 WGCNA hub 
genes related to prognosis were obtained (Fig. S6a). In order 
to prevent overfitting, Lasso Cox regression analysis was 
performed on these prognostic WGCNA hub genes, and 19 
WGCNA hub genes were obtained (Fig. S6b, c). We selected 
19 WGCNA hub genes to construct features and obtained a 
well-balanced prognostic model. (The list of immunization 
pathways and coefficients of WGCNA hub genes is shown 
in Table S1.) We separately constructed the ROC curves of 
WGCNA hub genes signature, TNM stage, age, and gender. 
The area under the curve (AUC) of the WGCNA hub genes 
signature is 0.790 (Fig. 3a), which shows that our signature 
has excellent predictive power. Then, we plotted the ROC 
curve of WGCNA hub genes’ signature over time. We found 
that the areas under the WGCNA hub genes signature curve 
are: 1 year: 0.811; 3 years: 0.953; 5 years: 0.939. This shows 
that our model has a good predictive ability for patients with 
survival (Fig. 3b). We used the time-dependent ROC to 
determine the cutoff value for the best WGCNA hub genes 
signature. The best cutoff value for WGCNA hub genes sig-
nature is 3.510 (Fig. S6d). According to the cutoff value, 
patients were divided into high-risk groups and low-risk 
groups. We found that compared to patients in the low-risk 

group, the overall survival rate of patients in the high-risk 
group was significantly lower (Fig. 3c). Subsequently, we 
drew a survival status graph that included survival time and 
risk score regression curves. The results showed that as the 
risk score increased, the mortality rate of patients gradu-
ally increased, and the survival time gradually shortened 
(Fig. 3d). Moreover, as the risk score increases, the expres-
sion values of genes such as NUPR2, MT-ATP8, and AQP9 
increase. On the contrary, the expression value of genes such 
as KDM5D, MAP3K14, and TNFRSF4 decreased with the 
increase in risk score (Fig. 3e).

ICGC database verification model

In the ICGC-GENEs data set, the risk scores of 85 LSCC 
samples were calculated according to the same method. We 
drew the ROC curve of the signature over time. We found 
that the areas under the ICGC-GENEs signature curve are: 
1 year: 0.628; 3 years: 0.815; 5 years: 0.821. This shows 
that our model still has excellent predictive capabilities in 
the validation set (Fig. S7a). The patients were divided into 
high-risk groups and low-risk groups. As shown in Fig. S7b, 
patients in the low-risk group have a longer overall survival. 
Next, we used the same method to draw a survival status 
graph with regression curves. The results showed that as the 
risk score increased, the patient’s mortality rate gradually 
increased, and the survival time gradually shortened (Fig. 
S7c). This is consistent with the results we obtained in the 
TCGA database. Unfortunately, we only found a significant 
correlation between gender differences and risk scores in 
the correlation analysis between clinical features and risk 
models. Other clinical features may need to be verified in a 
larger clinical sample size (Fig. S7d and S7e).

Correlation between predictive models and clinical 
characteristics

We evaluated the prognostic value of the LSCC risk score. 
In the univariate analysis, we found that OS and risk score 
(HR = 5.658, 95% CI = 3.430–9.331, P < 0.001), M staging 
(HR = 8.355, 95% CI = 1.912–36.513, P < 0.01), N stag-
ing (HR = 1.437, 95% CI = 1.042–1.980, P < 0.05), gender 
(HR = 3.142, 95% CI = 1.511–6.533, P < 0.05) were signifi-
cantly correlated (Fig. 4a). Multivariate analysis showed that 
risk score (HR = 6.156, 95% CI = 3.644–10.401, P < 0.001) 
and M stage (HR = 12.416, 95% CI = 2.714–56.799, 
P = 0.01) were independent predictors of OS (Fig. 4b). In 
order to further improve the prediction accuracy, we con-
structed a new nomogram prediction map based on the 
WGCNA hub genes (Fig. 4c). The nomogram C-index is 
0.835. By calculating the total score, oncologists can easily 
obtain the probability of OS predicted by the nomogram of 
a single patient. Besides, we used the calibration curve to 
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Fig. 3  Analysis of TIL-related genes risk scores of patients with 
LSCC in TCGA. a A comparison of ROC curves with other common 
clinical characteristics showed the superiority of the WCGNA-Genes 
signature. b The 1-, 3-, and 5-year ROC curve of the optimal model 
suggested that all AUC values were over 0.80. c Patients were sorted 
by increasing risk score in the LSCC set. d The Kaplan–Meier sur-
vival curve with log-rank test was drawn to demonstrate the relation-

ship between risk model and OS. Compared with the high-risk group, 
patients in the low-risk group experienced a longer survival time. 
The survival time and survival status of patients worsened as the 
risk score increased (y = -1.58x + 8.21, R2 = 0.25). e Heat map of the 
expression of 19 key genes in LSCC. Colors from blue to red indicate 
a trend of expression from low to high
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Fig. 4  Establishment and evaluation of clinical prognostic model a 
Forest plot of univariate Cox regression results shows that risk score 
(P < 0.001), metastasis (P < 0.05), and sex (P < 0.05) are prognostic-
related factors. b Forest plot of multivariate Cox regression results 
show that risk score (P < 0.001) and metastasis (P = 0.001) are inde-

pendent influencing factors for prognosis. c Nomogram predicting 
the probability of TCGA patient’s mortality based on risk score and 
clinical variables. d Calibration curves of the nomogram for 1, 3 and 
5  years. e Decision curve analysis of the nomograms based on the 
WCGNA-Genes signature. *P < 0.05, **P < 0.01, ***P < 0.001
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Fig. 5  Correlation between WGCNA-Genes signature and immune 
cell infiltration and immune score. a The Wilcoxon rank-sum test 
was used to compare differences in immune scores between low- and 
high-risk groups (P < 0.05). b Spearman's correlation coefficients 
were computed to investigate the potential relationship between risk 
score and immune scores. c The Wilcoxon rank-sum test compared 
the absolute abundance scores of eight immune cells and two stromal 
cells populations in two groups of patients. d Spearman's correlation 

coefficients were computed to investigate the potential relationship 
between absolute abundance scores of immune cells and stromal cells 
and risk score. The area of fan represents the degree of correlation 
(red represents a positive correlation and blue represents a negative 
correlation). e Radar chart of the relationship between 22 immune 
cell infiltration and risk group. (Wilcoxon test). *P < 0.05, **P < 0.01, 
***P < 0.001
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evaluate the model’s prediction accuracy. The results showed 
that the prediction calibration curve of the three calibration 
points in 1, 3, and 5 years was close to the standard curve, 
which indicated that the model had good predictive perfor-
mance (Fig. 4d). We also used the DCA to evaluate the reli-
ability of the model (Fig. 4e). It can be seen that the profit of 
this model was significantly higher than the limit curve and 
clinical characteristic; that is to say, it had good reliability.

The relationship between immune cell infiltration 
and risk model

We explore the difference in immune cell infiltration 
between the two groups. Based on the ESTIMATE algo-
rithm, we first calculated the immune score for each LSCC 
sample. As shown in Fig. 5a, b, compared to the high-risk 
group, the immune score of the low-risk group (P = 0.029) is 
higher, and it is negatively correlated with the risk score (the 
correlation coefficient is −0.36, P < 0.001). Next, we used 
the MCP counting method to calculate the abundance of 10 
immune-related cells. Compared to the high-risk group, the 
low-risk group had more abundant four types of cell popula-
tions (CD8 T cells, myeloid dendritic cells, neutrophils, T 
cells) (Fig. 5c). We further explored the relationship between 
immune cell infiltration and risk score. The results showed 
that the degree of immune cell infiltration was significantly 
negatively correlated with the risk score (Fig. 5d). We use 
CIBERSORT to further supplement the relative proportion 
of 22 immune infiltrating cells in each sample (Fig. 5e). The 
relative proportions of T cell CD8 and T cell CD4 memory 
resting in the low-risk group were higher. The relative pro-
portions of macrophages M0 and eosinophils in the high-
risk group were higher. There is a big difference in immune 
cell infiltration between high-risk and low-risk groups. It 
is worth noting that the radar chart shows that T cell CD4 
memory cessation and M0 macrophage infiltration rate are 
higher in all patients.

Mutational situation in the ICGC database 
and assessment of response to immunotherapy

The association of immune subtypes with mutational status 
higher tumor mutation burden (TMB) and somatic mutation 
rates is correlated to stronger anticancer immunity30. There-
fore, we calculated the TMB and mutations in each patient 
using the mutect2-processed mutation dataset of ICGC and 
analyzed the difference between the mutation and TMB in 
the high- and low-risk groups. The waterfall chart shows 
the overall mutation status of the top 20 genes in the high- 
and low-risk groups (Fig. 6a, b). Compared to the high-risk 
group, the low-risk group showed a higher mutation rate. 
Next, we plotted the TMB situation in the high- and low-
risk groups. Compared to the high-risk group, the low-risk 

group showed higher TMB (Fig. 6c). These findings suggest 
that our prediction model can predict the TMB and somatic 
mutation rates of LSCC patients and that patients in the low-
risk group may have a positive response to immunotherapy.

The application of ICIs for tumor immunotherapy has 
become a promising treatment for recurrent and metastatic 
LSCC. In order to further study the relationship between 
risk models and immunotherapy, we explored the correlation 
between risk models and ICI-related biomarkers. The results 
showed that the expression levels of LAG3 and PDCD1 were 
upregulated in the low-risk group (both P < 0.05), and the 
risk score was similar to LAG3 (r = -0.40, P < 0.05), PDCD1 
(r = -0.40, P < 0.05), and CD274 (r = -0.20, P < 0.05) which 
was negatively correlated, indicating that the low-risk group 
benefited more from immunotherapy (Fig. 6d, e).

Gene set enrichment analysis of the risk model

Since the risk model obtained is highly correlated with the 
prognosis, immune microenvironment, and treatment effect 
of LSCC, we tried to explore their functional meaning and 
internal connection through subsequent enrichment analysis. 
The results of KEGG functional enrichment analysis showed 
that the differentially expressed genes of high-risk and low-
risk populations were significantly enriched in nine KEGG 
pathways (P < 0.05). Among them, the high-risk group had 
the most abundant TGF beta signaling pathway and ECM 
receptor interaction, and the low-risk group had the most 
significant way to produce primary immunodeficiency and 
intestinal immune network for IgA production (Fig. 7a). To 
investigate whether the signature was associated with tumor 
biological processes, gene set enrichment analysis (GSEA) 
was performed. As shown in Fig. 7b, a total of nine hall-
mark gene sets were enriched (P < 0.05). Four hallmarks 
(including HYPOXIA, KRAS_SIGNALING_UP AND 
MTORC1_SIGNALING) were associated with high-risk 
scores, suggesting that the activation of these biological pro-
cesses may participate in LSCC progression. In contrast, the 
other five hallmarks (INTERFERON_ALPHA_RESPONSE, 
INTERFERON_GAMMA_RESPONSE, PI3K_AKT_
MTOR_ SIGNALING, IL6_JAK_STAT3_SIGNALING, 
DNA_REPAIR and G2M_CHECKPOINT) were associated 
with low-risk scores, suggesting that their activation inhibits 
tumor progression and improves survival in LSCC patients.

Immunohistochemistry

In our study, 112 patients had a high CTSL expression 
by employing IHC experiments (27.2%) and another 300 
patients had a low CTSL expression (72.8%, Fig. 8a). The 
OS rate of patients with high CTSL expression was signifi-
cantly lower than the low CTSL expression group (P < 0.001, 
Fig. 8b). According to the KDM5D stratification of patients, 
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270 patients had high KDM5D expression (65.5%), and 275 
patients had low KDM5D expression (34.5%, Fig. 8a). The 
OS rate of patients with high KDM5D expression was sig-
nificantly higher than the low KDM5D group (P < 0.001, 
Fig. 8c). In the correlation analysis of TILs, we found that 

CTSL was negatively correlated with TILs (P < 0.05), and 
KDM5D was significantly positively correlated with TILs 
(P < 0.001) (Fig. 8d, e). In addition, we provided more rep-
resentative pictures and corresponding positive controls in 
Figure S8.

Fig. 6  The relationship between WGCNA-Genes signature and 
immunotherapy a, b Gene mutations in high- and low-risk groups in 
LSCC samples. c The Wilcoxon rank-sum test was used to compare 
differences in TMB between low- and high-risk groups. P < 0.05. d 
Spearman's correlation coefficients were computed to investigate the 

potential relationship between immune checkpoints and risk score. 
(Red represents a positive correlation and blue represents a nega-
tive correlation). e Different expressions of ICIs between risk groups 
defined by the WGCNA-genes signature. LAG3 and PDCD1 were 
overexpressed in the low-risk group (all P < 0.05)
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Discussion

In this two-center, large-sample retrospective cohort study, 
we evaluated the relationship between the TILs and the 
prognosis and recurrence in multiple dimensions. A sys-
tematic evaluation was also conducted on the effects of pre-
operative peripheral blood NLR, PLR, MLR, and SII on 
the prognosis of LSCC patients. Through local and overall 
joint analysis, we highlighted that inflammation indicators 
were an independent factor influencing the prognosis of 
LSCC patients. As a double-validation cohort, we obtained 
LSCC samples from the TCGA and ICGC databases to ana-
lyze the prognosis and benefit of adjuvant therapy. Based 

on the TCGA database, we identified 19 genes that could 
reflect TILs status. Furthermore, we evaluated the immune 
microenvironment, immunotherapy response, chemotherapy 
response, and the effect of immune combined chemotherapy 
in patients with LSCC in the high and low TIL group. The 
relationship between TIL and the prognosis and recurrence 
suggested by the laboratory data was further corroborated 
by the data derived from the ICGC database. In addition, 
we evaluated the expression of proto-oncogenes and tumor-
suppressor genes with the largest weight coefficients in the 
tissues and identified two genes that are significantly associ-
ated with patients’ TIL and prognosis. This was of great sig-
nificance for clinicians to identify high-risk patients simply 

Fig. 7  Results of gene set enrichment analysis in the TCGA cohort. a The significantly enriched KEGG subset of canonical pathways by GSEA. 
b The significantly enriched HALLMARK gene sets by GSEA
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and accurately and to further choose personalized treatment 
methods.

In terms of sample size, this is the largest study 
assessing the prognostic value of TILs in LSCC thus far. 

Significantly, we recognized the prognostic value of the 
volume of TILs and the TILs at the frontier invasion and 
proposed the concepts of TILv and TILf, which are neces-
sary for a detailed understanding of the immune status of 

Fig. 8  CTSL and KDM5D gene expression levels were associated 
with clinical outcomes a We selected eight representative immuno-
histochemical pictures to show the expression of CTSL and KDM5D 
in tissues. b,c The Kaplan–Meier curve showed that low CTSL 
expression and high KDM5D expression were associated with higher 

OS in LSCC patients, and the p value was calculated by log-rank test 
(all P < 0.001). d Box plot shows that low CTSL expression is sig-
nificantly correlated with higher TILs (P < 0.05). e High KDM5D 
expression is significantly correlated with higher TILs(P < 0.001)
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the tumor microenvironment. The infiltration of tumors by 
chronic inflammatory cells includes lymphocytes, plasma 
cells, and macrophages [31]. TILs are a manifestation of 
the host's immune response to tumor cells, represented by 
T cells, B cells, and natural killer cells [32]. Formalin-
fixed paraffin-embedded sections can be used to assess 
tumor immunity from multiple perspectives such as TIL 
morphology, T cell subsets (e.g., CD3( +) or CD8( +)) 
immune score, and immunophenotype reaction [33–35]. 
In our study, three aspects of TILs were evaluated mor-
phologically. The results show that high levels of iTILs, 
TILv, and TILf are reliable and independent prognostic 
indicators for LSCC. Our study confirmed and expanded 
the correlation between quantified TILs levels in tissues 
and outcomes reported by other researchers. [36–39]. 
Unlike the 120 LSCC cohort study by Wang et al., neither 
Kaplan–Meier curve nor single-factor multivariate analy-
sis found a significant association between TILs, TILv, 
TILf and tumor recurrence in this study cohort. This result 
may require further examination [40].

The morphological evaluation of TILs is simple, can be 
carried out in routine clinical practice, and can provide bet-
ter histopathological predictions based on immune response 
without additional costs. This prediction may prove to be 
valuable in clinical decision making. The immune response 
is one of the main factors affecting the clinical outcome 
of tumors. However, in the current staging system, LSCC 
patients with very different immune responses may be cat-
egorized into the same clinical stage and/or the same histo-
pathological grade. We strongly believe that the evaluation 
of iTILs, TILv, and TILf should be included in the clinico-
pathological prognosis model of LSCC patients to identify 
high-risk patients more accurately. A similar proposal has 
been made in breast cancer. Loi’s comprehensive analysis of 
2148 patients with the early triple-negative disease showed 
that TILs increase the prognostic value of known clinical 
variables [41]. In addition, the International Immuno-oncol-
ogy Biomarker Breast Cancer Working Group has proposed 
a standardized method for pathologists to evaluate the role of 
iTILs in the residual disease environment after neoadjuvant. 
In this study, we assessed the local tumor immune microen-
vironment status and introduced two indicators, TILv, and 
TILf for the following reasons: First, iTILs only reflect the 
content of tumor–stroma, which is incomplete information. 
On the other hand, TILv considers the percentage of stroma 
to the overall tumor when calculating iTILs; hence, TILv 
may be more representativeness than iTILs. Secondly, many 
studies have shown that the frontier of tumor invasion best 
represents the real-time immune status of tumors [42–44]. 
Finally, when iTILs alone are not enough to evaluate the 
local immune status of tumors, TILv and TILf may provide 
additional information.

As an important sign of cancer, inflammation plays a 
key role in various stages of tumorigenesis [45]. It is well 
established that the circulating immune cells originate 
from bone marrow [46]. Mature immune cells migrate to 
the site of inflammation under the action of various driv-
ing factors, forming tumor-infiltrating lymphocytes [47]. 
Lymphocytes are an important part of the tumor microen-
vironment in inducing apoptosis, inhibiting cancer cell pro-
liferation, and inhibiting cancer cell migration and invasion 
[48]. Neutrophils, as the first responders of inflammation, 
can metastasize to tumors through CXC chemokines [49, 
50] to promote the spread of cancer cells to distant organs 
[51]. The monocytes in the tumor microenvironment are 
the potential cells with dendritic differentiation or tumor-
associated macrophages [52, 53]. The role of platelets in the 
development and progression of cancer is controversial [54, 
55]. We quantitatively evaluated the local real-time immune 
status of patients with LSCC based on the assessment of 
tumor-infiltrating lymphocytes. Peripheral blood cell count 
can reflect the degree of total inflammation and is easily 
obtained in clinical practice. In order to comprehensively 
evaluate the immune status of tumor patients, we further 
constructed an inflammation marker based on the ratio of the 
counts of immune cells in the peripheral blood. We found 
that NLR, PLR, MLR, and SII were all influencing factors 
of OS in LSCC patients and that PLR was an independent 
prognostic factor.

Clinicopathological data and peripheral blood indicators 
have verified the influence of inflammation indicators on 
the prognosis of cancer patients. In order to further study 
the specific molecular mechanisms and the sensitivity of 
high- and low-risk groups to adjuvant therapy, we identified 
19 genes that could reflect TILs in the TCGA data set. Based 
on 19 genes, we constructed a good prognostic signature. 
The results showed that the 5-year survival rate of patients 
in the high-risk group was significantly worse than that of 
the low-risk group. As the risk score increased, the survival 
time of LSCC patients was gradually shortened, and vice 
versa. Furthermore, the risk score is also an independent 
factor for the prognosis of patients, verified by the analysis 
of the ICGC database. The differential analysis of immune 
cell infiltration showed that T cells, neutrophils and myeloid 
dendritic cells had higher infiltration in the low-risk group, 
whereas the macrophages had higher infiltration in the high-
risk group of the LSCC patients. Many studies have shown 
that dense infiltration of T cells, especially T cells CD8, 
indicates a good prognosis [56–58]. In a complex microen-
vironment, macrophages, as a plastic and pluripotent cell 
group, play an important role in the occurrence and devel-
opment of malignant tumors. In most tumors, macrophages 
have been shown to participate in tumor growth and develop-
ment, with chronic inflammation and aggressive phenotypes. 
The macrophages are present in hepatocellular carcinoma, 
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gastric cancer, pancreatic duct adenocarcinoma, and mela-
noma, and have a poor prognosis59–62. Our research results 
support these observations.

Chemotherapy is the main treatment for recurrent and 
metastatic LSCC. We attempted to explore the effectiveness 
of this risk model in LSCC chemotherapy patients. We found 
that this model was effective in identifying subgroups that 
might benefit from the gemcitabine treatment. Compared 
to chemotherapy, immunotherapy has the characteristics of 
less toxic side effects and lasting curative effects [63]. Tumor 
mutation burden (TMB) is the number of somatic mutations 
in the tumor genome without the germline mutations. Higher 
TMB indicates that the tumor produces more new antigens, 
and the tumor is more easily recognized by immune cells. 
Therefore, here we first explored the relationship between 
the risk model and TMB and then assessed the correlation 
between the risk model and immune checkpoints. We found 
that LSCC patients in the low-risk group had higher expres-
sion levels of TMB, LAG3, and PDCD1, and the expression 
levels of LAG3 and PDCD1 gradually decreased as the risk 
score increased. This observation provides strong evidence 
that patients in the low-risk group might benefit more from 
immunotherapy. In the last few years, immunotherapy has 
transformed the way we treat solid tumors, including head 
neck, melanoma, lung, renal, breast, and bladder cancers. 
Sustainable responses and long-term survival benefits have 
been observed in many cancer patients, with favorable toxic-
ity profiles of immunotherapeutic agents relative to chemo-
therapy. Cures have become possible in some patients with 
metastatic disease.

In order to further explore the role of the internal gene 
composition of the model, we selected the potential proto-
oncogene (CTSL) and tumor-suppressor gene (KDM5D) 
with the largest weight coefficient. Several studies have 
shown that overexpression of CTSL can promote EMT 
[64–66]. However, the down-regulation of KDM5D induced 
the progression of malignant tumors [67–69]. We also con-
firmed that the two differentially expressed genes are sig-
nificantly associated with the TILs and prognosis of LSCC 
patients through immunohistochemical analysis. Moreover, 
our laboratory has embarked the study on the mechanism of 
action of the CTSL and KDM5D genes in the occurrence 
and development of head and neck squamous cell carcinoma.

Although our result showed excellent predictive power 
in predicting patient outcomes, identifying high-risk LSCC 
patients and individualizing treatment, there are several 
limitations. First, although this study is based on the largest 
cohort of 412 eligible patients, these analyses still need to 
be validated in larger patient cohorts. Second, there is an 
inherent gender bias in our patient cohort, due to the fact that 
LSCC is a male-dominated disease. Finally, as a retrospec-
tive study, our findings need to be verified in a prospective 
analysis.

Conclusion

To sum up, our research confirms that local tumor immune 
status (including iTILs, TILv, and TILf) and overall immune 
status (PLR) are independent factors influencing patient sur-
vival. A novel risk model can guide clinicians to accurately 
predict prognosis, identify high-risk patients, and develop 
personalized treatment plans. Studies have found that the 
differential expression of genes such as CTSL and KDM5D 
is significantly related to the TILs of LSCC and the prog-
nosis of patients.
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