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Abstract
Modified FOLFOX6 is an established therapy for patients with metastatic colorectal cancer (mCRC). We conducted a single-
arm phase Ib study to address the hypothesis that addition of pembrolizumab to this regimen could safely and effectively 
improve patient outcomes (NCT02375672). The relationship between immune biomarkers and clinical response were assessed 
in an exploratory manner. Patients with mCRC received concurrent pembrolizumab and modified FOLFOX6. The study 
included safety run-in for the first six patients. The primary objective was median progression-free survival (mPFS), with 
secondary objectives including median overall survival, safety, and exploratory assessment of immune changes. To assess 
immunological impact, peripheral blood was collected at baseline and during treatment. The levels of soluble factors were 
measured via bioplex, while a panel of checkpoint molecules and phenotypically defined cell populations were assessed 
with flow cytometry and correlated with RECIST and mPFS. Due to incidences of grade 3 and grade 4 neutropenia in the 
safety lead-in, the dose of mFOLFOX6 was reduced in the expansion cohort. Median PFS was 8.8 months and median OS 
was not reached at data cutoff. Best responses of stable disease, partial response, and complete response were observed in 
43.3%, 50.0%, and 6.7% of patients, respectively. Several soluble and cellular immune biomarkers were associated with 
improved RECIST and mPFS. Immunosuppressive myeloid and T cell subsets that were analyzed were not associated with 
response. Primary endpoint was not superior to historic control. Biomarkers that were associated with improved response 
may be informative for future regimens combining chemotherapy with immune checkpoint inhibitors.
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Introduction

Nearly two million cases of colorectal cancer (CRC) are 
diagnosed worldwide each year [1]. Of these, approximately 
22% of patients present with metastasis at diagnosis and 
these patients have a dismal 5-year survival rate of 14% 
[2, 3]. The standard of care for metastatic CRC (mCRC) 
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when this trial was initiated (2014) included 5-fluorouracil/
leucovorin with either oxaliplatin (FOLFOX) or irinotecan 
(FOLFIRI), but biologics including bevacizumab are com-
mon in current clinical paradigms [4–6]. First line FOLFOX 
only extends median progression-free survival (mPFS) for 
mCRC to 9.0 months, a mark that we hypothesized may be 
improved by addition of immune checkpoint blockade [7]. 
As a monotherapy, the PD-1 neutralizing antibody, pem-
brolizumab is ineffective outside of the ~ 5% of CRC patients 
with DNA mismatch repair deficient/microsatellite instable 
(dMMR/MSI) tumors [8, 9]. Therefore, novel therapeutic 
strategies in advanced CRC are needed.

A prior phase Ib clinical trial demonstrated pembroli-
zumab can be safely combined with cytotoxic chemother-
apy in solid tumors [10]. Further, other immunotherapies, 
including atezolizumab, bevacizumab, and nivolumab have 
been combined with FOLFOX and FOLFIRI in clinical tri-
als for gastrointestinal malignancies [5, 6, 11]. Certainly, 
systemic chemotherapy can result in lymphopenia, which 
implies potential for adverse impacts on T cell-mediated 
immune responses. However, administration of chemother-
apy may also have immunomodulatory potential by cata-
lyzing release of tumor antigens [12–14]. Surprisingly few 
studies have carefully assessed dynamic immune changes 
following combined chemotherapy and immune checkpoint 
blockade.

Previous work identified immune checkpoints as aber-
rantly expressed and capable of suppressing anti-tumor T 
cell activity in mCRC [15–17]. We hypothesized that basal 
levels of immune checkpoint molecules on circulating T 
cells would inform response to our combination therapy. 
Additionally, we interrogated previously identified biomark-
ers of response to pembrolizumab including proliferating 
 CD8+ T cells in the blood [18].

In addition to increasing tumor antigens, and immuno-
genic cell death, FOLFOX may also regulate prevalence of 
immunosuppressive T regulatory cells (Treg) and myeloid-
derived suppressor cells (MDSC) [19, 20]. A component of 
FOLFOX, 5-fluorouracil, can kill MDSCs, and increase T 
cell-dependent antitumor immunity [21, 22]. Furthermore, 
when combined with bevacizumab, FOLFOX decreases 
Tregs, granulocytic MDSCs, and increases Th17 cells [23]. 
Notably, decreased MDSCs is associated with increased sur-
vival. Therefore, we also chose to assess changes in circu-
lating levels of immunosuppressive cell populations during 
treatment and how they correlated with response.

We hypothesized pembrolizumab could be safely com-
bined with mFOLFOX6 in mCRC patients and this com-
bination therapy would provide an extension of mPFS 
and mOS compared to historical data on mFOLFOX6, 
or pembrolizumab, alone. To address this hypothesis, 
we initiated a multicenter single-arm phase Ib clinical 
trial (NCT02375672). In addition to safety and efficacy 

of combined mFOLFOX6 and pembrolizumab, this trial 
included exploratory correlative analysis of immune mark-
ers in peripheral blood.

Methods

Study design

This trial was a single-arm, multicenter, phase Ib study 
of mFOLFOX6 combined with pembrolizumab in mCRC 
patients who are treatment naïve (NCT02375672). All 
patients consented to the study following protocols estab-
lished by the IRBs of each institution. The study enrolled 
6 patients in the safety run-in cohort and 24 patients in the 
expansion cohort. The primary objective of the trial was 
to estimate median progression-free survival (mPFS) and 
compare it to a historical standard [7]. As such, the primary 
endpoint, mPFS, was measured from time of registration, 
to time of progression, per RECIST v1.1, or death. Sec-
ondary objectives included median overall survival (mOS), 
assessment of toxicity of combined pembrolizumab and 
mFOLFOX6 per CTCAE v4.0, and objective response rate 
(ORR) calculated using best RECIST response recorded in 
the observation period. Laboratory correlatives of cellular 
and soluble immune biomarkers were assessed as explora-
tory objectives.

Patients

Patients were eligible for the trial if they presented with 
histological or cytological evidence of colorectal adenocar-
cinoma with confirmation of metastatic disease measurable 
according to RECIST v1.1 [24]. Detailed inclusion criteria 
are in the supplemental methods.

Treatment

Modified FOLFOX6 was administered every two weeks and 
pembrolizumab administered every 3 weeks. Details on dos-
ing and schedule are enumerated in the supplemental mate-
rial. For correlative analyses, one “cycle” was defined as two 
weeks after administration of mFOLFOX6. Standard pre-
medication was administered with recommendation to avoid 
steroids for antiemetic prophylaxis. For the safety run-in, 
patients were followed for four weeks to assess dose-limiting 
toxicities (DLT). DLT were defined as any grade 3–4 toxicity 
other than fatigue, nausea, vomiting, or diarrhea lasting less 
than 72 h. If DLT was observed in > 1 patient of the run-in 
cohort, doses of the mFOLFOX6 regimen were decreased.
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Clinical assessment

Patients were evaluated every four weeks for study purposes 
and underwent imaging with CT or MRI every eight weeks 
to assess disease response.

Investigation of soluble and cellular biomarkers

Whole blood samples were collected for biomarker analysis 
at cycle 1 day 1 (C1D1) prior to initiation of therapy, cycle 
1 day 15 (C1D15), and cycle 3 day 1 (C3D1) at time of 
first restaging. Blood samples were centrifuged at 575×g for 
10 min to isolate plasma from cellular components. Plasma 
was collected and stored at − 80 °C until analysis. Peripheral 
blood mononuclear cells (PBMC) were isolated from cel-
lular blood components using density-gradient centrifuga-
tion in Ficoll-Paque Plus (GE Healthcare, 17-1440-02) and 
cryopreserved.

Absolute levels of 40 soluble chemokines, cytokines, and 
growth factors were measured in plasma using Luminex 
Human XL Cytokine Discovery Premixed Kit (catalog # 
FCSTM18-45), with testing conducted by Biomarker Test-
ing Service (R&D Systems, Racine WI). Flow cytometric 
analysis of PBMCs was performed on a FACS Canto II flow 
cytometer (BD Bioscience) and data analysis was performed 
in FlowJo (version 10.5.3; FlowJo, LLC, Ashland OR). A 
list of antibodies can be found in the supplemental informa-
tion (Supplemental Table 1) with gating strategy (Supple-
mental Fig. 1).

Immunohistochemical analysis

Formalin-fixed paraffin-embedded (FFPE) samples from 
13 patients with adequate archival tissue were analyzed by 
immunohistochemistry. Samples were stained for CD4 (Rab-
bit polyclonal; VWR, 102158-736), CD8 (Rabbit polyclonal; 
Abcam, ab4055), and PD-L1 (Rabbit polyclonal; Abcam, 
ab233482) and scanned on a Nanozoomer 2.0HT whole-
slide scanner (Hamamatsu Photonic K.K). Percent-positive 
area was quantified in FIJI.

Statistical analysis

The 30 patients enrolled in this trial were analyzed as a sin-
gle cohort for safety, efficacy, and predictive biomarkers. 
PFS and OS were estimated by Kaplan–Meier method with 
median values determined with 80% confidence intervals 
(CIs). Agresti-Coull 95% CIs were utilized to determine 
response rates. Descriptive statistics were employed to sum-
marize duration of response and toxicities described with 
frequencies and proportions. The Common Terminology 
Criteria for Adverse Events (CTCAE) v4 was used to assess 
acute and late toxicities [25]. More information regarding 

statistical procedures is in the supplemental methods. Sig-
nificant differences were considered those with P < 0.05. 
Analysis of immune-related correlates was performed in 
an exploratory manner and therefore false discovery rate 
adjusted P values were not employed.

Results

The combination of mFOLFOX6 and pembrolizumab 
is well‑tolerated

From April 2015 to August 2016, 30 treatment naïve mCRC 
patients were enrolled and received combined pembroli-
zumab and mFOLFOX6 (Table 1). Most patients initially 
presented with stage IV disease and ECOG performance 
score of 0. Upon enrollment on the trial, all patients had 
progressed to stage IV disease. Many patients presented with 
liver metastases (73.3%) while others displayed metastases 
to lung (23.3%) and lymph nodes (16.7%). Dose-limiting 
toxicity for this study was defined as a grade 3 or 4 toxicity 
that delays treatment for over seven days. Overall, the combi-
nation was well-tolerated, with only two adverse events (AE) 
of grade 4 (Supplemental Table 2), both cases of neutropenia 
occurring in the safety lead-in. These AEs resulted in dose 
delay for mFOLFOX6 and dose reduction for the remainder 
of the trial. All patients in the safety lead-in received full 
dose mFOLFOX6 and all patients in the remainder of the 
trial received a reduced dose. Following dose reduction, no 
patients experienced dose-limiting toxicities.

At the data collection cutoff of 24 months after trial com-
pletion, in December 2018, 36.7% of patients had not pro-
gressed, and 66.7% were alive (Fig. 1a, b). Median follow-up 
was 19.9 months. At this time, 27 patients remained on trial. 
The mPFS was 8.8 months (80% CI, 7.7–11.3 months) and 
mOS was not reached (80% CI, NR-NR). Of 30 patients 
on trial, 2 (6.7%) experienced complete responses (CR), 15 
(50.0%) had partial responses (PR), and 13 (43.3%) had sta-
ble disease (SD) (Fig. 1c). Four patients were confirmed as 
dMMR/MSI. One of these patients experienced SD and the 
remaining three experienced PR (Fig. 1d), while one had 
a sustained response. Of the two CR on trial, neither were 
assessed for dMMR/MSI status. We were unable to stratify 
patients by dMMR/MSI status due to incomplete charac-
terization of all patients (Table 1). The overall response 
rate (ORR) when considering best responses was 56.7% 
(Fig. 1E). Of responding patients, the average duration of 
response (DoR) was 37.57 weeks.

Mean treatment exposure for all drugs administered on 
trial was greater than 30 weeks (Supplemental Table 3). 
Following treatment, some patients received surgical and 
medical interventions (Supplemental Table 4). Notably, 
some had resection of the parent colorectal tumor (10%) or 
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site of liver metastasis (6.7%). Many patients received sub-
sequent FOLFIRI (30%) and other chemotherapy. Further, 
biologics targeting VEGF and EGFR were administered 
to patients following this trial either alone, or combined 
with FOLFIRI.

Immune biomarkers are altered by treatment

We first sought to identify soluble and cellular biomarkers 
significantly altered early in treatment by comparing levels 
at cycle 1 day 15 (C1D15) to baseline (C1D1). This inquiry 
identified a slew of soluble biomarkers altered by mFOL-
FOX and pembrolizumab (Fig. 2a). Notably, we observed a 
significant increase in CXCL10, a chemokine tied to poor 
prognoses for CRC patients [26]. Additionally, we detected 
significant increases in circulating granzyme B, perhaps 
indicating increased T cell-mediated anti-tumor immunity.

Cellular biomarkers were also significantly altered by 
treatment, including increased proliferating  CD8+ T cells, 
and decreased FasR expression on T cells (Fig. 2b), con-
sistent with previous reports [18]. Levels of  FoxP3+  CD4+ 
T cells with a regulatory phenotype were also increased by 
treatment. Finally, Tc1 and Tc17 cells were decreased by 
treatment, a noteworthy result given the pro-tumoral role 
for Tc17 cells in other malignancies [27]. We next sought 
to identify if these changes were associated with response 
to this regimen.

Soluble immune biomarkers are associated 
with RECIST response

First, we drew associations between baseline soluble 
immune biomarkers in plasma and RECIST response. Our 
results illustrated below detection limit levels of TNF-α were 
associated with improved RECIST response (Fig. 3a). Con-
sidering the dynamics of chemokine and cytokine levels dur-
ing immune activation, we also assessed changes in soluble 
factors throughout the course of treatment, as they may indi-
cate response to immunotherapy [18, 28, 29]. We compared 
circulating levels of soluble factors at C1D15 and C3D1 
to levels at baseline (C1D1) to determine associations with 
changes in their levels and RECIST response. These data 
indicated that decreased CXCL10 from baseline to C1D15 
was associated with improved RECIST response (Fig. 3b). 
No soluble biomarker changes between baseline and C3D1 
were associated with response.

We next determined if there was an association between 
soluble biomarker levels and mPFS. At baseline, above 
median circulating levels of two soluble factors, Flt3 ligand 
and TGF-α, were associated with improved mPFS (Fig. 3c). 
We also discovered an increase in CCL5 levels at C3D1 from 
baseline was associated with worse mPFS (Fig. 3d).

Alterations in immune checkpoint levels on T cells 
are associated with RECIST response and mPFS

Previous work has established that increased expression of 
immune checkpoints on T cells in mCRC is associated with 
suppressed T cell activity and worse prognosis [15–17]. 

Table 1  Enrolled patient demographics and disease characteristics

Demographics for the patients in this trial are listed. ECOG perfor-
mance score (PS), tumor stage at presentation, and observed sites of 
metastasis upon trial enrollment are displayed. A subset of patient 
tumors were tested for mutant (MU) or wildtype (WT) status of 
KRAS, NRAS, and BRAF. DNA mismatch repair (dMMR) stability 
and microsatellite instability (MSI) status (high versus low) were also 
assessed

Characteristics Category N/value Percent

Gender Female 11 36.7
Male 19 63.3

Race White 26 86.7
Black/African American 4 13.3

Ethnicity Non-Hispanic 29 96.7
Unknown 1 3.3

Age Median 47.5
Minimum 28
Maximun 74
Mean 49.2
SD 11.9

ECOG PS 0 21 70
1 9 30

Stage at presentation I 1 3.3
II A 2 6.7
II B 0 0
III A 0 0
III B 2 6.7
III C 3 10
IV 22 73.3

Sites of metastasis Liver 22 73.3
Lung 7 23.3
Lymph node 5 16.7
Bone 2 6.7
Ileum 3 10
Peritoneum 3 10
Other 5 16.7

Molecular findings KRAS KRAS
MU/WT/Unknown 10/12/8
NRAS NRAS
MU/WT/Unknown 4/17/9
BRAF BRAF
MU/WT/Unknown 0/21/9
MMR MMR
Stable/Unstable/Unknown 16/2/12
MSI MSI
MSI-H/MSI-L/Unknown 2/9/19
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Furthermore, T cell proliferation following pembrolizumab 
administration is associated with response in NSCLC 
[18]. Therefore, we next assessed if baseline expression of 
immune checkpoint molecules or proliferation markers on T 
cells, as well as changes in their expression over time were 
associated with RECIST response or mPFS.

Baseline frequency of immune checkpoint receptors on 
 CD4+ and  CD8+ T cell were compared to RECIST response. 
Patients with below median co-expression of PD-1 and the 
checkpoint molecules BTLA or LAG3 on  CD4+ T cells at 
baseline had improved RECIST response (Fig. 4a).  CD8+ 
T cells concurrently expressing PD-1 and LAG3 were also 
lower at baseline in patients with better RECIST response 
(Fig. 4a). Moreover, patients with below median levels 
of  CD4+ T cells co-expressing CD27 and PD-1 or co-
expressing CD28 and Ki67 had improved RECIST response 
(Fig. 4a).

For longitudinal changes, comparing differences in C1D15 
values to C1D1 elucidated that patients who experienced a 
decrease in VISTA expression on  CD8+ T cells had improved 
RECIST response (Fig. 4b). Here, differences were more 
frequently evident when comparing C3D1 values to C1D1. 
Increased frequency of BTLA expression on  CD8+ T cells 
was associated with improved RECIST response. Additionally, 

patients with decreases in proliferating  CD4+ T cells and 
 VISTA+  CD4+ T cells experienced improved RECIST 
response (Fig. 4b).

To assess immune cell checkpoints in context of response, 
we also dichotomized patients based on RECIST criteria (CR/
PR vs. SD/PD) and examined differences in the baseline levels 
of immune checkpoints on T cells. No differences in immune 
checkpoint expression were observed with this analysis.

To increase rigor and complement RECIST response data, 
we assessed if baseline levels (Fig. 4c) or changes (Fig. 4d) 
in checkpoint expression or cell proliferation throughout 
treatment were associated with mPFS. On  CD8+ T cells, 
below median baseline co-expression of LAG3 and PD-1 
on  CD8+ T cells was associated with improved mPFS. Also, 
decreased CTLA-4 and PD-1 co-expression on  CD8+ T cells 
between C1D15 and C1D1 was associated with improved 
mPFS.

Alterations in phenotypically defined immune 
cell subsets are associated with RECIST response 
and mPFS

In addition to immune checkpoint expression on T cells, we 
tested if there were other phenotypically defined immune 

Fig. 1  Progression-free survival, overall survival, and RECIST 
response. The Kaplan–Meier method was used to determine median 
progression-free survival (PFS) (a) and median overall survival (OS) 
(b) in patients on the trial. Patients without events were censored 
and are indicated by tick marks on the survival curves. RECIST v1.1 
was utilized to determine disease response (c) which is displayed 
with Agresti-Coull 95% confidence intervals. Tumor growth curves 
are displayed and color coded by RECIST response (c) or molecu-

lar alterations (d). The cutoffs for progressive disease and partial 
response are indicated by dotted lines. Overall response rate (ORR) 
and duration of response (DoR) are displayed (e). Blue bars indicate 
recorded period of response (CR and PR) in patients who responded 
(e). CI confidence interval, PFS progression-free survival, OS overall 
survival, CR complete response, PR partial response, SD stable dis-
ease, PD progressive disease, ORR overall response rate, DoR dura-
tion of response
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cell subsets associated with patient outcomes (Fig.  5). 
Baseline frequency of two phenotypically defined  CD8+ 
T cell subsets was significantly associated with improved 
RECIST response (Fig. 5a). Patients with below median 
baseline  CD8+ T cells co-expressing PD-1 and FasR, or 
above median baseline levels of  CD8+ T cells co-expressing 
PD-1 and RORγt had improved RECIST response. Below 
median levels of phenotypically defined  CD4+ and  CD8+ 

memory cells at baseline (Fig. 5d) were associated with 
longer mPFS. Moreover, below median baseline levels of 
Th17 cells  (CD4+RORγt+) expressing PD-1 were associated 
with improved mPFS.

Patients were alternatively dichotomized based on 
RECIST response (CR/PR vs. SD/PD), and differences 
in baseline levels of phenotypically defined immune 
cell populations were assessed (Fig. 5c). This analysis 

Fig. 2  Soluble and cellular biomarkers are significantly altered by 
mFOLFOX6 and pembrolizumab treatment. A heatmap displays 
soluble immune biomarkers that were assessed on this trial and how 
they were altered by treatment between baseline (C1D1) and cycle 

1 day 15 (C1D15) (a). Significant changes in cellular biomarkers (b) 
are also displayed. Paired student’s t test used to compare C1D1 and 
C1D15 values. *P < 0.05. **P < 0.01, ***P < 0.001, ****P < 0.0001
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demonstrated patients with poor RECIST response dis-
played low levels of  CD8+ T cells co-expressing RORγt 
or GATA3 and PD-1.

We also interrogated how changes in phenotypically 
defined cells throughout treatment (Fig. 5b, e) associated 
with RECIST response and mPFS. A decrease in both Tc17 
cells expressing PD-1, and NK cells from baseline to C1D15 
was associated with positive RECIST response (Fig. 5b). 
We also found two populations whose change over time 
associated with mPFS. When comparing C1D15 to C1D1, 
a decrease in  CD4+ cells with a memory phenotype was 
associated with improved mPFS. Moreover, an increase 
in B cells between C3D1 and C1D1 was associated with 
improved mPFS (Fig. 5e).

Baseline levels and changes in circulating MDSC 
and Treg subsets are not associated with RECIST 
response or mPFS

Although previous work demonstrates chemotherapy can 
deplete MDSCs and Tregs to enhance immunotherapy 
efficacy [19, 20, 23, 30], a notable result was that baseline 
levels of suppressive myeloid or T regulatory cell subsets 
were not associated with RECIST response or mPFS. These 
results were consistent for phenotypically defined MDSCs, 
polymorphonuclear CD15-positive MDSCs, FoxP3-posi-
tive  CD4+ T cells, and Tregs (Supplemental Fig. 2A, C). 
Changes between C1D15 or C3D1 versus C1D1 were also 
not associated with RECIST response or mPFS (Supplemen-
tal Fig. 2B, D).

CD4, CD8, and PD‑L1 expression in FFPE tissue 
is not correlated with RECIST response

For a subset of patients (13/30), sufficient FFPE sections 
were available for immunohistochemical analysis. We 
stained sections with hematoxylin an eosin (H&E) to deter-
mine tumor areas and for CD4, CD8, and PD-L1 to assess 
associations with RECIST response (Supplemental Fig. 3). 
Notably, the percent-positive area for each marker was not 
correlated with RECIST outcomes.

Fig. 3  The baseline levels and change throughout treatment of solu-
ble immune biomarkers are associated with RECIST response and 
mPFS. The circulating levels of numerous soluble immune biomark-
ers were measured in patient plasma. Soluble biomarkers whose base-
line levels (a) or change over time (b) were significantly associated 
with RECIST response are displayed. Moreover, survival curves for 
soluble biomarkers whose baseline levels (c) or change over time (d) 
were significantly associated with mPFS are illustrated. Fisher’s exact 
test (a, b) or the log-rank method (c, d) utilized to assess statistically 
significant changes

▸
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Fig. 4  Immune checkpoint expression is significantly associated 
with patient outcomes. Flow cytometry on peripheral blood mono-
nuclear cells isolated from patient blood samples was used to assess 
the expression of various immune checkpoint molecules and associ-
ated proliferative markers on T cells. Those whose baseline levels (a) 
or change at later time points (b) were significantly associated with 

RECIST response are displayed. Survival curves illustrating immune 
checkpoint molecules and associated proliferative markers whose 
baseline levels (c) or change over time (d) were significantly asso-
ciated with mPFS. C1D1 = cycle 1  day 1, C1D15 = cycle 1  day 15, 
C3D1 = cycle 3 day 1. Statistical significance determined with Fish-
er’s exact test (a, b), or the log-rank method (c, d)
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Discussion

Considering the high prevalence and lethality of mCRC, 
development of new and optimized therapeutic regimens is 
vital [1–3]. Both the current standard of care, FOLFOX, and 
burgeoning immune therapies demonstrate limited efficacy 
in mCRC outside of a small subset of patients harboring 
highly immunogenic tumors that respond well to pembroli-
zumab [4, 8, 9]. In other cancers that are refractory to tradi-
tional chemotherapy and immunotherapy, notably NSCLC, 
TNBC, and GC/GEJC, combining the two approaches has 
yielded significantly improved responses compared to either 
approach alone [11, 31, 32]. Therefore, the question arises 
whether similar therapeutic approaches translate to mCRC. 
With this idea in mind, we initiated this phase Ib clinical 
trial to assess safety and efficacy of combined mFOLFOX6 
and pembrolizumab in mCRC. This trial is one of the first 
to investigate combined cytotoxic chemotherapy and immu-
notherapy in the context of mCRC and the first to compre-
hensively analyze cellular and soluble immune biomarkers 
of response in this context.

In this single-arm trial, all patients received combined 
therapy with mFOLFOX6 and pembrolizumab. Therefore, 
we must resort to historic controls to determine efficacy rel-
ative to either mFOLFOX6 or pembrolizumab alone. The 
FOLFOX regimen as first-line therapy provides mPFS of 
9.0 months, with mOS of 16.2 months in advanced CRC [7]. 
Moreover, in patients without mismatch repair deficiency 
or microsatellite instability, the ORR to pembrolizumab is 
0%, with an immune-related PFS rate of 11% at 5 months 
[9]. In our study, at the data cutoff timepoint, mPFS was 
8.8 months and mOS was not reached with median follow-
up of 19.9 months. Considering mPFS in comparison to 
historical controls, combined pembrolizumab and mFOL-
FOX6 does not extend mPFS over FOLFOX alone. In this 
trial, we observed an ORR of 56.7%, aligned with FOLFOX 
alone or combined with other biologics like cetuximab or 
regorafenib [7, 33–35]. Our data support the hypothesis that 
cytotoxic chemotherapy and targeted biologics can be safely 
co-administered in mCRC patients.

Three patients with confirmed dMMR/MSI status expe-
rienced PR on this trial. Notably, one MSI-H patient had 

Fig. 5  The levels of various phenotypically defined immune cell 
populations are associated with patient outcomes. Flow cytometry 
was used to assess the presence of various phenotypically defined 
immune cell populations in peripheral blood mononuclear cells iso-
lated from patient blood samples. Those whose baseline levels (a) or 
change throughout treatment (b) were significantly associated with 
RECIST response are displayed. Phenotypically defined immune 

cell populations whose levels are significantly different at baseline 
(c) when comparing responders to non-responders are illustrated. 
Survival curves for populations whose baseline levels (d) or change 
over time (e) were significantly associated with mPFS are displayed. 
C1D1 = cycle 1 day 1, C1D15 = cycle 1 day 15, C3D1 = cycle 3 day 1. 
Statistical comparisons made with Fisher’s exact test (a, b), unpaired 
student’s t test (c), or the log-rank method (d, e)
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a long-term response. Neither of the CR observed were 
assessed for dMMR/MSI status. Following the trial, a subset 
of patients had their parent colorectal tumor (10%) or liver 
metastasis (6.7%) resected. This suggests that the combina-
tion of mFOLFOX6 and pembrolizumab may reduce tumor 
burden and allow patients with metastatic disease to pursue 
surgical options.

In addition to the primary objective of determining mPFS, 
we also included exploratory immune profiling of blood as 
a secondary objective. While we recognize that peripheral 
chemokine and cytokine levels do not necessarily reflect lev-
els in tumors, circulating biomarkers may be prognostic [36, 
37]. We first drew associations between circulating soluble 
immune biomarkers at baseline, or throughout treatment, 
with clinical outcomes. Below median baseline TNF-α lev-
els associated with better RECIST response. This is nota-
ble considering the role for TNF-α in driving metastatic 
phenotype in CRC [38]. Above median baseline levels of 
two soluble factors, Flt3 ligand and TGF-α, associated with 
improved mPFS and increased CCL5 throughout treatment 
was associated with poor mPFS. Our findings that increased 
CCL5 is associated with poor mPFS support efforts targeting 
its receptor, CCR5, in mCRC [39, 40].

We next determined associations between immune 
checkpoint expression with RECIST response and mPFS. 
Importantly, we demonstrated that below median baseline 
expression of LAG3 on both  CD4+ and  CD8+ T cells was 
associated with improved RECIST response. Below median 
LAG3 at baseline on  CD8+ cells was also significantly asso-
ciated with improved mPFS. LAG3 is upregulated in MSI-H 
colorectal cancer and LAG3 blockade enhances infiltration 
and activity of cytotoxic T cells into CRC liver metastases 
[41, 42]. Clinical trials targeting LAG3 in CRC are under-
way and our data support the concept [43]. We found other 
immune checkpoints whose change in expression over time 
was associated with RECIST response or mPFS. For exam-
ple, increased  BTLA+CD8+ T cells and decreased  VISTA+ 
 CD4+ and  CD8+ cells or proliferating  CD4+ cells were asso-
ciated with improved RECIST response. In total, this clinical 
data suggest combination therapy targeting multiple immune 
checkpoints may be necessary to invigorate T cell responses 
in advanced CRC.

Lower baseline levels of  CD8+FasR+ T cells expressing 
PD-1 were associated with positive RECIST response. FasR 
induces apoptosis via the extrinsic pathway and mediates 
elimination of CD8 + T cells upon entry into the metastatic 
liver in pre-clinical models [44, 45]. These results possi-
bly indicate patients with reduced cytotoxic T cells that 
were primed for apoptosis had improved response to this 
combination therapy. Further, we identified that high levels 
of Tc17 cells  (CD8+RORγt+) expressing PD-1 at baseline 
was a positive prognostic factor, while a decrease in these 
cells throughout treatment was associated with improved 

response. This cell subset is functionally impaired in bile 
duct cancer [27]. Our data suggest that PD-1 inhibition may 
potentially restore functionality to these cells. These hypoth-
eses will need to be examined with further studies.

Although informative, this trial does have limitations. 
First, this trial was single-arm, non-randomized, and did 
not stratify patients based on expression of PD-L1 or other 
biomarkers. Further, only a subset of patients had available 
data on dMMR/MSI status. These factors limited our abil-
ity to link clinical outcome with genomic subsets of mCRC. 
Additionally, this study was not designed to obtain tumor 
samples at baseline and post-treatment. Therefore, we are 
limited in making statements regarding changes in immune 
infiltrates and must rely on peripheral changes, which may 
not accurately reflect the tumor. We did utilize immunohis-
tochemistry to analyze expression of CD4, CD8, and PD-L1 
within the tumor and correlate it with response in a subset 
of patients where archival tissue samples were available, but 
found no association with RECIST response. Finally, due 
to the planned exploratory nature of our immune data, we 
did not see significant changes when correcting for multi-
ple comparisons. This is a function of the large number of 
biomarkers analyzed in combination with a patient sample 
size required for clinical endpoints in an early phase trial. 
Nonetheless, these results are informative for hypothesis 
generation and lay the groundwork for future investigations.

Overall, this trial establishes that pembrolizumab can be 
safely combined with cytotoxic chemotherapy in mCRC. 
Moreover, our exploratory analysis uncovered a variety of 
potential cellular and soluble biomarkers of response to this 
therapy. These biomarkers should be interrogated more thor-
oughly in future studies. In addition, our data should inform 
future rational design of combination therapy for mCRC. 
In particular, addition of next-generation checkpoint block-
ades, namely inhibition of LAG3, to mFOLFOX6 and pem-
brolizumab may be an attractive avenue of investigation in 
mCRC.
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