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Abstract
Introduction The density and distribution of the tumor immune microenvironment associated with brain metastases (BM) 
from gynecologic malignancies are unknown and have not been previously reported. We sought to describe the clinical 
features of a cohort of patients with BM from gynecologic malignancies and to characterize the tumor immune microenvi-
ronment from available archival surgical specimens.
Methods We performed a retrospective review of electronic medical records from 2002 to 2018 for patients with BM from 
gynecologic malignancies. Data on patient characteristics, treatment regimens, and clinical outcomes were procured. CD4, 
CD8, CD45RO, CD68, CD163, and FOXP3 immunohistochemistry were evaluated from available archival surgical speci-
mens from primary disease site and neurosurgical resection.
Results A cohort of 44 patients with BM from gynecologic malignancies was identified, 21 (47.7%) endometrial primaries 
and 23 (52.3%) ovarian primaries. Tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs) were 
evaluated in 13 primary cases and 15 BM cases. For the 13 primary cases,  CD4+ TILs were evident in 76.9% of cases,  CD8+ 
in 92.3%,  CD45RO+ in 92.3%, and  FOXP3+ in 46.2%, as well as  CD68+ TAMs in 100% and  CD163+ in 100%. For the 15 
BM cases,  CD4+ TILs were evident in 60.0% of cases,  CD8+ in 93.3%,  CD45RO+ in 73.3%, and  FOXP3+ in 35.7%, as well 
as  CD68+ TAMs in 86.7% and  CD163+ in 100%.
Conclusion An active tumor immune microenvironment is present with similar distribution in the primary disease site and 
BM from patients with gynecologic malignancies.

Keywords Brain metastases · Endometrial · Gynecology · Ovarian · Tumor-associated macrophage · Tumor-infiltrating 
lymphocyte

Introduction

Brain metastases (BM) from gynecologic malignancies are 
rare. Among 1481 ovarian patients and 69,027 endome-
trial cancer patients in the SEER database, a total of 1.2% 
(18/1481) of ovarian cancer patients [1] and 0.2% of endo-
metrial cancer patients (105/69027) [2] were reported to 
develop BM.

Survival for patients with BM is dismal. In patients with 
ovarian cancer BM, median survival from time of BM diag-
nosis is 0.5 months without treatment, but may improve to 
20 months with multi-modal therapy that includes surgery 
and radiation with or without chemotherapy [3]. Similarly 
in endometrial cancer, median survival after BM diagnosis 
ranges from 2.0 to 4.0 months with improvement in survival 
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seen with multi-modal therapy [4–6]. On multivariable 
analysis, the presence of a single BM is associated with 
improved survival compared to multiple metastatic brain 
lesions [7]. Up to 20.8% of patients with BM from gyneco-
logic malignancies may subsequently develop leptomenin-
geal disease [8].

Immunotherapy and the use of checkpoint inhibitors 
through the activation of T-cells [9] have demonstrated 
remarkable success in various malignancies. Biomarkers 
of favorable responses to immunotherapy include PD-L1 
expression, tumor-infiltrating lymphocytes (TILs), and 
tumor-associated macrophages (TAMs), which help to char-
acterize the activity of the tumor immune microenvironment 
[10–12].

Recent works have characterized the tumor immune 
microenvironment within BM from several malignancies to 
improve the understanding of the potential role of immuno-
therapy in the treatment of BM [13, 14]. Such characteri-
zation in BM has occurred in melanoma [15–18], NSCLC 
[19–25], breast cancer [26–32], small cell lung cancer [33], 
and colorectal cancer [34].

However, the density and distribution of the tumor 
immune microenvironment associated with BM from 
gynecologic malignancies are unknown and have not been 
previously reported. Given this unmet need, we sought to 
characterize TILs and TAMs associated with BM from 
gynecologic malignances, ovarian and endometrial cancer. 
Such insight ought to aid the understanding of how immuno-
therapy may play a role in the treatment of gynecologic BM 
beyond traditional neurosurgical resection and radiotherapy.

Materials and methods

Patient cohort

We performed a retrospective review of electronic medical 
records for patients with BM from gynecologic malignancies 
who were managed from 2002 to 2018 at a single institu-
tion. Inclusion criteria included the presence of a primary 
gynecologic malignancy confirmed by a board-certified 
pathologist and imaging evidence of at least one BM. A 
total of 44 patients met the inclusion criteria. The study was 
reviewed and approved by the Institutional Review Board 
and was in compliance with Health Insurance Portability 
and Accountability Act guidelines. Written informed con-
sent was waived.

Immunohistochemistry

Archival formalin-fixed, paraffin-embedded samples (FFPE) 
were obtained from surgical specimens from primary disease 
site and BM for all patients when available. A board-certified 

pathologist reviewed Hematoxylin and Eosin (H&E) slides. 
Unstained slides were obtained from the best representative 
sample for each surgical case.

All immunohistochemistry (IHC) was performed on 
the Leica Bond III automated staining platform. Antibody 
FoxP3 from Biolegend, catalogue # 320102, clone 206D, 
was run at 1:50 dilution using the Leica Biosystems Refine 
Detection Kit with EDTA antigen retrieval. Antibody CD163 
from Vector, catalogue # VP-C374, clone 10D6, was run at 
1:250 dilution using the Leica Biosystems Refine Detec-
tion Kit with EDTA antigen retrieval. Antibody CD68 from 
Dako, catalogue # M0876, clone PG-M1, was run at 1:200 
dilution using the Leica Biosystems Refine Detection Kit 
with citrate antigen retrieval. Antibody CD45RO from Dako, 
catalogue # M0742, clone UCHL1, was run at 1:500 dilution 
using the Leica Biosystems Refine Detection Kit without 
antigen retrieval. Antibody CD8 from Dako, catalogue # 
M7103, clone C8/144B, was run at 1:100 dilution using the 
Leica Biosystems Refine Detection Kit with EDTA antigen 
retrieval. Antibody CD4 from Dako, catalogue # M7310, 
clone 4B12, was run at 1:80 dilution using the Leica Bio-
systems Refine Detection Kit with EDTA antigen retrieval.

Tumor immune microenvironment analysis

We evaluated CD4, CD8, CD45RO, and FOXP3 TILs, as 
well as CD68 and CD163 TAMs, from 13 primary cases 
and 15 BM cases. The density of each marker was evalu-
ated as previously reported [35], in an ordinal score of 1 
“none or sporadic,” 2 “moderate,” 3 “abundant,” and 4 
“highly abundant” (Fig. 1). The density was reported for 
each case as “overall.” The “solid tumor,” “perivascular,” 
and “border” compartments were individually evaluated. 
The border region represented the interface between tumor 
and surrounding parenchyma.

Statistical analysis

Statistical analysis was performed using JMP Pro 14.2 (SAS 
Institute Inc., Cary, NC). Variables were assessed for nor-
mality using the Shapiro–Wilk test. Chi-square and Fisher’s 
exact test was used to detect statistical differences in cat-
egorical variables; t test and Wilcoxon test were used for 
continuous variables, as appropriate. TILs and TAMs were 
evaluated with an ordinal score and also as a binary variable, 
present (2, 3, or 4) and not present (1). Survival analysis uti-
lized Kaplan–Meier and Cox proportional hazard methods. 
Overall survival was defined as time from date of BM diag-
nosis with imaging to date of death from any cause or date of 
last follow-up. P ≤ 0.05  was used for statistical significance. 
Data presented as mean ± SD, unless otherwise indicated.
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Results

Clinical characteristics

A total of 44 patients with BM from gynecologic malig-
nancies were identified. The cohort included 21 (47.7%) 
endometrial primaries and 23 (52.3%) ovarian primaries. 
The most common metastatic sites prior to BM diagnosis 
included lung (n = 11), liver (n = 8), and bone (n = 7). A 
total of 32 patients received systemic chemotherapy and 
11 patients received radiation to the primary disease site. 
Median time to BM diagnosis from primary diagnosis 
was 2.1 years (95%CI 1.2, 3.5 years) (range 0–15.0 years), 
which did not significantly differ based on primary disease 
site (1.5 years, endometrial compared to 2.3 years, ovarian) 
(P = 0.5, log-rank).

Median age at BM diagnosis was 68.0 years (IQR: 59.1, 
72.2 years) and range 37.2 to 86.2 years. The most common 
presenting symptoms included headache (n = 12), dizziness 
(n = 9), altered mental status (n = 9), cerebellar dysfunction 
(n = 8), seizure (n = 6), and cranial nerve neuropathy (n = 2). 
The number of BM identified on initial imaging included 
one BM in 18 (40.9%), two BM in 10 (22.7%), three BM in 
4 (9.1%), and more than three BM in 12 (27.3%). The most 
common locations included frontal lobe in 24 (54.5%) and 
cerebellum in 21 (47.8%), followed by parietal lobe in 20 
(45.5%), occipital lobe in 14 (31.8%), and temporal lobe 
in 9 (20.5%). Neurosurgical resection was performed in 17 
(38.6%) patients and BM radiotherapy was performed in 22 
(50.0%) patients.

Median overall survival from BM diagnosis was 
6.8 months (95%CI 2.6, 14.7 months) (Fig. 2A). Compared 
to patients with one BM, there is a 3.94-fold increased risk 
of death for two BM (P = 0.007), 5.18-fold for three BM 
(P = 0.02), and 5.87-fold for more than three BM (P = 0.002). 
Median overall survival for one BM is 23.2 months (95%CI 
4.3, 32.3  months), for two BM is 5.9  months (95%CI 
0.4, 8.2 months), for three BM is 3 months (95%CI 1.3, 
14.3 months), and for more than three BM is 2.2 months 
(95%CI 0.9, 14.1 months) (P = 0.005, log-rank) (Fig. 2B). 
Neurosurgical resection was associated with improved 

survival: 15.4 months (95%CI 4.3, 21.3 months) compared 
to 2.4 months (95%CI 1.0, 6.6 months) (P = 0.008, log-rank) 
(Fig. 2C). There was no significant association with risk of 
death in regards to age at BM diagnosis, primary disease 
site (ovarian vs endometrial), or BM radiotherapy (P > 0.05, 
all variables).

Tumor immune microenvironment

From the 44 patients, the tumor immune microenvironment 
was evaluated in 13 primary cases and 15 BM cases (Fig. 3). 
CD4, CD8, CD45RO, CD68, CD163, and FOXP3 were 
reported for the overall case, as well as in the solid tumor, 
perivascular, and border compartments. For the 13 primary 
cases,  CD4+ TILs were evident in 76.9% of cases,  CD8+ in 
92.3%,  CD45RO+ in 92.3%, and  FOXP3+ in 46.2%, as well 
as  CD68+ TAMs in 100% and  CD163+ in 100%. For the 15 
BM cases,  CD4+ TILs were evident in 60.0% of cases,  CD8+ 
in 93.3%,  CD45RO+ in 73.3%, and  FOXP3+ in 35.7%, as 
well as  CD68+ TAMs in 86.7% and  CD163+ in 100%. There 
was no significant difference in the presence of TILs and 
TAMs between primary and BM cases, P > 0.05.

Among the 13 primary cases (Table 1 and Fig. 4), there 
was no significant difference in density of CD8, CD45RO, 
or FOXP3 between the solid tumor, perivascular, and bor-
der compartments. Highly abundant TILs and TAMs were 
only present in the border compartment and were seen 
for CD8, CD45RO, and CD163. There was significantly 
increased density of  CD4+ TILs, as well as  CD68+ and 
 CD163+ TAMs, in the border compartment, P = 0.04, 0.002, 
and 0.01, respectively. All primary cases had  CD68+ and 
 CD163+ TAMs present. The overall presence of TILs in the 
primary cases did not significantly affect median time to BM 
diagnosis: CD4 (P = 0.9), CD8 (P = 0.6), CD45RO (P = 0.9), 
and FOXP3 (P = 0.2).

Among the 15 BM cases (Table 2 and Fig. 5), there was 
no significant difference in density of CD8, CD45RO, CD68, 
or FOXP3 between the solid tumor, perivascular, and bor-
der compartments. Similar to the primary cases, there was 
significantly increased density of  CD4+ TILs and  CD163+ 
TAMs in the border compartment, P = 0.01 and P = 0.009, 

Fig. 1  Representative immunohistochemistry images (× 10) depicting increasing density of the tumor immune microenvironment in the border 
compartment across four samples. a “none or sporadic,” b “moderate,” c “abundant,” d “highly abundant”
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Fig. 2  Kaplan–Meier survival analysis of overall survival a for the whole cohort, b binned by number of BM, c binned by BM resection, and d 
binned by CD68 + TAMs in BM

Fig. 3  Distribution of tumor-infiltrating lymphocytes and tumor-associated macrophages stratified by primary and BM. Y-axis reports binned 
percent of present (2, 3, or 4). No significant difference between primary and BM for all measurements, P > 0.05
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respectively. All BM cases had  CD163+ TAMs present. 
Overall presence of  CD68+ TAMs among BM neurosurgi-
cal resections was significantly associated with improved 
survival (19.3 months vs 4.3 months) (P = 0.03, log-rank) 
(Fig. 2D). There was no significant association with CD4 
(P = 0.4), CD8 (P = 0.8), CD45RO (P = 0.8), and FOXP3 
(P = 0.7) and overall survival.

Discussion

We identified a large cohort of 44 patients with BM from 
gynecologic malignancies from endometrial and ovar-
ian cancer. Time to BM diagnosis was 2.1 years (range 
0–15.0 years), which is similar to a median of 24 months 
(range 0–133 months) reported in a systematic review of 591 
ovarian cancer patients with BM [36]. Therefore, the treating 
gynecologic oncologist should be mindful of new-onset neu-
rological symptomology, even over a decade from primary 
disease diagnosis. Initial neurosurgical resection was associ-
ated with improved overall survival (15.4 months compared 
to 2.4 months). Pothuri et al. similarly reported in a cohort 
of 14 ovarian BM patients that neurosurgical resection had 
improved survival of 18 months with a 2-year survival rate 
of 39% [37].

From available surgical specimens, we performed the first 
evaluation to our knowledge of the tumor immune microen-
vironment in BM from gynecologic malignances. Our data 
demonstrate an active tumor immune microenvironment 
within the central nervous system that is similar to the pri-
mary disease site.

Increased activity within the tumor immune microenvi-
ronment in BM patients correlates with improved prognosis 
[38]. In our cohort, the presence of  CD68+ TAMs in the 
BM was associated with improved survival.  FOXP3+ TILs, 
which support an immunosuppressive microenvironment 
[39], were least frequently observed in both primary and 
BM sites. In primary high-grade serous ovarian carcinoma, 
PD-L1+  CD68+ TAMs are associated with improved survival 
[40], see [41] for a comprehensive review of the immune 
microenvironment in primary disease sites in gynecologic 
malignancies. Evaluation of the immune microenvironment 
in a cohort of 84 breast cancer BM similarly identified that 
 CD68+ TAMs were protective for overall survival in multi-
variable analysis (Hazard Ratio = 0.2) [26]. Such evidence 
adds encouragement for the potential role of checkpoint 
inhibitors in BM from gynecologic malignancies.

Compared to the solid tumor and perivascular compart-
ments, we observed an increase in border region activity of 
TILs and TAMs within both primary and BM sites. Sobottka 
et al. similarly identified this pattern in a cohort of 87 breast 
cancer patients with tissue from primary site, extra-cranial 
metastases, and BM [31]. Evaluation of mononuclear cells, Ta
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which included lymphocytes, histiocytes, and plasma cells, 
in a cohort of 208 BM from lung adenocarcinoma found 
that increased border region activity, denoted as a “mono-
nuclear ring,” was associated with improved survival after 
BM surgery [24]. Increased activity within the border region 
between BM and surrounding brain parenchyma may rep-
resent a novel biomarker of cross-communication with an 
active tumor immune microenvironment.

Beyond TILs and TAMs, emerging evidence supports 
that underlying tumor oncogenes affect response to immuno-
therapy and play an integral role in immune escape through 
tumor microenvironment remodeling [42]. Thus, there is a 
need to understand the genomic complexity of BM beyond 
primary disease site. Indeed, there is growing evidence of 
divergent genomic evolution in metastatic brain lesions 
from primary disease site [43], which is similar to divergent 
PD-L1 expression seen in BM [44]. However, genomic BM 
data within gynecologic malignancies are limited to ovarian 
cancer. Notably, no study has evaluated underlying genomic 
alterations in a cohort of BM from endometrial cancer.

BRCA  mutations may be associated with increased 
likelihood of BM for women with ovarian cancer. In a 
recent study of 4515 patients with ovarian cancer, a total 
of 46 developed BM [45]. From the 10% with a known 
BRCA  mutation, 5.7% of patients at 5 years developed 
BM compared to 1.4% in patients who were BRCA  wild 
type. Stasenko et al. evaluated 3649 patients with epithe-
lial ovarian cancer, among which 91 patients developed 
BM. Overall survival from time of BM diagnosis was 
significantly reduced in patients with a BRCA  mutation 
(29 months vs 9 months) [46]. Next-generation sequencing 
of 8 BM samples from ovarian cancer revealed a BRCA1/2 
mutation in 87.5% of 8 BM cases [47]. A second study 
that evaluated BRCA1 mutation status in a cohort of 7 
BM samples identified loss of heterozygosity of BRCA1 
in 57.1% of BM cases [48]. These data demonstrate that 
BRCA  mutation status plays an important role in the risk 
of developing a BM in ovarian cancer.

The understanding of how the genomic complexity of 
BM differs from primary disease site may help to guide 

Fig. 4  Distribution of tumor-infiltrating lymphocytes and tumor-associated macrophages from 13 primary cases. Y-axis reports percent of ordi-
nal data: none or sporadic, moderate, abundant, and highly abundant
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targeted therapy treatment regimens. In a patient with 
wide-spread metastatic low-grade serous ovarian cancer 
who underwent targeted therapy with binimetinib, a MEK 
inhibitor, genomic sequencing of the BM revealed copy 
number gain in Chr 13, Chr 20, and Chr 21 that were not 
present in the primary disease site [49]. Moreover, the BM 
had focal amplification of ERBB3 at Chr 12q13.11-q14.1, 
which represents an acquired MEK inhibitor resistance 
alteration. A second patient with a known BRCA2 mutation 
from ovarian cancer developed leptomeningeal disease in 
the setting of a previously treated solitary parietal BM 
[50]. Targeted therapy with olaparib, a PARP inhibitor, 
resulted in a clinical and radiological response for 1 year. 
PARP inhibitor targeted therapy with niraparib resulted in 
17 months without disease progression in a third patient 
with BM from high-grade serous ovarian cancer [51].

Our study had several limitations. Given the study’s 
retrospective nature spanning over 15 years, the availabil-
ity of archival surgical specimens was limited, especially 
from primary disease site. Not all patients underwent neu-
rosurgical resection of metastatic brain disease; tissue was 
not available for analysis for patients who did not undergo 
neurosurgery. Although we studied representative surgi-
cal specimens, it is not known how characterization of 
TILs and TAMs from the surgical specimen represents 
the entirety of the tumor. The degree of heterogeneity that 
may exist is unknown. BRCA  status for the majority of our 
cases is unknown and therefore it was not included in the 
analysis. Given that BM from gynecologic malignancies 
is a rare occurrence, we were not adequately powered to 
perform substantial clinical correlates with TIL and TAM 
density and distribution. Inter-institutional and collabora-
tive group efforts will be necessary to perform such defini-
tive analyses.

Consortium-based guidelines, such as Response Assess-
ment in Neuro-Oncology Brain Metastases (RANO-BM), 
may help to guide these advancements when developing 
clinical trials [52]. When safe, neurosurgical resection 
of BM should be considered, given the association with 
improved survival in our cohort and other reports in the liter-
ature. Furthermore, obtaining neurosurgical tissue from BM 
is critical to advancing the understanding of disease progres-
sion and mechanisms of resistance in gynecologic malig-
nancies. Future work ought to couple genomic and immune 
evaluation of metastatic lesions to inform our understanding 
of how underlying tumor biology impacts immune response.
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