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Abstract
Allogeneic natural killer (NK) cell transfer is a potential immunotherapy to eliminate and control cancer. A promising source 
are CD34 + hematopoietic progenitor cells (HPCs), since large numbers of cytotoxic NK cells can be generated. Effective 
boosting of NK cell function can be achieved by interleukin (IL)-15. However, its in vivo half-life is short and potent trans-
presentation by IL-15 receptor α (IL-15Rα) is absent. Therefore, ImmunityBio developed IL-15 superagonist N-803, which 
combines IL-15 with an activating mutation, an IL-15Rα sushi domain for trans-presentation, and IgG1-Fc for increased 
half-life. Here, we investigated whether and how N-803 improves HPC-NK cell functionality in leukemia and ovarian cancer 
(OC) models in vitro and in vivo in OC-bearing immunodeficient mice. We used flow cytometry-based assays, enzyme-
linked immunosorbent assay, microscopy-based serial killing assays, and bioluminescence imaging, for in vitro and in vivo 
experiments. N-803 increased HPC-NK cell proliferation and interferon (IFN)γ production. On leukemia cells, co-culture 
with HPC-NK cells and N-803 increased ICAM-1 expression. Furthermore, N-803 improved HPC-NK cell-mediated (serial) 
leukemia killing. Treating OC spheroids with HPC-NK cells and N-803 increased IFNγ-induced CXCL10 secretion, and 
target killing after prolonged exposure. In immunodeficient mice bearing human OC, N-803 supported HPC-NK cell per-
sistence in combination with total human immunoglobulins to prevent Fc-mediated HPC-NK cell depletion. Moreover, this 
combination treatment decreased tumor growth. In conclusion,  N-803 is a promising IL-15-based compound that boosts 
HPC-NK cell expansion and functionality in vitro and in vivo. Adding N-803 to HPC-NK cell therapy could improve cancer 
immunotherapy.
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Introduction

Natural killer (NK) cell therapy is an attractive strategy for 
cancer treatment as it selectively targets tumor cells without 
harming healthy tissues [1–3]. Moreover, numerous malig-
nancies including hematopoietic and epithelial tumors are 
susceptible to NK cell-mediated immunity [4–8]. Since 
autologous NK cell infusion yields limited clinical responses 
[3], current approaches mostly involve allogeneic NK cell 
infusion in combination with cytokine support leading to 
improved responses [1, 2].

A promising source for allogeneic NK cell therapy are 
CD34+ hematopoietic progenitor cell (HPC)-derived NK 
cells, since large numbers of cytotoxic NK cells can be 
generated from various sources, including umbilical cord 
blood (UCB). First, CD34 + HPCs are expanded and sub-
sequently differentiated into CD56+ HPC-NK cells, leading 
to more than 1000-fold expansion and high NK cell purity 
[9–11]. HPC-NK cells are highly functional, since they have 
high activating receptor expression, degranulation capacity, 
interferon (IFN)γ production, and tumor cell killing capac-
ity [9–13]. Furthermore, we have shown that HPC-NK cells 
mediate anti-tumor responses in leukemia and ovarian can-
cer (OC) models in mice, leading to prolonged survival [11, 
12, 14]. To further maximize the anti-tumor effects of HPC-
NK cell therapy, combination treatments can be explored 
to maintain NK cell proliferation and activation and/or to 
augment NK cell-mediated killing of tumor cells.

Interleukin (IL)-2 is traditionally used to boost prolifera-
tion of adoptively transferred NK cells in vivo [1, 2, 15–17]. 
However, IL-2 has been shown to also expand regulatory T 
cells (Tregs) that may reduce NK cell functionality [18, 19]. 
Alternatively, IL-15 is crucial for NK cell survival, prolif-
eration, and effector function [20, 21], but does not induce 
Treg expansion [22, 23]. Unfortunately, the in vivo half-life 
of recombinant IL-15 is short (≈40 min) [24]. Moreover, 
IL-15 is most potent when trans-presented by cells express-
ing the IL-15 receptor α (IL-15Rα) [25]. Hence, a novel 
IL-15 superagonist called N-803 (formerly known as ALT-
803) has been developed, consisting of IL-15 with an acti-
vating mutation (N72D) that enhances binding to CD122 
and CD122/CD132 activation, an IL-15Rα sushi domain 
to mimic typical trans-presentation, and an IgG1 Fc tail to 
increase half-life. N-803 has a more than 25-fold increased 
biological activity based on proliferation of 32Dβ cells [26] 
and more than 35-fold increased half-life (25 h) compared 
to IL-15 [24]. First reported clinical trials of N-803 in can-
cer patients revealed that it is well tolerated and stimulates 
NK cell activation and expansion [27, 28] and CD8+ T cells, 
but not Tregs [27]. In vitro, N-803 enhances functionality 
and tumor killing potential of peripheral blood (PB)-NK 

cells [29, 30] and ascites-derived NK cells [30, 31]. In vivo, 
PB-NK cell infusion in combination with N-803 administra-
tion results in significantly decreased tumor growth in NOD/
SCID/IL2Rγnull (NSG) mice bearing human OC [30].

Our study goal was to investigate whether and how N-803 
enhances HPC-NK cell functionality in leukemia and OC 
models, and whether N-803 supports HPC-NK cell persis-
tence and anti-tumor effects in OC-bearing NSG mice. We 
found that N-803 can increase IFNγ production of HPC-NK 
cells and augment HPC-NK cell-mediated killing of OC and 
leukemia cells in vitro. Moreover, N-803 supports HPC-NK 
cell persistence and limits tumor growth in NSG mice bear-
ing human OC.

Materials and methods

HPC‑NK cell culture

UCB collection at delivery was approved (see “Compliance 
with ethical standards”). HPC-NK cells were generated as 
described [11] with the following minor modifications. Cells 
were cultured for 5–7 weeks in 6-well tissue culture plates 
(Corning, 3506), using NK MACS Basal medium and sup-
plement (NK MACS, Miltenyi Biotec, 130–114-429) com-
plemented with 10% human serum (HS, Sanquin) during 
expansion (day 0–14) and 2–10% HS during differentiation 
(from day 14). HPC-NK cells (> 70% CD56+) were used 
directly or cryopreserved. Cryopreserved HPC-NK cells 
were thawed and used after 5–7 days of culture in NK 
MACS containing 10% HS, 50 ng/ml recombinant human 
(rh)IL-15 (Immunotools, 11340155) and 0.2 ng/ml rhIL-12 
(Miltenyi Biotec, 130–096-704). For experiments, HPC-NK 
cells were resuspended in Iscove’s Modified Dulbecco’s 
Medium (IMDM, Gibco, 21980–032) supplemented with 
10% fetal calf serum (FCS, Integro, 5–45900 or Corning, 
35–079-CV) (IMDM10), except assays with primary AML 
samples (10% HS), proliferation assays, and some serial kill-
ing experiments in microwells (NK MACS medium + 10% 
HS or FCS, respectively).

PB‑NK cell isolation

To obtain PB-NK cells, peripheral blood mononuclear cells 
were isolated from healthy donor buffy coats (Sanquin Blood 
Supply Foundation) by density gradient Ficoll-paque™ 
PLUS (Sigma-Aldrich, 17–1440-03) centrifugation. Next, 
PB-NK cells were isolated using a magnetic bead-based 
NK cell enrichment kit (StemCell Technologies, 19055) 
resulting in ≥ 90% purity. PB-NK cells were resuspended in 
IMDM10 for experiments.
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Tumor cell culture

OC cell lines SKOV-3, IGROV-1 and OVCAR-3 
( R R I D : C VC L _ 0 5 3 2 ,  R R I D : C VC L _ 1 3 0 4  a n d 
RRID:CVCL_0465, respectively) were cultured in Roswell 
Park Memorial Institute 1640 medium (RPMI, Gibco, 
21875–034) supplemented with 10% FCS for SKOV-3 and 
IGROV-1 or 20% FCS and 1 µg/ml insulin (Merck, i0516) 
for OVCAR-3. SKOV-3 was transduced with luciferase (luc) 
and green fluorescent protein (GFP) (SKOV-3-luc-GFP) and 
cloned as described [11], and used for killing assays. Leu-
kemia cell lines K562 and THP-1 (RRID:CVCL_0004 and 
RRID:CVCL_0006, respectively) were cultured in IMDM10. 
All cell lines were cultured for maximally three months and 
were mycoplasma free. SKOV-3, K562, and THP-1 were 
purchased from ATCC, IGROV-1 and OVCAR-3 were pro-
vided by Prof. Dr. OC Boerman, Department of Nuclear 
Medicine, Radboudumc, Nijmegen, the Netherlands.

Tumor spheroid generation

Spheroids were generated from SKOV-3 and SKOV-3-luc-
GFP as described in Hoogstad-van Evert et al. [11] with 
the following adaptations. Culture medium was not supple-
mented with bovine serum albumin but with 10% FCS and 
1% penicillin/streptomycin (MP Biomedicals, 1670049) and 
agarose medium with 2% penicillin/streptomycin. Tumor 
spheroids were used 3–5 days after initial seeding.

Flow cytometry (FCM)‑based assays

FCM samples were measured on one of the following flow 
cytometers: FC500, Gallios, CytoFLEX (all Beckman 
Coulter).

NK cell proliferation

NK cells were labeled with eFluor450 (eBioScience, 
65-0842-85) and cultured in NK MACS/10% HS with/
without rhIL-15 or N-803 (ImmunityBio). Cytokines were 
refreshed on day 3 and FCM analysis was performed on day 
3 and 6. Dead cells were excluded using Fixable Viability 
Dye eFluor780 (eBiosciences, 65-0865-18). The prolifera-
tion gate was set on 1% in the no cytokine condition on day 
3. NK cell numbers were based on CD56 gating (CD56-
PE-Cy7, Beckman Coulter, A21692) and measuring for a 
fixed time.

Intercellular adhesion molecule 1 (ICAM‑1) 
expression

Tumor cell lines and NK cells were plated at an effector-
to-target (E:T) ratio of 0.6:1, with 0 or 1 nM N-803. After 

overnight-24 h co-incubation, cells were stained with anti-
bodies CD56-PE-Cy7 (BioLegend, 318318), ICAM-1-FITC 
(Biolegend, 353108) (and CD15-PE (IQ Products, IQP-
129R) for THP-1). Primary AML samples were labelled 
with 0.25 µM carboxyfluorescein diacetate succinimidyl 
ester (CFSE, Invitrogen, C1157), co-cultured with NK cells 
(E:T ratio 0.1:1 or 0.3:1) for 48 h and stained with CD33-
BV605 (BD Biosciences, 740400) and ICAM-1 PE-Vio770 
(Miltenyi Biotec, 130–104-031). Primary AML samples 
contained > 90% blasts based on CD33 expression. Obtain-
ing primary AML cells and patient data at diagnosis was 
approved (see “Compliance with ethical standards”).

IFNγ and perforin content

For IFNγ content, HPC-NK cells were stimulated for 4 h 
with K562, THP-1 or SKOV-3 at an E:T ratio of 1.5:1, in 
the absence or presence of 1 nM N-803, 1 nM rhIL-15, 
or 1000 U/ml rhIL-2 (Chiron, NDC 53905–991-01) and 
in the presence of brefeldin A (added after 1 h, BD Bio-
sciences, 555029). For perforin production, PB-NK cells 
and HPC-NK cells were primed overnight with or without 
1 nM N-803.

After stimulation, surface staining was performed of 
CD56-BV510 (Biolegend, 318340), and intracellular stain-
ing of perforin-PE (Biolegend, 308106) and IFNγ-FITC (BD 
Biosciences, 554700). Dead cells were excluded using Fix-
able Viability Dye eFluor780. IFNγ analysis was performed 
by gating on CD56+ perforin+ NK cells, using unstimulated 
cells as control. Perforin analysis was performed by gating 
on CD56+ NK cells.

Killing assay

Targets were plated at 30,000 cells/well in 96-well plates 
(round-bottom for leukemia cells, flat-bottom for OC 
cells). Targets or HPC-NK/PB-NK cells were labeled with 
0.25–1 µM CFSE, and co-cultured at different E:T ratios 
with or without 1 nM N-803. Notably, SKOV-3-luc-GFP 
was not labeled with CFSE. OC cells were plated 3 h in 
advance to allow for adherence. After overnight (cell line) or 
48 h (primary cells) co-culture, supernatants were harvested 
and stored at − 20 °C for enzyme-linked immunosorbent 
assay (ELISA). Next, leukemia cells and/or NK cells were 
collected. OC cells were trypsinized using trypLE (Gibco, 
12605028) and collected. Subsequently, viability marker 
7-Aminoactinomycin D (7-AAD, Sigma, A9400) was added 
and targets were analyzed. Percentage of target killing by 
NK cells was calculated as follows: [1–(number of viable 
targets after co-culture with NK cells)/(number of viable 
targets cultured without NK cells) × 100%].
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Spheroid killing assay

For spheroid killing assays, SKOV-3-luc-GFP cells were 
used. For overnight assays, different HPC-NK cell numbers 
were added with or without 1 nM N-803. After co-culture, 
supernatant was collected for ELISA. For 7-day assays, 
13,000 HPC-NK cells and 0, 0.1 or 1.0 nM N-803 or rhIL-15 
was used and after 7 days HPC-NK cells were counted based 
on CD56 positivity and 7-AAD negativity. Spheroids were 
washed, disrupted using trypLE and targets were counted 
based on GFP positivity and 7-AAD negativity.

Infiltration assay

SKOV-3-luc-GFP or SKOV-3 spheroids were co-cultured 
with 200,000 HPC-NK cells with or without 1 nM N-803. 
In SKOV-3 experiments, HPC-NK cells were labeled with 
1 µM CFSE before or CD56-PE-Cy7 after co-culture. After 
3 h co-culture, infiltrated and non-infiltrated NK cells were 
separated as described [32]. First, supernatant was collected 
containing non-infiltrated NK cells. Next, spheroids were 
washed, disrupted using trypLE, and infiltrated NK cells 
were collected. 7-AAD negative and CD56 or CFSE positive 
NK cells were counted.

ELISA

Supernatants were thawed to evaluate IFNγ, granzyme B 
and C-X-C motif chemokine 10 (CXCL10) secretion by 
ELISA according to manufacturer’s instructions (IFNγ, 
Endogen, M700A; granzyme B, MABTECH, 3485-IH-6; 
and CXCL10, R&D Systems, DY266-05).

NK cell serial killing experiments in microwells

Experiments were executed with small adaptations 
from Guldevall et  al. [33]. HPC-NK cells were stained 
with 1 µM CFSE (BD Biosciences, 565082) or 2.5 µM Cell-
Trace Yellow (Invitrogen, C34567). Targets were labeled 
with 1–2 µM Far Red (Invitrogen, C34564) and dead cells 
were detected by 1 µM sytox blue (Invitrogen, S11348) or 
50 nM sytox green (Invitrogen, S7020). After a pre-screen-
ing with targets only in microwells (50 × 50 × 300 µm3), 
HPC-NK cells were stochastically seeded with or without 
1 nM N-803, 1 nM rhIL-15 or 1000 U/ml rhIL-2. Screen-
ing lasted for 12 h, using an inverted confocal microscope 
equipped with × 10 objective (Zeiss, LSM 880) at 37 °C, 
5% CO2, with an image captured every 6 h. Wells with or 
without N-803 were imaged in parallel by separating com-
partments of the chip using a polydimethylsiloxane gasket. 
Image analysis was performed with a MatLab script devel-
oped in-house. E:T ratios of 1:5 to 1:10 were analyzed. Only 
wells with 1 NK cell were analyzed.

Organotypic 3D collagen matrix assay

Organotypic 3D collagen matrix assays were performed 
as described [34]. In brief, 7500 SKOV-3-luc-GFP cells 
were plated on a flat-bottom 96-well imaging plate (Greiner 
CELLSTAR​®, 655090). After overnight adherence, 7500 
HPC-NK cells were added in a collagen solution (75 µl/well 
PureCol1, Advanced Biomatrix, 5005, 3 mg/ml) containing 
no or 1 nM N-803. After polymerization, no or 1 nM N-803 
was added and cells were imaged by time-lapse bright field 
microscopy with × 20 objective (BD, Pathway 855) at 37° C, 
5% CO2. Images were captured every 70s for ~ 24 h and sub-
sequently, manual analysis of single cells was performed. 
Only serial killers were analyzed, defined as NK cells killing 
two or more targets. Inclusion criteria for cytotoxic events 
were (i) contact occurred between a single NK cell to a sin-
gle target, (ii) the target was visible from the start of the 
movie.

Mouse experiments

Animal experiments were performed according to approved 
protocols (see “Compliance with ethical standards”). For 
experiment 1, 24 female NSG mice (Jackson Laboratories) 
of 6–20 weeks old were injected intraperitoneally (i.p.) with 
0.2 million SKOV-3-luc-GFP cells (day − 4) and divided 
into four treatment groups based on block randomization 
after bioluminescence imaging (BLI) 3 days later (day − 1). 
On day 0, mice were infused i.p. with HPC-NK cells (12 
million/mouse). From day 0–15, mice (average weight was 
25 g) received i.p. injections of 50 or 200 µg/kg N-803 twice 
weekly, or 2.5 µg rhIL-15 (~7 × more molecules compared to 
50 µg/kg N-803) or phosphate buffered saline (PBS) every 
2 days. Mice were sacrificed at day 15 or 16. Then, a peri-
toneal wash was performed and NK cells were labeled with 
mCD45-AF700 (Biolegend, 103128), hCD45-KO (Beckman 
Coulter, B36294) and hCD56-PE-Cy7 (Biolegend, 318318) 
and counted by flow cytometry.

Experiment 2 had a similar design with the following 
adaptations: 30 NSG mice were divided into five treat-
ment groups and on day − 5, two groups were irradiated 
with 2.25 Gy. From day -1 onwards, one group received i.p. 
nanogam (total human immunoglobulins, Sanquin Blood-
bank) injections (50 mg) weekly 1 day before N-803 injec-
tion. From days 0–15, mice received i.p. injections of 50 µg/
kg N-803 twice weekly or 2.5 µg rhIL-15 every 2 days. Prior 
to HPC-NK cell injection, CD16 expression was determined 
using viability dye eFluor780, CD56-BV510 (Biolegend, 
318340) and CD16-BV421 (Biolegend, 302038). Mice were 
sacrificed at day 14 or 15.

Experiment 3 had a comparable design with the follow-
ing differences: from day -1 onwards, all (21, divided into 
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three treatment groups) mice received nanogam. On day 
0 and 4, mice were infused with i.p. HPC-NK cells (8–9 
million/mouse/infusion) or PBS. Mice receiving HPC-NK 
cells also received i.p. injections of 2.5 µg rhIL-15 every 
2 days or 50 µg/kg N-803 twice weekly from day 0–24. BLI 
was performed weekly until signal saturation, following i.p. 
injection with 150 mg/kg D-luciferin (PerkinElmer, 122799) 
and isoflurane anesthesia. Ten minutes after injection, BLI 
images were collected in an In Vivo Imaging System using 
Living Image software. A region of interest was drawn 
around the torsos of the mice, and the integrated flux of 
photons (photons/second/cm2/steradian) was analyzed.

Statistical analysis

Statistical analysis was performed using Graphpad Prism 
software version 5.03. Fold changes, lag phase to apoptosis 
and NK cell numbers in mice were first log transformed. 
Two-sided Student t tests and one-way and two-way ANO-
VAs were used as indicated in the figure legends. Signifi-
cance was defined as p < 0.05 (*), p < 0.01 (**) and p < 0.001 
(***).

Results

N‑803 enhances HPC‑NK cell proliferation, IFNγ 
production, and leukemia killing

Previously, we showed that N-803 outperforms rhIL-15 
in inducing HPC-NK cell proliferation at 0.1 nM [35]. To 
confirm the optimal N-803 concentration, we performed 
proliferation assays with different concentrations of rhIL-
15 or N-803 for 6 days. Indeed, N-803 induced HPC-NK 
cell proliferation in a dose-dependent manner (Fig. 1a, b). 
In comparison with rhIL-15, N-803 was superior in boosting 
NK cell proliferation at 0.1 nM (33–64%) and proliferation 
was similar at 1.0 nM (90–92%). All further experiments 
were performed using 1.0 nM N-803, which induced the 
most proliferation.

Next, we stimulated HPC-NK cells with leukemia cell 
lines K562 or THP-1 for 4 h with or without N-803 and ana-
lyzed IFNγ production. N-803 increased IFNγ production 
in the presence of K562 or THP-1 (Fig. 1c). RhIL-15 and 
rhIL-2 showed comparable effects as N-803 (Supplementary 
Fig. 1a). To investigate whether IFNγ secretion was aug-
mented, we co-cultured HPC-NK cells with K562 or THP-1 
overnight with/without N-803, harvested supernatants and 
performed ELISA. Accordingly, HPC-NK cell-mediated 
IFNγ secretion was enhanced by N-803 (Fig. 1d).

Since IFNγ promotes ICAM-1 expression on leukemia 
cells [36], HPC-NK cells were co-cultured overnight with 

K562 or THP-1 with or without N-803, whereupon ICAM-1 
expression was analyzed. HPC-NK cell co-culture signifi-
cantly upregulated ICAM-1 on K562 and THP-1, while 
N-803 treatment did not (Fig. 1e). Importantly, N-803 com-
bined with HPC-NK cells further boosted ICAM-1 expres-
sion on THP-1.

As increased ICAM-1 expression stimulates NK cell-
mediated killing due to strengthened interactions of NK 
cells and targets [36], we next investigated NK cell-mediated 
tumor killing. Leukemia killing was measured after over-
night co-culture with HPC-NK cells and with or without 
N-803. Correlating with ICAM-1 expression, N-803 did 
not increase HPC-NK cell-mediated K562 killing, but sig-
nificantly augmented HPC-NK cell-mediated THP-1 killing 
(Fig. 1f, g). To compare the killing capacity of HPC-NK 
cells and PB-NK cells, we co-cultured HPC-NK cells or 
PB-NK cells with K562 or THP-1 with or without N-803. 
For MHC-I negative K562, N-803 did not improve HPC-NK 
cell-mediated killing at all, while it did seem to improve 
PB-NK cell mediated killing at the second highest NK 
cell dose (Supplementary Fig. 1b). With regard to MHC-I 
positive THP-1, N-803 increased HPC-NK and PB-NK 
cell-mediated killing at all NK cell doses (Supplementary 
Fig. 1c). For both K562 and THP-1, HPC-NK cells were 
better killers than PB-NK cells at all NK cell doses, except 
the highest NK cell dose for K562 at which killing was 
maximal for both NK cell sources. Next, we evaluated the 
perforin content and granzyme B release of HPC-NK cells 
and PB-NK cells after priming with N-803 by intracellular 
staining and ELISA, respectively. We found that both HPC-
NK cells and PB-NK cells upregulate perforin and granzyme 
B levels upon N-803 priming (Supplementary Fig. 1d, e). 
The higher killing capacity of HPC-NK cells did not cor-
respond to perforin content, but did correlate with a higher 
granzyme B release versus PB-NK cells.

To confirm our findings, we co-cultured HPC-NK cells 
with primary AML samples from patients (Table 1) for 
48 h with/without N-803 and investigated IFNγ production, 
ICAM-1 expression, and killing.

N-803 significantly enhanced IFNγ production at an E:T 
ratio of 1:1 and 3:1 (Fig. 1h), upregulated ICAM-1 expres-
sion in the presence of HPC-NK cells (Fig. 1i) and most 
importantly increased primary AML killing by HPC-NK 
cells (Fig. 1j). Collectively, these data show that N-803 
boosts IFNγ production by HPC-NK cells, promotes 
ICAM-1 expression on leukemia cells and improves HPC-
NK cell-mediated leukemia killing.

N‑803 enhances serial killing properties of HPC‑NK 
cells against leukemia

To examine whether N-803 improves serial killing proper-
ties of HPC-NK cells against leukemia, we performed 12 h 



1310	 Cancer Immunology, Immunotherapy (2021) 70:1305–1321

1 3

Proliferation

0 n
M

0.1
 nM

0.3
 nM

 1 
nM

0.1
 nM

0.3
 nM

1 n
M

0

20

40

60

80

100
no cytokine
rhIL-15
N-803

*******

%
 o

f p
ro

lif
er

at
in

g 
N

K
 c

el
ls

NK cell number

0 n
M

0.1
 nM

0.3
 nM

 1 
nM

0.1
 nM

0.3
 nM

1 n
M

0

10000

20000

30000 ** *** no cytokine
rhIL-15
N-803

N
um

be
r

IFN��

NK only

NK only

+ K
56

2

+ K
56

2

+ THP-1

+ THP-1
0

10

20

30

40
- N-803
+ N-803

%
 IF

N
��+  N

K 
ce

lls

IFN��

0

5000

10000

15000
- N-803
+ N-803** **

10:0
NK
only

K562
only

0.3:1 1:1 3:1 10:1 THP-1
only

0.3:1 1:1 3:1 10:1

N.D. N.D. N.D. N.D.

E:T ratio

C
on

ce
nt

ra
tio

n 
(p

g/
m

l)
ICAM-1

K56
2

THP-1
0

5

10

15

20
Tumor alone

+ NK
+ NK + N-803

+ N-803
***

***
***

M
FI

K562 killing

100
0

50

100

10
3

10
4

10
5

10
6

- N-803
+ N-803

NK cell dose

%
 K

ill
in

g

THP-1 killing

100
0

50

100

10
3

10
4

10
5

10
6

- N-803
+ N-803

**

**

NK cell dose

%
 K

ill
in

g

IFN��

0:1 0:1 0.3
:1

0.3
:1 1:1 1:1 3:1 3:1 10

:1
10

:1
0

5000

10000

15000

20000 ****
- N-803
+ N-803

E:T ratio

C
on

ce
nt

ra
tio

n 
(p

g/
m

l)

ICAM-1

0

100000

200000

300000
Tumor alone
+ N-803
+ NK 0.1:1
+ NK 0.1:1 + N-803
+ NK 0.3:1
+ NK 0.3:1 + N-803

** *** ***

��
M

FI

pAML killing

0

20

40

60

80

100 *** ***
- N-803
+ N-803

0.3:1 1:1 3:1 10:1
E:T ratio

K
ill

in
g 

(%
)

a b

c d

e f

g h

ji



1311Cancer Immunology, Immunotherapy (2021) 70:1305–1321	

1 3

experiments using microwells for live cell imaging with 
single cell resolution [33]. Here, a mean of 22 or 31% of 
HPC-NK cells serially killed (≥ 2 targets with at least five 
targets present at t = 0 h) K562 and THP-1, respectively 
(Fig. 2a, b). N-803 seemed to enhance these percentages, 
most distinct for THP-1 (mean 37%, p = 0.07). Most kill-
ing HPC-NK cells killed 1 target, followed by 2, 3, 4 and 
5 or more targets (Fig. 2c, d). N-803 seemed to increase 
the number of targets killed by HPC-NK cell serial kill-
ers, most pronounced for THP-1. Spontaneous target death 
was detected in the minority of wells without HPC-NK cells 
(mean 15% for K562, 45% for THP-1, Fig. 2e, f) and was 
not affected by N-803. Notably, the majority of targets was 
killed by serial killer HPC-NK cells (mean 66%, Fig. 2g, 
h). N-803 augmented this percentage to a mean of 69% for 
K562 and 78% for THP-1. RhIL-2 and rhIL-15 displayed 
similar results as N-803 (Supplementary Fig. 2). Together, 
these data demonstrate that N-803 improves serial killing 
properties of HPC-NK cells against leukemia.

N‑803 does not promote short‑term HPC‑NK 
cell‑mediated killing of OC cell monolayers

To investigate whether N-803 also enhances the HPC-NK 
cell functionality towards OC cells, we stimulated HPC-NK 
cells with OC cell line SKOV-3 with/without N-803 for 4 h 
and evaluated IFNγ production. Similar to leukemia, IFNγ 

production significantly increased by N-803, for HPC-NK 
cells with and without SKOV-3 (Fig. 3a, b): median 1.5-
fold for HPC-NK cells + SKOV-3, p < 0.01. Accordingly, 
IFNγ secretion determined by ELISA was slightly increased 
by N-803 (Fig. 3c-d). However, no ICAM-1 upregulation 
was observed on SKOV-3 after addition of HPC-NK cells 
and N-803, compared to addition of HPC-NK cells alone 
(Fig. 3e). Likewise, N-803 did not improve HPC-NK cell-
mediated SKOV-3 killing (Fig. 3f). OC cell lines IGROV-1 
and OVCAR-3 showed similar killing results as SKOV-3 
(Supplementary Fig. 3); rhIL-15 displayed comparable over-
night IFNγ production and SKOV-3 killing as N-803 (data 
not shown).

Although N-803 did not improve overnight HPC-NK cell-
mediated SKOV-3 killing, we next studied whether interac-
tion abilities and serial killing properties of HPC-NK cells 
against OC were affected by N-803 in an organotypic 3D 
collagen matrix assay, mimicking interstitial tissue. Lag 
phase to SKOV-3 apoptosis (time from first contact to kill) 
due to serial killing by HPC-NK cells was mostly short with 
a median of 19 min for the first kill and similar times for the 
second kill (Fig. 3g). N-803 did not change these times for 
the first or second kill. Altogether, these data indicate that 
despite slightly enhanced IFNγ production, N-803 could not 
increase ICAM-1 expression and short-term HPC-NK cell-
mediated (serial) killing of OC cells.

N‑803 increases CXCL10 production and improves 
long‑term HPC‑NK cell‑mediated killing in OC 
spheroids

Next, we addressed the effects of N-803 in SKOV-3(-luc-
GFP) spheroids to mimic three-dimensional growth of OC 
in vivo. HPC-NK cells were co-cultured with spheroids 
overnight and ELISA of supernatants was performed to 
determine IFNγ and CXCL10 secretion. Overall, N-803 
enhanced IFNγ secretion of HPC-NK cells co-cultured 
with spheroids (Fig. 4a, b). Furthermore, CXCL10 pro-
duction was significantly boosted by spheroids co-cultured 
with HPC-NK cells and N-803 (Fig. 4c, d). Since CXCL10 

Fig. 1   N-803 enhances HPC-NK cell proliferation, IFNγ produc-
tion, and leukemia killing. a–b  (a) Percentage of proliferating HPC-
NK cells based on proliferation dye eFluor450 staining (n = 3–4), 
(b) number of HPC-NK cells based on CD56 antibody staining 
(n = 4–5) 6  days after incubation with no cytokine (white), rhIL-15 
(grey) or N-803 (black). c Percentage of IFNγ+ HPC-NK cells 4  h 
after incubation with K562 or THP-1, with (black) or without (white) 
1 nM N-803 combined for NK only (n = 6), K562 (n = 6) or THP-1 
(n = 4). d IFNγ concentration (pg/ml) after overnight co-culture of 
HPC-NK cells and K562 (n = 3) or THP-1 (n = 4) with or without 
1  nM  N-803 (without, white; with N-803, black, ND = not detect-
able). e Geometric mean fluorescence intensity (MFI) of ICAM-1 
expression after overnight culture of K562 (n = 3) or THP-1 (n = 4, 
white), and addition of N-803 (light grey), HPC-NK cells (dark 
grey) or both (black). f–g Percentage of (f) K562 (n = 3) or (g) 
THP-1 (n = 4) killing after overnight co-culture with HPC-NK cells 
and 0 (grey) or 1  nM  N-803 (black). h IFNγ concentration (pg/ml) 
after 48  h co-culture of HPC-NK cells and primary AML (pAML) 
cells (n = 5) with 1 nM N-803 (black) or without cytokine (white). i 
Delta median fluorescence intensity (ΔMFI) of ICAM-1 expression 
after 48  h culture of pAML cells (n = 4, white), addition of N-803 
(lightest grey), HPC-NK cells or both (different shades of grey/
black) compared to a backbone sample for each condition. j Percent-
age of pAML cell killing (n = 5) after 48 h co-culture with HPC-NK 
cells and 0 (white) or 1 nM N-803 (black). Graphs show mean ± SEM 
for a–g, i–j. One-way ANOVA with Bonferroni correction was used 
(repeated measures for f–g, i–j) to test for statistical significance

◂

Table 1   Primary AML patient sample characteristics

FAB French-American-British

AML# Origin FAB classifica-
tion

% blasts

1 Bone marrow M0 93
2 Bone marrow M2 91
3 Bone marrow M2 98
4 Bone marrow M1 99
5 Bone marrow M2 98
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attracts C-X-C chemokine receptor 3 (CXCR3)+ HPC-
NK cells [14], we performed 3 h infiltration assays with 
spheroids and HPC-NK cells, in which no effect of N-803 
on infiltration was observed (Fig. 4e). Moreover, N-803 
did not improve HPC-NK cell-mediated spheroid killing 
within 24 h (Fig. 4f). All short-term assays with rhIL-15 
or rhIL-2 showed comparable results as N-803 (data not 
shown). Importantly, a long-term killing assay showed that 
N-803 significantly enhanced HPC-NK cell expansion and 
HPC-NK cell-mediated spheroid killing (Fig. 4g-h). A dose-
dependent killing effect of N-803 was found and rhIL-15 
displayed similar effects as N-803 (Supplementary Fig. 4). 
Collectively, these experiments demonstrate that N-803 
increases IFNγ and CXCL10 secretion in co-cultures of OC 
spheroids and HPC-NK cells. Furthermore, N-803 induces 
HPC-NK cell expansion and boosts OC spheroid destruction 
during long-term co-cultures.

HPC‑NK cells combined with N‑803 and nanogam 
show anti‑tumor effects in mice bearing human OC

To determine whether N-803 promotes HPC-NK cell persis-
tence and anti-tumor effects in a human OC mouse model, 
we used NSG mice bearing peritoneal SKOV-3-luc-GFP 
tumor nodules [11]. In experiment 1, mice were treated i.p. 
with HPC-NK cells in combination with PBS, rhIL-15, or 
N-803 for two weeks and afterwards peritoneal washes were 
performed. As expected, HPC-NK cells were present in the 
rhIL-15 group but surprisingly HPC-NK cells were nearly 

absent in the N-803 groups (Fig. 5a). We hypothesized that 
the Fc part of N-803 binds to Fc receptors, resulting in Fc-
mediated HPC-NK cell depletion, in NSG mice lacking 
immunoglobulins. Hence, in experiment 2 we used irradia-
tion or nanogam (i.e., total human immunoglobulins) to kill 
or inactivate immune cells containing Fc receptors present 
in NSG mice, or to block Fc receptors, respectively, to pre-
vent Fc-mediated HPC-NK cell depletion in the presence 
of N-803. To determine if there was risk for Fc-mediated 
fratricide, CD16 expression was determined prior to HPC-
NK cell injection, which showed 20% CD16+ HPC-NK 
cells (Supplementary Fig. 5). Irradiation could not prevent 
N-803-mediated depletion but nanogam could, resulting in 
HPC-NK cell persistence and similar NK cell numbers as 
rhIL-15 treatment (Fig. 5b).

Finally, we evaluated tumor growth (experiment 3) in 
mice treated with two i.p. HPC-NK cell injections in com-
bination with N-803 or rhIL-15, and nanogam compared to 
a group only receiving nanogam. This experiment showed 
that both combination treatments significantly reduced 
tumor growth, compared to the control group (Fig. 5c, d). To 
conclude, we demonstrate that nanogam restores HPC-NK 
cell persistence in OC bearing NSG mice receiving N-803. 
Importantly, HPC-NK cell, N-803 and nanogam combina-
tion treatment has an anti-OC effect in vivo.

Discussion

Allogeneic NK cell therapy is a promising approach for 
cancer treatment and HPC-NK cells mediate anti-tumor 
responses in leukemia and OC models [11, 12, 14]. How-
ever, tumor eradication is not complete in xenograft NSG 
models, indicating room for improvement. Optimizing HPC-
NK cell anti-tumor efficacy can be achieved by cytokine 
co-administration. This study investigated whether and how 
IL-15 superagonist N-803 improves HPC-NK cell function-
ality in leukemia and OC models, and whether N-803 sup-
ports in vivo HPC-NK cell persistence and anti-OC effects.

First, we confirmed that N-803 dose dependently induces 
HPC-NK cell proliferation. Compared to rhIL-15, N-803 
leads to higher proliferation at 0.1 nM but not 1.0 nM, 
caused by reaching maximum proliferation, which is in line 
with previous reports [30, 35]. Next, we demonstrated that 

Fig. 2   N-803 enhances serial killing properties of HPC-NK cells 
against leukemia. a–b Percentage of serial killers after 12 h co-cul-
ture of HPC-NK cells and (a) K562 (n = 3) or (b) THP-1 (n = 3) with 
0 or 1 nM N-803. At least 125 NK cells were analyzed. c–d Percent-
age of wells showing the number of (c) K562 (n = 3) or (d) THP-1 
(n = 3) cells killed in the presence of individual HPC-NK cells after 
12 h co-culture with 0 (white) or 1 nM N-803 (black). At least 125 
NK cells were analyzed. e–f Percentage of wells showing spontane-
ous (e) K562 (n = 3) or (f) THP-1 (n = 3) cell death after 12 h culture 
without HPC-NK cells and with 0 (white) or 1 nM N-803 (black). At 
least 173 targets were analyzed. g–h Percentage of killed (g) K562 
(n = 3) or (h) THP-1 (n = 3) cells killed by serial killers after 12 h co-
culture with HPC-NK cells and no cytokine or 1 nM N-803. At least 
126 killed targets were analyzed. Graphs show mean ± SEM. Paired t 
tests were used for a-b, g–h and repeated measures one-way ANOVA 
with Bonferroni correction was used for c–f to test for statistical sig-
nificance

◂
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N-803 improves IFNγ production of HPC-NK cells. This 
effect has been demonstrated in numerous NK cell stud-
ies [29, 30, 37–42]. In addition, N-803 increases ICAM-1 
expression on leukemia cells after HPC-NK cell co-culture 
and improves (serial) leukemia killing. Since HPC-NK 
cells have high lymphocyte function associated antigen 1 
(LFA-1) expression [11, 12, 35], the receptor for ICAM-1, 
the interaction strength between HPC-NK cells and targets 
is dependent on ICAM-1 expression. Increased ICAM-1 
expression leads to stronger interactions, resulting in tar-
gets being more sensitive to killing [12, 36]. Interestingly, 
these effects were found with primary AML and THP-1, but 
not K562, which may be attributed to unaffected ICAM-1 
expression on K562. Furthermore, K562 is MHC-I nega-
tive, making it very sensitive to NK cell-mediated killing. 
Since HPC-NK cells are highly potent killers compared to 
PB-NK cells, this leaves a narrow window for improve-
ment. However, for less susceptible MHC-I positive THP-1 
cells HPC-NK and PB-NK cell-mediated killing could be 
improved by N-803. Importantly, we showed for the first 
time that N-803 promotes HPC-NK cell serial killing prop-
erties and that some HPC-NK cells kill 5 or more leukemia 
cells within 12 h. This is in line with studies using PB-NK or 
NK-92 cells, in which up to 6 [43], 7 [44], 8 [33], or 14 [45] 
serial kills were reported within 6–16 h. Our findings further 
revealed that a minority of HPC-NK cells is a serial killer, 

responsible for the majority of killing. This is in accordance 
with previous studies [33, 44].

Moreover, we assessed HPC-NK cell serial killing prop-
erties against OC cells. As expected based on OC monolayer 
killing experiments, N-803 did not improve serial killing 
against OC. Nevertheless, serial killer HPC-NK cells gen-
erally kill quickly (median 19 min for the first kill) after 
initial contact. This median lag phase is similar as in Van-
herberghen’s study [44], where the mean lag phase (time to 
lytic hit + time to death) was 17.5 min for serial killers. In 
our OC model, serial killer HPC-NK cells kill up to three 
targets, which is lower than our leukemia model and other 
studies [33, 43–45]. Potential explanations for those differ-
ences are that we used a low target density and a high E:T 
ratio in the OC model, while in our leukemia model and 
other studies higher target densities and/or lower E:T ratios 
were used. For low target cell densities, we and others [43, 
45] observed that NK cells often stay in contact with apop-
totic cells, limiting the number of serial kills. Lower E:T 
ratios allow for better serial killing detection, because every 
NK cell can kill more targets. Furthermore, intrinsic dif-
ferences between used targets impact sensitivity to (serial) 
killing by NK cells [33, 45]. For instance, SKOV-3 used in 
our OC model is more difficult to kill than K562 used in our 
leukemia model and other studies (Figs. 1, 3).

In OC spheroids, N-803 significantly increases IFNγ 
and CXCL10 secretion during overnight co-culture with 
HPC-NK cells. Because HPC-NK cells have high CXCR3 
expression [11–14, 35], increased CXCL10 secretion could 
improve NK cell infiltration. Since the relatively high 
amount of HPC-NK cells, needed for infiltration assays, 
destroys OC spheroids after overnight incubation, we 
measured infiltration after 3 h. In this model, no effect of 
N-803 on HPC-NK cell infiltration was observed, though 
3 h co-incubation is likely too short to increase IFNγ and 
CXCL10 secretion and impact HPC NK cell infiltration. 
Importantly, in long-term assays, using less HPC-NK cells, 
N-803 improves HPC-NK cell expansion, and, therefore, OC 
spheroid killing at the longer term.

Finally, we showed that in vivo N-803 supports peritoneal 
HPC-NK cell persistence in the presence of human immuno-
globulins (nanogam) in NSG mice bearing human OC and 
this combination treatment has an anti-OC effect. Similar 
findings were reported by Felices et al. [30], demonstrat-
ing improved OC tumor control in NSG mice treated with 

Fig. 3   N-803 does not promote short-term HPC-NK cell-mediated 
killing of OC cell monolayers. a–b (a) Percentage of IFNγ+ HPC-NK 
cells or (b) fold change of the percentage after 4  h incubation with 
OC cell line SKOV-3, and 0 (white) or 1  nM  N-803 (black) (a) in 
a representative HPC-NK cell donor containing duplos/triplos or (b) 
combined (n = 4) and compared to the same cells without cytokine 
(ref). c–d (c) IFNγ concentration (pg/ml) or (d) fold change of 
IFNγ concentration after overnight co-culture of HPC-NK cells and 
SKOV-3 with 0 (white) or 1 nM N-803 (black) (c) in a representative 
HPC-NK cell donor containing triplos (N.D. = not detectable) or (d) 
combined compared to without cytokine (n = 3). (e) MFI of ICAM-1 
expression after overnight culture of SKOV-3 (white), addition of 
N-803 (light grey), HPC-NK cells (dark grey) or both (black) (n = 3). 
(f) Percentage of SKOV-3 killing after overnight co-culture with 
HPC-NK cells and 0 (grey) or 1 nM N-803 (black) (n = 4). (g) Lag 
phase to apoptosis of SKOV-3 for the 1st, 2nd and 3rd kill by serial 
killer HPC-NK cells with 0 (white) or 1  nM  N-803 (black) (n = 1). 
Graphs show mean ± SD for a, c/SEM for e–f, and median for g. One-
way ANOVA with Bonferroni correction was used (after log transfor-
mation for b, d, g, repeated measures for b, d–f) to test for statistical 
significance

◂
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PB-NK cells in combination with N-803 compared to no 
treatment or NK cells alone. Since HPC-NK cells hardly 
persist without cytokine support, and clinical trials will 
be conducted with cytokine support, we chose to compare 
HPC-NK cells plus N-803 (or rhIL-15) treatment to no 
treatment. Notably, pre-treatment of NSG mice with human 
immunoglobulins (nanogam) was required to prevent Fc-
mediated HPC-NK cell depletion by N-803 treatment. In 
patients, pre-treatment with nanogam will not be necessary, 
since they have immunoglobulins. In Felices’ study sublethal 
irradiation (2.25 Gy) was sufficient to prevent Fc-mediated 
depletion of PB-NK cells, while in our study sublethal irra-
diation (2.25 Gy) did not rescue Fc-mediated depletion of 
HPC-NK cells. One of the differences in the design of these 
two studies is the timing of irradiation: we irradiated the 
mice one day before tumor injection, while they irradiated 
the mice one day before NK cell injection. It might be that in 
our study immune cells containing Fc receptors in the NSG 
mice recovered or repopulated before the first N-803 injec-
tion, which could have led to Fc-mediated depletion. Alter-
natively, it could be that HPC-NK cells are more sensitive 
to Fc-mediated NK cell depletion than PB-NK cells due to 

differences in activation status. Around 20% of the HPC-NK 
cells had CD16 expression before NK cell injection (Supple-
mentary Fig. 5), indicating that Fc-mediated fratricide might 
have been possible. Moreover, we know from our previous 
publications that CD16 expression is upregulated in NSG 
mice in vivo [12, 14], increasing the risk for Fc-mediated 
fratricide. Fortunately, Fc-mediated depletion of HPC-NK 
cells could be prevented by nanogam injection in NSG mice.

Comparing N-803 with rhIL-15 shows that in  vivo 
OC growth was similar. However, it is important to note 
that the amount of molecules per dose was ~ 7 × lower for 
N-803 than rhIL-15 and rhIL-15 was given more frequently. 
Assuming all N-803 or rhIL-15 was consumed before the 
next dose administration, this suggests that N-803 may 
indeed have a higher biological activity compared to rhIL-
15. In vivo experiments with leukemia-bearing NSG mice, 
NK cells, and N-803 have previously been carried out [35, 
39]. Wagner et al. showed K562 leukemia control by N-803-
primed PB-NK cells [39] and Cany et al. demonstrated intra-
femoral THP-1 leukemia control by HPC-NK cells, N-803, 
and decitabine [35]. Since we found HPC-NK cell depletion 
in our i.p. OC model, repeating Cany’s leukemia study with 
nanogam might improve treatment results in mice.

Collectively, our results imply that N-803 is an attractive 
compound to promote HPC-NK cell expansion and func-
tionality for NK cell therapy. Currently, two phase 1 clinical 
trials with N-803 are recruiting patients in the US in various 
cancer types (NCT03054909 and NCT02890758). In addi-
tion, N-803 has been shown to enhance antibody-dependent 
cellular cytotoxicity in vitro [38, 41] and checkpoint block-
ade therapy in cancer-bearing mice [40]. For future studies, 
it would be interesting to compare N-803 to the standard 
IL-2 co-administration with NK cell adoptive transfer for 
anti-tumor efficacy, to evaluate whether IL-2 can be replaced 
by N-803 to prevent Treg-expansion in cancer patients.

In conclusion, N-803 boosts HPC-NK cell proliferation 
and IFNγ production in vitro. Furthermore, N-803 improves 
(serial) leukemia killing and long-term OC spheroid destruc-
tion by HPC-NK cells. In vivo, N-803 in combination with 
human immunoglobulins supports HPC-NK cell persis-
tence in NSG mice and this combination treatment medi-
ates an anti-OC effect. In conclusion, N-803 is a promising 
IL-15-based compound to improve NK cell-based cancer 
immunotherapy.

Fig. 4   N-803 increases CXCL10 production and improves long-term 
HPC-NK cell-mediated killing in OC spheroids. a–b (a) IFNγ con-
centration (pg/ml) or (b) fold change of IFNγ concentration after 
overnight co-culture of HPC-NK cells and spheroids of OC cell line 
SKOV-3 with 0 (white) or 1 nM N-803 (black) (a) in a representative 
HPC-NK cell donor containing fiveplos/sixplos (N.D. = not detect-
able) or (b) combined (n = 4) and compared to the same number of 
NK cells without cytokine (ref, 55,600–67,000 and 170,000–220,000 
HPC-NK cells). c–d (c) CXCL10 concentration (pg/ml) or (d) fold 
change of CXCL10 concentration after overnight co-culture of HPC-
NK cells and SKOV-3 spheroids with 0 (white) or 1  nM  N-803 
(black) (c) in a representative HPC-NK cell donor containing triplos 
(0–67,000 HPC-NK cells, N.D. = not detectable) or (d) combined 
(n = 5) compared to no cytokine (6700–67,000 HPC-NK cells). (e) 
Percentage of infiltrated HPC-NK cells into SKOV-3 spheroids after 
3 h co-incubation with 0 or 1 nM N-803 (n = 8). (f) EC50 = HPC-NK 
cell dose needed to kill 50% of SKOV-3 in a spheroid with or without 
N-803 (n = 5). (g) Fold expansion of HPC-NK cells in the presence of 
a SKOV-3 spheroid after 1 week co-incubation with 0 or 1 nM N-803 
(n = 3). h Percentage of SKOV-3 spheroid killing after 1 week co-cul-
ture with HPC-NK cells and 0 or 1 nM N-803 (n = 4). Graphs show 
mean ± SD for a, c/SEM for e, h. T tests were used for c–h (paired 
for e–h, unpaired for c, one-sample for d, after log transformation for 
d and g and a repeated measures one-way ANOVA with Bonferroni 
correction for a and b (after log transformation for b to test for statis-
tical significance
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