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Abstract
It remains unclear whether Helicobacter pylori (H. pylori), a major cause of gastric cancer (GC), is involved in other intestinal 
cancers. In our previous study,  ICOS+  Foxp3+  CD4+ T cells  (ICOS+ Tregs) in GC tumors were identified as effector Tregs 
and associated with H. pylori. In the present study, the impact of  ICOS+ Tregs on not only GC, but also colorectal cancer 
(CRC) and their prognosis was investigated in association with H. pylori. Tissue-infiltrating lymphocytes (TILs) purified 
from fresh tumor and sera were obtained from GC and CRC patients prospectively. %  ICOS+ Tregs were analyzed by flow 
cytometry and their production of anti-H. pylori antibody (Hp-Ab) in sera was detected by ELISA. %  ICOS+ Tregs were 
higher in GC and CRC patients with Hp-Ab than in those without Hp-Ab, including eradicated patients.  ICOS+ Tregs puri-
fied had higher potential to produce IL-10 than  ICOS− Tregs. For prognostic analysis, immunohistochemical analysis and 
ELISA were performed using archival fixed specimens and frozen sera, respectively, obtained from GC and CRC patients. 
Overall survival was longer in patients with low %  ICOS+ Tregs than in those with high %  ICOS+ Tregs, and patients with 
Hp-Ab showed shorter recurrence-free survival than those without Hp-Ab. These results suggested that  ICOS+ Tregs in GC 
and CRC patients were closely associated with H. pylori in gastric epithelium and their prognosis, and that pre-operative H. 
pylori eradication has potential as a novel immunotherapy for GC and CRC patients.
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CRC   Colorectal cancer
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IHC  Immunohistochemistry
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PBMCs  Peripheral blood mononuclear cells
pDC  Plasmacytoid dendritic cell
RCC   Renal cell carcinoma
RFS  Recurrence-free survival
TILs  Tumor tissue-infiltrating lymphocytes
TLRs  Toll-like receptors
Tregs  Regulatory T cell

ICOS+ regulatory T cells in gastric and colorectal tumors were 
closely associated with H. pylori infection and the prognosis of 
these patients. Pre-operative H. pylori eradication has potential as 
a novel cancer immune therapy.
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Introduction

Helicobacter pylori (H. pylori), the most common bacte-
ria in the human intestinal flora, selectively colonizes in 
the gastric epithelial layer, competing against host defense 
mechanisms, e.g., gastric acidity and the mucosal bar-
rier [1–3]. H. pylori also has to act against host immune 
defenses. Regarding host innate immunity, dendritic cells 
with abundant toll-like receptor-4 (TLR4) is impaired 
since H. pylori lipopolysaccharides has exceptionally low 
activity to sensitize TLR4 due to its unique molecular 
structure [4]. The maturation of macrophages is also inhib-
ited by vacuolating cytotoxin A (VacA) secreted by H. 
pylori; therefore, the initiation step of adaptive immunity 
is prevented [4]. Furthermore, the activation of T cells, 
the main immune effector cells for acquired immunity, 
are directly affected by H. pylori bacterial products, e.g., 
VacA and arginase, and regulatory T cells (Tregs) are also 
induced [4, 5].

Tregs, identified from CD4 T cells by the transcrip-
tional factor Foxp3, play an important role in maintaining 
immune homeostasis [6–9]. Tregs can suppress excessive 
immune responses using a wide range of molecules, which 
may contribute to a feasible environment for H. pylori 
infection [4, 6].

Tregs are closely involved in tumor immunity due to 
their immunosuppressive functions. The frequency of 
 Foxp3+ T cells in peripheral blood mononuclear cells 
(PBMCs) and tumor tissue-infiltrating lymphocytes (TILs) 
is strongly associated with tumor malignancy as well as 
the prognosis of patients in many types of cancer [7]. In 
in vitro assays with tumor-associated antigenic peptides, 
the induction of antigen-specific cytotoxic T lymphocytes 
from the PBMCs was shown to be enhanced by the deple-
tion of Tregs [8]. Among  CD4+ Tregs expressing Foxp3, 
effector Tregs (eTregs) with highly immunosuppressive 
functions were fractionated in  CD45RA−  Foxp3high/
CD25high by flow cytometry [9]. A minute eTreg analysis 
of TILs using flow cytometry resolved conflicting findings 
on the relationship between Tregs and patient prognoses 
analyzed with immunohistochemistry (IHC) targeting 
Foxp3 for the identification of Tregs [10–12]. Further anal-
yses by flow cytometry revealed that the profile of antigen 
expression on Tregs in TILs was both tumor- and intes-
tinal bacteria- specific. In colorectal cancer (CRC), the 
 CD45RA−  Foxp3high fraction was predominantly observed 
in 50% of patients, and an abundant  CD45RA−  Foxp3low 
fraction in TILs was noted in another 50% of CRC patients 
from whom Fusobacteria was specifically detected in the 
intestinal flora [13]. In our previous study on GC, the 
expression of ICOS was specifically observed in  CD4+ 
Tregs in tumor tissues, patients with abundant  ICOS+ 

 Foxp3+ TILs appeared to show advanced GC, short recur-
rence-free survival (RFS), and positivity for the anti-H. 
pylori antibody (Hp-Ab), and  ICOS+  Foxp3+ cells had 
highly immunosuppressive functions in association with 
plasmacytoid DC (pDC) expressing TLR9 and ICOS-L 
[14–17].

H. pylori is a major cause of GC. Cytotoxin-associated 
gene A is introduced as an oncoprotein that is directly asso-
ciated with gastric neoplasia [1]; however its relationship 
with other intestinal tract cancers remains controversial [18]. 
Furthermore, it currently remains unclear whether H. pylori 
infection plays any role in the prognosis of patients with GC 
and other intestinal tract cancers [18].

In the present study, we investigated the prognostic rel-
evance of  ICOS+  Foxp3+ TILs and H. pylori infection in 
not only GC, but also CRC patients after curative surgical 
treatments.

Materials and methods

Tissue and blood samples

Fresh tumor tissues and normal mucosa from surgically 
resected specimens and peripheral blood were obtained 
prospectively from 81 GC, 50 CRC, 27 esophageal cancer 
(EC), 31 renal cell carcinoma (RCC), and 34 ovarian cancer 
(OC) patients between 2016 and 2017. Tissue-infiltrating 
T cells were purified using the gentle MACS Dissocia-
tor (Miltenyi Biotec, Bergisch Gladbach, Germany) and a 
Tumor Dissociation Kit for humans (Miltenyi Biotec), and 
purified T cells, PBMCs, and sera were frozen and stored in 
an  N2 bank. In the prognostic analysis, stored TILs obtained 
from another 44 consecutive patients with GC between 
2014 and 2015 were analyzed using a flow cytometer, 
and stored FFPE specimens obtained from 50 consecutive 
patients with pStage II/III GC between 2013 and 2014 were 
retrospectively analyzed by multicolor IHC (Supplemen-
tary Table S1). Fifty-six stored FFPE specimens obtained 
between 2010 and 2012 (Supplementary Table S3) and 128 
stored serum samples obtained between 2012 and 2015 from 
consecutive patients with pStage III CRC (Supplementary 
Table S4) were also used in the present study.

Antibodies

The following fluorescence-labeled antibodies were pur-
chased for flow cytometry: CD45 (H130), CD3 (UCTH1), 
CD4 (RPA-T4), CD8 (RPA-T8), CD45RA (cH100), CD25 
(cBC96), ICOS (ISA-3), Tim3 (F38-2E2), 4-1BB (4B4-1), 
CD103 (Ber-ACT8), CD14 (HCD14), CD11c (3.9), ICOS 
ligand (9F.8A4), IL-17 (BL168) and IFN-γ (4SB3) from 
BioLegend (San Diego, CA, USA), PD-1 (EH12), OX40 
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(ACT35), CD19 (HIB1g), CD56 (B15g), HLA-DR (G46-6), 
IL-10 (JES3-9D7) from BD Biosciences (Franklin Lakes, 
NJ, USA), Foxp3 (PCH101) from Thermo Fisher Scientific 
(Waltham, MA, USA), and CD123 (AC145) from Miltenyi 
Biotec. Zombie NIR (BioLegend) was also used to discrimi-
nate live cells. In fluorescent IHC, CD278/ ICOS (SP98; 
Cell Marque, Roklin, CA, USA), Foxp3 (236A/ E7; Abcam, 
Cambridge, UK), CD4 (4b12; Thermo Fisher Scientific), 
and CD303 (124B3.13; Novus Biologicals, Littleton, CO, 
USA) were used.

Flow cytometry

Cells were stained with fluorophore-conjugated antibod-
ies after an FcR block (Human TruStain FcX Fc Receptor-
blocking solution; BioLegend) at 4 °C for 30 min. The BD 
Pharmingen™ Transcription Factor Buffer Set (BD Bio-
sciences) was used for intracellular staining. Stained cells 
were analyzed by LSR Fortessa (BD Biosciences), and the 
frequencies of cell populations were obtained and analyzed 
with DiVA software (BD Biosciences). To assess positive 
staining, an isotype control of the primary antibody conju-
gated with each fluorophore was used.

Intracellular cytokine analysis

T cells purified by FACS Aria II (BD Biosciences) were 
stimulated with 50 ng/ml phorbol 12-myristate 13-acetate 
(PMA; Sigma-Aldrich, Saint Louis, MO, USA), 1 μM iono-
mycin (Sigma-Aldrich), and GolgiStop reagent (BD Bio-
sciences) for 4 h. Harvested cells were washed and stained 
with antibodies against surface antigens and Zombie NIR 
(BioLegend) at 4 °C for 20 min. Cells were then washed and 
permeabilized, and intracellular cytokines were stained [19].

Fluorescent IHC

Fluorescent multi-labeling was performed with FFPE speci-
mens using the Opal 7-Color Fluorescent IHC Kit (Perkin-
Elmer, Waltham, USA). Co-localized signals were detected 
and captured by the Vectra automated quantitative pathology 
imaging system (Perkin-Elmer). In the quantitative analysis, 
the number of fluorescent signal-positive cells in a field of 
670 × 500 µm was counted, and the mean cell number in 
three fields was calculated.

Assessment of H. pylori infection

Hp-Ab was detected using an H. pylori IgG ELISA Kit 
(E-plate, Eiken, Japan). In some patients, H. pylori infec-
tion was confirmed by Giemsa staining [14, 20].

Statistical analysis

The significance of differences in each experimental data set 
between two groups was assessed using the Student’s two-
tailed paired t test. The Kruskal–Wallis test, Mann–Whitney 
U test, and Chi-squared test were used for univariate analy-
ses. Survival curves were estimated using the Kaplan–Meier 
method and compared by the log-rank test. All analyses were 
performed using SPSS for Windows v.10 (SPSS, Chicago, 
IL). p values less than 0.05 were considered to be significant.

Results

GC patients with high % ICOS+ in Foxp3+ CD4+ TILs 
showed short overall survival

The impact of %  ICOS+ in  Foxp3+  CD4+ TILs and % 
 Foxp3+ in  CD4+ TILs on the prognosis of GC patients was 
retrospectively analyzed by flow cytometry and multicolor 
IHC. Forty-four GC patients whose TILs were analyzed 
using a flow cytometer were divided into two groups based 
on the median value of %  ICOS+ in  Foxp3+  CD4+ TILs 
(10.5–68.6%, median; 36.6%) (Supplementary Table S1). 
Overall survival (OS) was shorter in patients with high % 
 ICOS+ in  Foxp3+  CD4+ than in those with low %  ICOS+ 
(p = 0.029, Fig. 1a), while no significant difference was 
observed when patients were divided based on the median 
value of %  Foxp3+ in  CD4+ TILs (1.3–75.2%, median; 
21.0%) (p = 0.72, Supplementary Figure. S1A).  ICOS+ in 
 Foxp3+  CD4+ TILs were analyzed by multicolor IHC using 
FFPE specimens obtained from 50 GC patients between 
2010 and 2012 (Supplementary Figure. S1B). CD4 and 
ICOS staining was observed on the cell surface, whereas 
that of Foxp3 was detected in nuclei. The multicolor IHC 
analysis also showed that OS was shorter in patients with 
high %  ICOS+ in  Foxp3+  CD4+ TILs than in those with low 
%  ICOS+ when patients were divided based on the median 
value of %  ICOS+ in  Foxp3+  CD4+ TILs (0–98.8%, median; 
30.1%) (p = 0.044, Fig. 1b, Supplementary Table S1). On 
the other hand, no significant difference was observed 
when patients were divided based on the median value 
of %  Foxp3+ in  CD4+ TILs (7.6–97.2%, median; 49.9%) 
(p = 0.47, Supplementary Figure. S1C).

GC patients who received pre‑operative eradication 
for H. pylori showed low % ICOS+ in CD25+ CD4+ 
TILs

Tumor tissues, a normal gastric mucosa, and peripheral 
blood were newly obtained from 81 GC patients, and % 
 ICOS+ in  CD25+  CD4+ and Hp-Ab were analyzed prospec-
tively. Between 17.4 and 84.8%  ICOS+ in  CD25+  CD4+ 
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TILs were observed in 81 GC tumor tissues and Hp-Ab was 
detected in 46 GC patients (Supplementary Figure. S1D). 
Significantly higher %  ICOS+ in  CD25+  CD4+ TILs was 
observed in Hp-Ab-positive patients than in Hp-Ab-negative 
patients (median; 48.1 v.s. 35.5%, p < 0.001). Hp-Ab-posi-
tive patients also had higher %  ICOS+ in  CD25+  CD4+ in 
PBMCs and a normal gastric mucosa than Hp-Ab-negative 
patients (5.6 v.s. 4.0%, p = 0.001, 28.6 v.s. 13.1%, p = 0.001, 
respectively, Supplementary Figure. S1D). Twenty-one out 
of 35 Hp-Ab-negative patients received H. pylori eradica-
tion therapy. Eight patients received pre-operative eradica-
tion therapy just after their diagnosis of GC (within 1 month 
before surgery). Hp-Ab-positive patients had not received 
eradication therapy. %  ICOS+ in  CD25+  CD4+ TILs in Hp-
Ab-negative patients were consistent and lower than those 
in Hp-Ab-positive patients (Fig. 2a). In PBMCs, %  ICOS+ 
in  CD25+  CD4+ of Hp-Ab-negative patients were also lower 
than those in Hp-Ab-positive patients.

Anti‑H. pylori Ab and ICOS+ CD25+ CD4+ T cells 
in CRC 

Although %  ICOS+ in  CD25+  CD4+ TILs in GC was strongly 
associated with H. pylori infection, H. pylori colonized the 
normal gastric mucosa, not GC [21]. Furthermore, %  ICOS+ 
in  CD25+  CD4+ in PBMCs was strongly associated with H. 
pylori infection in GC patients. The influence of H. pylori 
infection on  ICOS+  CD25+  CD4+ TILs in the cancers of 
organs other than the stomach was investigated. Tumor tis-
sues, normal tissues, and peripheral blood were obtained 
from CRC, EC, RCC, and OC patients, and Hp-Ab and % 
 ICOS+ in  CD25+  CD4+ TILs were analyzed by ELISA and 
flow cytometry, respectively (Supplementary Figure. S2A, 
B). Hp-Ab was detected in 18 out of 50 CRC, 9 out of 27 EC, 
8 out of 31 RCC, and 5 out of 34 OC patients. Significantly 

higher %  ICOS+ in  CD25+  CD4+ TILs were observed in Hp-
Ab-positive CRC patients than -negative patients (40.4 v.s. 
31.2%, p = 0.0013), while no difference was observed in EC, 
RCC, or OC (EC 70.3 v.s. 67.7%, p = 0.72; RCC 64.1 v.s. 
23.1%, p = 0.09; OC 48.1 v.s. 38.8%, p = 0.90, Supplemen-
tary Figure. S2B). Among 32 Hp-Ab-negative CRC patients, 
5 received H. pylori eradication therapy before surgery and 
their %  ICOS+ in  CD25+  CD4+ TILs, as well as those of 
the 27 Hp-Ab-negative CRC patients, were lower than those 
of 18 Hp-Ab-positive CRC patients (Fig. 2b). %  ICOS+ in 
 CD25+  CD4+ in PBMCs from Hp-Ab-positive CRC patients 
were also higher than those from Hp-Ab-negative patients. 
On the other hand, no significant differences were observed 
in the normal colonic mucosa, which is distinguished from 
GC (Supplementary Figure. S2C). The antigen expression 
profiles of T cells in the normal colonic mucosa were also 
consistent between Hp-Ab-positive and -negative CRC 
patients (Supplementary Table S2).

Immunosuppressive potential of ICOS+ CD25+ 
CD4+ TILs in CRC 

The immunosuppressive functions of  ICOS+  CD25+ 
 CD4+ TILs of CRC were analyzed based on the ability 
for cytokine production.  ICOS+ and  ICOS−  CD25+  CD4+ 
TILs were purified from six colorectal tumor tissues, and 
IL-10-, IFN-γ-, and IL-17-producing cells after a stimu-
lation with PMA/ionomycin were detected individually 
by flow cytometry. The frequency of IL-10-producing 
cells was higher in  ICOS+  CD25+  CD4+ TILs than in 
 ICOS−  CD25+  CD4+ TILs in all patients examined, while 
that of IFN-γ and IL-17 was lower in  ICOS+  CD25+  CD4+ 
TILs than in  ICOS−  CD25+  CD4+ TILs in all patients 
(Fig. 3a).
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Fig. 1  %  ICOS+ in  Foxp3+  CD4+ TILs in relation to overall survival 
in GC patients. Gastric cancer (GC) patients were divided into high 
(solid line) and low (dotted line) groups based on the median values 
of %  ICOS+ in  Foxp3+  CD4+ TILs by flow cytometry (a) and mul-

ticolor immunohistochemistry (IHC) (Supplementary Table  S1) (b), 
and overall survival (OS) curves were compared by the Kaplan–
Meier method and log-rank test
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ICOS‑L+ in pDCs in CRC 

ICOS-L+ in pDCs in colorectal tumor tissue was analyzed 
by flow cytometry. In our previous study on GC, %  ICOS+ 
 Foxp3+  CD4+ TILs were positively associated with % 
ICOS-L+ in pDCs, % ICOS-L+ in pDCs were higher in 
tumor tissues from Hp-Ab-positive patients than -nega-
tive patients, and  ICOS+  Foxp3+  CD4+ T cells were effi-
ciently induced in vitro by the addition of the ICOS-L 
protein [14]. We then analyzed the influence of H. pylori 
infection on pDCs in CRC tumor tissues. % ICOS-L+ 
in pDCs in colorectal tumor tissues, which were lower 
than gastric tumor tissues (19.6 v.s. 55.0%, p < 0.0001, 
Supplementary Figure. S3a), were similar between Hp-
Ab-positive and -negative CRC patients (20.0 v.s. 19.4%, 
p = 0.90, Fig. 3b), and not related to %  ICOS+ in  CD25+ 
 CD4+ TILs  (r2 = 0.024, p = 0.6, Fig. 3c).  CD303+ pDCs in 
GC and CRC were analyzed by IHC and their impact on 
the prognosis of patients was analyzed (Supplementary 
Figure. S3). 0.7–64 (median; 5.0) and 0.7–158 (median; 
10.3)  CD303+ cells/field in 50 GC and 56 CRC were 
observed, respectively, and patients were divided based 

on the median value of  CD303+ cells. A higher  CD303+ 
cell density was associated with a worse prognosis in GC, 
but not CRC patients (p = 0.022 and p = 0.94, respectively, 
Supplementary Figure. S3B).

Impact of ICOS+ Foxp3+ CD4+ TILs on the prognosis 
of CRC patients

Multicolor IHC was performed on FFPE specimens from 
56 patients with pStage III CRC who underwent curative 
surgery. 2.9–98.2% (median; 46.8%)  ICOS+ in  Foxp3+ 
 CD4+ TILs and 3.3–91.7% (median; 44.4%)  Foxp3+ in 
 CD4+ TILs were observed. When patients were divided 
based on the median value, patients with high %  ICOS+ in 
 Foxp3+  CD4+ TILs showed shorter RFS (p = 0.059) and 
OS (p = 0.035) than those with low %  ICOS+ (Fig. 4a, 
Supplementary Table S3). When %  Foxp3+ in  CD4+ TILs 
were used, no significant differences were observed in RFS 
or OS between patients with high and low %  Foxp3+ in 
 CD4+ TILs (Supplementary Figure. S3C).

Fig. 2  Relationships between H. 
pylori infection and %  ICOS+ in 
 CD25+  CD4+ T cells in patients 
with GC and CRC. Gastric can-
cer (GC) patients were divided 
into four groups; Hp-Ab-neg-
ative groups (non-eradication 
group, eradication group, and 
pre-operative eradication group) 
and Hp-Ab-positive group. The 
pre-operative eradication group 
received therapy within 1 month 
before surgery. %  ICOS+ in 
 CD25+  CD4+ T cells were 
analyzed by flow cytometry 
and plotted according to the H. 
pylori infection status in TILs 
and PBMCs (a). Colorectal can-
cer (CRC) patients were divided 
into three groups; Hp-Ab-neg-
ative groups (non-eradication, 
eradication) and Hp-Ab-positive 
group. %  ICOS+ in  CD25+ 
 CD4+ T cells were also plot-
ted in TILs and PBMCs. (b). 
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Impact of H. pylori infection on the prognosis of CRC 
patients

The influence of H. pylori infection on the prognosis of 
patients with CRC after curative surgical treatment was ana-
lyzed. Sera were obtained from 128 patients with pStage 
III CRC just before surgery, and Hp-Ab was detected by 
ELISA. Hp-Ab was positive in 65 patients (50.8%) and no 
correlation was observed between Hp-Ab positivity and 
clinicopathological factors (Supplementary Table S4). The 
median follow-up period was 44.3 months. Hp-Ab-positive 
patients showed shorter RFS than Hp-Ab-negative patients 
(p = 0.041), while no significant difference was observed 
in OS between Hp-Ab-positive and -negative patients 
(p = 0.77) (Fig. 4b). The univariate analysis revealed that 
RFS correlated with Hp-Ab, pT, vascular invasion, and 
adjuvant chemotherapy (Table 1). The multivariate analy-
sis identified Hp-Ab (hazard ratio (HR) = 2.14, 95% confi-
dence interval (CI) = 1.09–4.39, p = 0.027), pT (HR = 3.85, 

95%CI = 1.36–16.2, p = 0.0085), vascular invasion 
(HR = 2.52, 95%CI = 1.24–5.57, p = 0.010), and adjuvant 
chemotherapy (HR = 0.28, 95%CI = 0.14–0.56, p = 0.0005) 
as independent prognostic factors (Table 1). Additionally, 
the impact of H. pylori infection on the prognosis of GC 
patients was analyzed. No significant differences were 
observed in RFS or OS between Hp-Ab-positive and -nega-
tive GC patients (p = 0.63 and 0.63, respectively) (Supple-
mentary Figure. S4).

Discussion

We previously reported that the high frequency of  ICOS+ 
 Foxp3+, but not  Foxp3+, TILs strongly correlated with short 
RFS in GC patients, and H. pylori infection may be one 
of the factors inducing  ICOS+  Foxp3+ TILs in GC. In the 
present study, we demonstrated that the frequency of  ICOS+ 
 Foxp3+ TILs negatively correlated with OS in GC and CRC 
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nected (a). % ICOS-L+ in pDCs were analyzed by flow cytometry 
and plotted according to Hp-Ap positivity in CRC (Hp-Ab( – ); 19.4%, 
Hp-Ab( +); 20.0%) and gastric cancer (GC) (Hp-Ab( +); 55.0%, 
Hp-Ab( – ); 71.2%) (b). % ICOS-L+ in pDCs and %  ICOS+ in  CD25+ 
 CD4+ TILs from each patient with CRC were plotted, and an approxi-
mate straight line was depicted (n = 14, p = 0.60, r2 = 0.024) (c). The 
relationship was analyzed by Pearson’s correlation coefficient (r)
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Fig. 4  Relationships between 
H. pylori infection, %  ICOS+ 
in  Foxp3+  CD4+ TILs, and the 
prognosis of CRC patients. 
Fifty-six patients with pStage 
III colorectal cancer (CRC) 
were divided into high (solid 
line) and low (dotted line) 
groups based on the median 
values of %  ICOS+ in  Foxp3+ 
 CD4+ TILs by multicolor 
immunohistochemistry (IHC) 
(Supplementary Table S3) (a). 
A total of 128 patients with 
pStage III CRC were divided 
into Hp-Ab-positive (solid 
line) and -negative (dotted line) 
groups (b) (Supplementary 
Table S4). Relapse-free survival 
(RFS) and overall survival (OS) 
curves were compared by the 
Kaplan–Meier method and log-
rank test

p=0.77

Hp-Ab (+) (n=65)

Hp-Ab (-) (n=63)

p=0.041

Hp-Ab (+) (n=65)

Hp-Ab (-) (n=63)

0 1 2 3 4 5
years after surgery

R
FS

1.0

0.8

0.2

0.0

0.6

0.4 O
S

1.0

0.8

0.2

0.0

0.6

0.4

0 1 2 3 4 5
years after surgery

B

p=0.035

%ICOS+ in Foxp3+ CD4+

CRC by multicolor IHC

high (n=28)

low (n=28)

0 1 2 3 4 5

1.0

0.8

0.2

0.0

0.6

0.4

O
S

p=0.059

%ICOS+ in Foxp3+ CD4+

CRC by multicolor IHC

high (n=28)

low (n=28)

0 1 2 3 4 5

1.0

0.8

0.2

0.0

0.6

0.4R
FS

A

CRC CRC

Table 1  Univariate and 
multivariate analyses between 
peri-operative variants and 
recurrence-free survival in 128 
CRC patients

TNM categories were based on the 8th edition of the International Union Against Cancer (UICC) TNM 
classification
HR hazard ratio, CI confidence interval, BMI body mass index, Alb albumin, Hp-Ab H. pylori antibody

Univariate analysis Multivariate analysis

HR (95% CI) p HR (95% CI) p

Age, years
  ≥ 68 vs < 68

1.65 (0.85–3.26) 0.14

Sex
 male vs female

1.54 (0.79–3.07) 0.20

BMI, kg/m2

  ≥ 22.3 vs < 22.3
1.62 (0.84–3.25) 0.15

Alb, g/dL
  ≥ 4.0 vs < 4.0

1.25 (0.65–2.47) 0.50

Hp-Ab status
 positive vs negative

2.01 (1.03–4.08) 0.040 2.14 (1.09–4.39) 0.027

Site of the primary tumor
 right vs left colon/rectum

1.13 (0.54–2.25) 0.73

pT
 T3-4 vs T1-2

4.32 (1.55–18.0) 0.0031 3.85 (1.36–16.2) 0.0085

Lymphatic invasion
 yes vs no

0.95 (0.29–5.83) 0.94

Vascular invasion
 yes vs no

2.48 (1.23–5.40) 0.010 2.52 (1.24–5.57) 0.010

pN
 N2-3 vs N1

1.61 (0.77–3.15) 0.20

Post-operative complications
 yes vs no

1.46 (0.62–3.07) 0.36

Adjuvant chemotherapy
 yes vs no

0.29 (0.15–0.58) 0.0006 0.28 (0.14–0.56) 0.0005
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patients, possibly due to their highly immunosuppressive 
function, and eradication therapy reduced  ICOS+  Foxp3+ 
TILs not only in GC, but also CRC patients, suggesting that 
 ICOS+  Foxp3+ TILs are also eTregs in CRC.

Current guidelines recommend the eradication of H. 
pylori after endoscopic resection for early-stage GC to pre-
vent the subsequent development of metachronous GC [20, 
22]. However, the present results indicate that pre-operative 
eradication therapy for not only patients with advanced 
GC, but also CRC may be beneficial for the prognosis of 
patients due to reductions in  ICOS+ Tregs. It is needless 
to say that the prevention of subsequent GC will contrib-
ute to the better prognosis of patients [23]. Furthermore, 
the induction of fully functional effector T cells is expected 
through reductions in immunosuppressive cells while pri-
mary tumors with sufficient amounts of tumor antigens exist, 
indicating the application of eradication therapy prior to sur-
gery and its potential as neo-adjuvant immune therapy [24, 
25]. A clinical study with the anti-CCR4 antibody targeting 
eTregs revealed that cellular and humoral immune responses 
specific to the cancer/testis (CT) antigens, NY-ESO-1 and 
XAGE1, were induced and enhanced in advanced cancer 
patients [26], and, based on these findings, another clini-
cal study that involves the administration of the anti-CCR4 
antibody to cancer patients before surgery was planned 
and is currently in progress (NCT02946671). Additionally, 
reductions in peripheral eTregs may prevent the develop-
ment of residual micrometastasis after the primary tumor 
is surgically removed [24]. Abundant  ICOS+  Foxp3+ CD4 
T cells were detected not only in gastric tumors, but also 
in the normal gastric mucosa and PBMCs of patients with 
Hp-Ab.  ICOS+ eTregs induced by H. pylori in the stomach 
may affect the periphery. New clinical research on periph-
eral  ICOS+  Foxp3+ CD4 T cells in Hp-Ab-positive patients 
without cancer is currently being planned.

Although the increased risk of developing CRC among 
patients with H. pylori infection have been reported [2, 3], 
the mechanisms by which H. pylori infection in the stomach 
acts as a carcinogen for CRC have not yet been elucidated. 
Other than virulent molecules secreted upstream of the gas-
trointestinal tract [27], an altered colorectal microbiome, the 
excessive production of gastrin, and cyclo-oxygenase-2 due 
to chronic gastritis, all of which are induced by H. pylori 
colonization, have been reported to be associated with CRC 
[28–31]. We demonstrated that  ICOS+ eTregs strongly cor-
related with H. pylori infection. The present results on eradi-
cation therapy appear to support the origin of tumor-infiltrat-
ing  ICOS+ Tregs in CRC being the stomach, not the colon 
in relation to H. pylori infection. In GC,  ICOS+ Tregs have 
been suggested to be induced by ICOS-L+ pDCs activated by 
H. pylori through TLR9 [14, 15]. In contrast, pDCs in CRC 
may be irrelevant based on the induction of  ICOS+ Tregs. 
Therefore, colorectal adenocarcinoma may provide a more 

convenient environment for circulating  ICOS+ Tregs to be 
attracted and reside than other cancers [32]. To clarify this 
issue, the expression of several chemokines and chemokine 
receptors in  ICOS+ Tregs and tumor tissues were analyzed 
in many types of cancers; however, a relationship between 
colorectal tumor tissues and  ICOS+ Tregs was not observed 
(data not shown).

Since CRC patients without H. pylori infection or with 
H. pylori eradication showed low  ICOS+ Tregs and because 
CRC patients with low  ICOS+ Tregs had long RFS and OS, 
we expect CRC patients without H. pylori infection at sur-
gery to have a better prognosis than those with H. pylori 
infection. Although a longer RFS was noted for Hp-Ab-neg-
ative patients than for Hp-Ab-positive patients with CRC, 
OS was not significantly different between these patients. 
This may be attributed to H. pylori infection not being the 
only factor affecting the level of  ICOS+ Tregs and many 
types of therapies being available for advanced or relapsed 
CRC patients [33, 34]. The results of these prognostic analy-
ses need to be compared between Hp-Ab-positive and eradi-
cated cancer patients, but not Hp-Ab-negative because the 
characteristics of cancer cells induced by H. pylori infection 
differ from “naturally occurring” cancer cells, particularly 
for GC [35]. However, a sufficient number of GC and CRC 
patients who were eradicated were not included in the pre-
sent study. We plan a large clinical study to observe the 
impact of pre-operative eradication on Hp-Ab-positive GC 
and CRC patients, which would resolve the inconsistency of 
patient groups for each analysis in the present study.

In conclusion,  ICOS+  Foxp3+ TILs are eTregs that influ-
ence the prognosis of GC and CRC patients and are closely 
associated with H. pylori infection. Pre-operative eradication 
therapy may provide prognostic benefits for GC and CRC 
patients with H. pylori infection in gastric epithelium due to 
decreases in  ICOS+ Tregs.
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