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Abstract
Tumour microenvironment (TME), which consists of widely diverse immune and stromal cells and the factors that they 
secrete, cultivates a chronic inflammatory, immunosuppressive, and pro-angiogenic intratumoural atmosphere, which has 
been reported to correlate with patient outcomes and treatment efficacy. In this study, we characterized TME pattern through 
the “Estimation of STromal and Immune cells in MAlignant Tumours using Expression data” (ESTIMATE) algorithm and 
build a TME-related signature (TMERS), which is serving as an independent prognostic factor in MIBC. Moreover, we 
found that the TMERS was highly positive correlated with immune infiltration, the expression of immune checkpoints and 
high malignancy molecular subtypes such as basal, infiltrated and basal/SCC-like. The value of the TMERS in assessing 
the immunotherapy response was evaluated using the tumour immune dysfunction and exclusion (TIDE) algorithm and 
confirmed in several cohorts treated with immune checkpoint inhibitors (ICIs). Furthermore, the TMERS had a negative 
correlation with the tumour mutation burden (TMB), which is a potential predictive biomarker of immunotherapy response. 
Remarkably, combining TMERS and TMB was more effective for survival and ICI response prediction. In conclusion, we 
established a novel TMERS which depicts the TME pattern and acts as a robust independent prognostic factor and predictive 
biomarker for the response to ICIs when combined with the TMB.

Keywords  Muscle-invasive bladder cancer · Tumour microenvironment · Immune checkpoint · Tumour mutation burden · 
Immunotherapy · TCGA​

Abbreviations
aDCs	� Activated DCs
AUC​	� Area under curve
BCG	� Bacillus Calmette−Guerin
BLCA	� Bladder cancer
CAF	� Cancer associated fibroblasts
CI	� Confidence interval
DC	� Dendritic cells
DCA	� Decision curve analysis
CTLA-4	� Cytotoxic T-lymphocyte-associated protein 

4
DEGs	� Differential expression genes
DFS	� Disease free survival
ECM	� Extracellular matrix
EMT	� Epithelial-mesenchymal transition
ESTIMATE	� Estimation of STromal and Immune cells in 

MAlignant Tumours using Expression data
FDA	� Food and Drug Administration
FDR	� False discovery rate
GAL9	� LGALS9

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0026​2-020-02649​-x) contains 
supplementary material, which is available to authorized users.

Rui Cao and Lushun Yuan have contributed equally to this work.

 *	 Ye Tian 
	 urologisttianye@126.com

1	 Department of Urology, Beijing Friendship Hospital, Capital 
Medical University, Beijing 100050, China

2	 Department of Internal Medicine, Division of Nephrology, 
Leiden University Medical Center, Leiden 2333 ZA, 
The Netherlands

3	 Department of Stomatology, Beijing Shijitan Hospital, 
Capital Medical University, Beijing 100038, China

4	 Department of Biological Repositories, Zhongnan Hospital 
of Wuhan University, Wuhan 430071, China

http://orcid.org/0000-0001-7757-7615
http://orcid.org/0000-0003-1290-2223
http://crossmark.crossref.org/dialog/?doi=10.1007/s00262-020-02649-x&domain=pdf
https://doi.org/10.1007/s00262-020-02649-x


2	 Cancer Immunology, Immunotherapy (2021) 70:1–18

1 3

GEO	� Gene Expression Omnibus
GSEA	� Gene Set Enrichment Analysis
GSVA	� Gene Set Variation Analysis
GU	� Genomically unstable
HE	� Hematoxylin and eosin
HR	� Hazard ratio
ICIs	� Immune-checkpoint inhibitors
IHC	� Immunohistochemistry
KM	� Kaplan–Meier
LASSO	� Least absolute shrinkage and selection 

operator
MIBC	� Muscle-invasive bladder cancer
mUC	� Metastatic urothelial cancer
NES	� Normalized enrichment score
NKs	� Natural killer cells
NMIBC	� Non-muscle-invasive bladder cancer
OS	� Overall survival
pDCs	� Plasmacytoid DC
PD-1	� Programmed death-1
PD-L1	� Programmed death-ligand-1
ROC	� Receiver operating characteristic curve
ssGSEA	� Single-sample gene set enrichment analysis
TAM	� Tumour associated macrophages
TCGA​	� The Cancer Genome Atlas
Tcm	� T central memory
Tem	� T effector memory
Th1	� T helper 1
Th2	� T helper 2
Th17	� T helper 17
TIDE	� Tumour Immune Dysfunction and 

Exclusion
TILs	� Tumour-infiltrated lymphocytes
TIM-3	� HAVCR2
TIME	� Tumour immune microenvironment
TMB	� Tumour mutation burden
TME	� Tumour microenvironment
TMERS	� TME-related signature
TNM	� Tumour Node Metastasis
Treg	� Regulatory T cells
Tγδ	� T follicular helper

Introduction

Bladder cancer (BLCA) is a urinary tract malignancy with 
a high incidence and is the 10th most common cancer, 
with nearly 549,000 new cases and 200,000 deaths in 2018 
worldwide [1]. Notably, BLCA was one of the first cancers 
identified to be immunogenic when Alvaro Morales reported 
successful intravesicular administration of BCG in 9 patients 
to prevent recurrence [2]. BCG was the second immuno-
therapeutic agent approved by the United States Food and 
Drug Administration (FDA) after interferon-alpha (IFN-α) 

for its efficacy in the treatment of non-muscle-invasive blad-
der cancer (NMIBC), especially contaminated with carci-
noma in situ (CIS). However, most patients do not respond 
to BCG as a frontline immunotherapeutic agent for NMIBC, 
and ~ 50% of responders relapse. Moreover, non-responders 
will finally recur or even invade into the muscle membrane 
and progressed to MIBC, which make the therapy of BLCA 
more complex. MIBC, which do not have a favourable prog-
nosis with a five-year survival rate < 50%, are more prone 
to metastasize and need systemic therapy combined with 
radical surgery and chemotherapy [3, 4]. Even with the rapid 
development of clinical imaging, chemotherapy and surgery, 
the treatment outcome of MIBC is not that satisfactory based 
on the current staging and grade system. However, dozens 
of studies focusing on BCG have illustrated the oncogenic 
immune biology of BLCA to some extent and pushed us to 
find new strategy for MIBC.

Recently, many teams focused on investigating molecu-
lar classification of BLCA and established many molecular 
subtypes based on transcriptomic or mutational landscape, 
which indicated BLCA is a far more complex disease than 
previously recognized [5]. So far, five classification systems 
have been widely accept and described. Lund group first 
defined five major subtypes: UroA, genomically unstable 
(GU), infiltrated, UroB and basal/SCC-like based on expres-
sion of cell-cycle genes, receptor tyrosine kinases as well 
as FGFR3, RB1 and TP53 mutation frequency [6]. Then 
UNC group have divided MIBC into basal-like and luminal 
subtypes by characterizing differential stages of urothelial 
differentiation [7]. Furthermore, MDA group found another 
p53-like, which was consistently resistant to neoadjuvant 
MDAC chemotherapy and distinct from basal-like and lumi-
nal subtypes [8]. Moreover, MDA group made a compre-
hensive analysis of mRNA data in TCGA-BLCA cohorts 
and established another classification system called TCGA 
mRNA clusters including basal squamous, luminal, lumi-
nal infiltrated, luminal papillary, and neuronal. TCGA group 
produced a four-class system with groups referred to I, II, 
III and IV [9]. Every subtype established by different groups 
displayed a unique characteristic and overlap between each 
other. But they do not consider the tumour microenviron-
ment (TME) pattern when establishing the classification 
system.

The last few decades have witnessed a revolution in can-
cer treatment, with a transition away from chemotherapy 
and radiation targeting tumours broadly towards antibody-
based immunotherapies that modulate immune responses 
against tumours more precisely. The human immune system 
can efficiently distinguish and eradicate abnormal tumour 
cells when it is intact and undisturbed. However, tumour 
cells can hijack a number of potent negative regulators to 
attenuate immune surveillance and survive [10, 11]. Immune 
checkpoint inhibitors (ICIs) represent the first generation 
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of antibody-based immunotherapy. ICIs play non-redundant 
roles by blocking the receptor and/or ligand interactions 
of molecules, such as cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4) and the programmed death-1 (PD-1)/
programmed death-ligand-1 (PD-L1) pathway, which are 
involved in priming T cell activation or function and rescu-
ing immune surveillance [12]. Some clinical trials based 
on therapeutic antibodies blocking the PD-1/PD-L1 path-
way, such as CheckMate, KEYNOTE and IMvigor, indi-
cated robust and durable responses in patients with various 
cancers [13, 14], including advanced and metastatic MIBC 
[15]. However, only a minority of patients with advanced 
cancer benefit from ICIs, with a response rate only mod-
estly above the historical 10% response rate to traditional 
chemotherapies.

Tremendous efforts have been dedicated to identify pre-
dictive biomarkers for immunotherapy. PD-L1 immunohis-
tochemistry (IHC)-based tissue testing might be the most 
widely accepted method. Although many studies reported 
higher response rates in patients with stronger PD-L1 
expression, quantification of the cut-off level, which is very 
complex, has limited the utility of this indicator. With the 
popularity of high-throughput sequencing, we can easily 
assess the genetic features of individuals. Tumour genetic 
mutation, a usual genetic disorder, could trigger dysfunction 
of some proteins or peptides, inducing the formation of neo-
antigens, which can be recognized by immune cells and initi-
ate immune-mediated tumour cells clearance. Thus, recent 
studies have shown the potential of the tumour mutation 
burden (TMB) as a predictive biomarker for immunotherapy 
due to its reflection of the overall neo-antigens load [16, 17]. 
More multi-centre clinical trials based on the TMB should 
be performed to determine its clinical utility.

Despite the research focus on genetic and epigenetic alter-
ations in cancer cells that drive malignancy, TME has been 
increasingly accepted to play an integral and indispensable 
role in tumour anatomy and physiology. Recognizing the 
nature of TME in the evolution of cancer has changed our 
understanding of cancer development from a cancer cell-
centric perspective to a view considering a more complex 
tumour ecosystem that supports tumour growth and metas-
tasis [18]. Instead of working alone, cancer cells construct 
their specific TME by interacting closely with the extracel-
lular matrix (ECM) and stromal cells [19]. A wide variety of 
immune and non-immune cells within the TME infrastruc-
ture, together with the factors that they secrete, cooperate to 
create a chronic inflammatory, immunosuppressive, and pro-
tumoural environment [20]. Cancer cells can adapt and grow 
in such environments to disguise themselves as normal cells 
to escape detection and eradication by host immune surveil-
lance. Many studies have indicated that the TME compo-
sition has a strong correlation with immune response and 
chemotherapy benefit. Changes in the abundance of immune 

cells infiltrating TME, such as CD8 + T cells, dendritic cells 
(DCs), tumour-associated macrophages (TAMs), and regu-
latory T cells (Tregs), can influence the clinical outcomes 
of various malignancies, including melanoma, lung cancer, 
breast cancer and MIBC. Accordingly, the immune cells 
infiltrating TME constitute a vital element of tumour tissue. 
A growing body of evidence clarifies the clinicopathological 
significance of TME infiltrates in predicting prognoses and 
therapeutic effects. Nonetheless, no studies have reported 
a comprehensive transcriptome analysis of the TME in 
MIBC and investigated its role in predicting the response 
to immunotherapy.

In the present study, we integrated the genomic infor-
mation of several cohorts to systematically analysed TME 
pattern and established a TME-related signature (TMERS), 
which was significantly associated with cellular, genomic, 
molecular, and clinicopathological characteristics of MIBC. 
As a result, we fortunately found that the TMERS was a 
robust independent prognostic factor and predictive bio-
marker for the response to ICIs in MIBC when combined 
with the TMB.

Materials and methods

Data collection and processing

Publicly available transcriptomic cohorts for BLCA with 
full clinical annotations were systematically searched. 
Samples without complete prognosis information were 
removed from further evaluation. In total, three microar-
ray cohorts, GSE13507, GSE32548, GSE32894 and one 
RNA-sequencing (RNA-seq) cohort, TCGA-BLCA, were 
enrolled in our study. All raw data and clinical information 
from microarray cohorts were downloaded from the GEO 
database (https​://www.ncbi.nlm.nih.gov/geo/). Then, the 
raw data were processed via RMA background correction, 
log2 transformation and normalization by the package 
“Affy” in R [21]. The TCGA-BLCA pancancer normal-
ized data and clinical information were downloaded from 
UCSC Xena (https​://tcga.xenah​ubs.net) or Supplementary 
table from Robertson et al. [22]. Detailed information for 
patient clinicopathological characteristics in each cohort 
can be found in our previous study [23] and Supplemen-
tary Table 1–4. The ENSEMBL ID was annotated with the 
highest expression as the gene symbol expression in RNA-
seq data. And the probes were annotated with the highest 
expression as the gene symbol expression in microarray 
data. The TCGA-BLCA somatic mutation data, which 
were identified using MuTect2, were obtained from UCSC 
Xena (https​://tcga.xenah​ubs.net). The called somatic vari-
ants determined by TCGA were utilized as the raw muta-
tion count. Mutation status was analysed and visualized by 

https://www.ncbi.nlm.nih.gov/geo/
https://tcga.xenahubs.net
https://tcga.xenahubs.net
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the packages “maftools” [24] and “complexheatmap” [25] 
in R. Then, the TMB per megabase of each sample was 
calculated as the total number of mutations counted in the 
exome territory. An estimate of the exome size was 38 Mb 
according to a previous study [26]. Data were analysed 
with R (version 3.5.2) and Bioconductor packages.

DEGs associated with the TME pattern

The TCGA-BLCA cohort was utilized as a training cohort 
to identify TME patterns in MIBC. Immune scores, stro-
mal scores and ESTIMATE scores were calculated for each 
sample by applying the ESTIMATE algorithm [27]. To 
clarify the genes correlated with TME patterns, we divided 
the patients into two groups based on immune scores and 
stromal scores  at the median cut-off. DEGs between the 
immune scores and stromal scores were determined using 
the package “limma” in R [28], which estimates gene 
expression changes by implementing an empirical Bayes-
ian approach. The significance criteria for DEGs were set 
as an adjusted p value < 0.05 and |logFC| > 1.5. Finally, all 
upregulated and downregulated DEGs were merged into a 
single collection of TME DEGs.

Establishment and validation of the prognostic 
TMERS

Kaplan–Meier (KM) survival analyses were used to screen 
out prognostic related candidate genes among the TME 
DEGs. Then, LASSO Cox regression analysis based on 
the package “glmnet” in R was applied to build an optimal 
TME prognostic signature for MIBC by using the candidate 
genes mentioned above [29]. The Cox regression model with 
LASSO was used for dimension reduction to reduce noise or 
redundant genes. The optimal values of the penalty param-
eter λ were determined through 10 cross-validations. The 
TMERSscore of our model for each sample was defined by 
the expression of each TME-related gene and its associated 
Cox coefficient. The TMERSscore =  

∑n

i=1
 (coefi × Expri), 

where Expri is the expression of the gene in the signature 
for patient i and coefi is the LASSO Cox coefficient of gene 
i. According to the TMERS, we grouped all patients into 
low or high TMERS groups at the median cut-off in each 
cohort. To reflect the prediction accuracy and ability of the 
TMERS model, the area under the curve (AUC) for 1-year, 
3-year and 5-year overall survival (OS) and disease-free sur-
vival (DFS) was measured through time-dependent receiver 
operating characteristic (ROC) curve analysis using the 
package “survivalROC” in R [30]. KM survival analyses 
were used to assess OS and DFS between the high or low 

TMERS groups and the indicated stratified clinicopathologi-
cal characteristics.

Gene set variation analysis (GSVA) and functional 
annotation

GSVA, in a non-parametric and unsupervised method, 
is commonly employed for estimating the variation in 
pathway and biological process activity in the samples 
of an expression cohort. The gene set files of “h.all.
v6.2.symbols” containing 50 critical gene sets were down-
loaded from the MSigDB of Broad Institute. To investigate 
the difference on biological process based on TMERS, the 
common activated/suppressed pathways between the high 
and low TMERS groups were identified with a cut-off of 
p < 0.05 and t value > 2 using the package “limma” and 
“GSVA” in R [31]. We also performed GSEA analyses on 
the above hallmark gene sets via javaGSEA to show the 
common GSEA plot.

Construction and validation of a predictive 
nomogram

The TMERS, TMB and other clinicopathological char-
acteristics were subjected to univariate and multivariate 
cox regression analyses to identify independent prognos-
tic factors, and the results were visualized with the pack-
age “forestplot” in R. Then, the identified independent 
prognostic factors were utilized to establish a nomogram 
with the packages “rms”, “nomogramEx” and “regplot” in 
R[32]. Next, calibration curves and decision curve analysis 
(DCA) were used to determine whether our established 
nomogram was suitable for clinical use.

Evaluation of infiltrating immune cells in the TME

We used the single-sample gene set enrichment analysis 
(ssGSEA) algorithm to evaluate the relative abundance of 
infiltration immune cells in MIBC TME. The marker gene 
set for TME infiltration immune cell type was obtained 
from Bindea et al. [33]. Both innate immune cells (DCs, 
immature DCs [iDCs], activated DCs [aDCs], plasmacy-
toid DCs [pDCs], eosinophils, mast cells, macrophages, 
natural killer cells [NKs], NK CD56dim cells, NK 
CD56bright cells, and neutrophils) and adaptive immune 
cells (B cells, T cells, T helper cells, T helper 1 [Th1], 
Th2, T gamma delta [Tγδ], CD8 + T, T central memory 
[Tcm], T effector memory [Tem], T follicular helper [Tfh] 
cells, T helper 17 (Th17) cells, regulatory T (Treg) cells 
and cytotoxic cells) were investigated. The enrichment 
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scores calculated by ssGSEA were used to represent the 
relative abundance of each TME infiltrating cell in MIBC.

Evaluation of the immune checkpoint inhibitors 
(ICIs) response

The tumour immune dysfunction and exclusion (TIDE) 
algorithm was used to evaluate the predictive efficiency 
of TMERS and/or TMB for the ICIs response in MIBC 
[34]. Moreover, four independent cohorts containing clini-
cal information related with immunotherapy were consid-
ered to validate our model: the IMvigor210 (mUC) trial of 
patients with metastatic urothelial cancer (mUC) receiving 
PD-L1 blockade with atezolizumab (transcriptomic and 
clinical data were retrieved using the package “IMvigor” 
in R) [35]; The detailed clinical information of IMvigor210 
(mUC) cohort could be found in Supplementary Table 5; 
the GSE78220 cohort of patients with metastatic melanoma 
receiving PD-1 blockade with pembrolizumab or nivolumab 
[36]; the GSE35640 cohort of patients with metastatic mela-
noma receiving MAGE-A3 antigen-based immunotherapy 
[37]; and the GSE117358 cohort of mice receiving antibod-
ies against CTLA-4 and PD-L1 [38].

Statistical analyses

The statistical significance for mean value of variables 
between two groups was estimated by unpaired Student’s 
t tests. In addition, for variables in more than two groups, 
one-way ANOVA test was used. The χ2 test was applied to 
analyse correlations between the TMERS and clinicopatho-
logical parameters. KM survival curves were generated to 
calculate survival advantage, and the significance of differ-
ences between survival curves was determined using the 
log-rank test by the package “survminer” in R. Correlation 
coefficients were computed using Spearman’s and distance 
correlation analyses. Two-sided Fisher’s exact tests were 
used to analyse contingency tables. Univariate and multivar-
iate cox proportional hazard models were used to estimate 
the hazard ratios of variables and determine independent 
prognostic factors. A nomogram and calibration curves were 
generated, and DCA was performed according to Iasonos’ 
suggestion [32]. Time-dependent ROC curves were per-
formed to assess the predictive accuracy of the prognostic 
models. All statistical analyses were performed with R soft-
ware 3.5.3. Statistical significance was set at p < 0.05.

Results

Estimation of tumour microenvironment (TME) 
patterns and identification of TME‑related 
prognostic genes

A flow diagram and design of our study can be viewed in 
Supplementary Fig. 1. Immune scores, stromal scores and 
ESTIMATE scores, which were obtained via the ESTI-
MATE algorithm, were representative of components within 
the TME and were used to characterize the TME patterns in 
the TCGA-BLCA cohort. The detailed information of the 
scores in each sample was listed in Supplementary Table 6. 
Then, results showed that all the scores displayed a tendency 
for a positive correlation with tumour grade. Moreover, the 
stromal scores and ESTIMATE scores were significantly 
correlated with pathological TNM stage (Supplementary 
Fig. 2a–e). The KM curves demonstrated that patients with 
low stromal scores lived longer than patients with high stro-
mal scores, but no significant differences in immune scores 
and ESTIMATE scores were observed (Supplementary 
Fig. 2f–h and Supplementary Table 6). To depict the TME 
patterns through transcriptomic data, DEGs of immune 
scores and stromal scores were screened and merged to serve 
as TME DEGs (Supplementary Fig. 2i–j and Supplemen-
tary Tables 7, 8). After KM survival analyses, 141 of 778 
TME DEGs, which were related with prognosis, were finally 
identified and defined as TME-related prognostic candidate 
genes (Supplementary Table 9).

Establishment and validation of the TMERS

To develop a gene signature that could better represent the 
TME pattern, the survival-related TME DEGs were sub-
mitted to LASSO cox regression analysis for dimension 
reduction. Then, we established a TME-related signature 
(TMERS) consisting of 7 genes to predict OS in the TCGA-
BLCA training cohort, and the formula was calculated 
as follows: expression of ALDH1L2 * 0.0404 + expres-
sion of CD109 * 0.0859 + expression of FER1L4 * 
(− 0.0008) + expression of FLRT2 * 0.0167 + expres-
sion of KANK4 * 0.0259 + expression of NCAM1 * 
0.0690 + expression of TLL1 * 0.0065 (Supplementary 
Fig. 3 and Supplementary Table 10). The KM curves indi-
cated that high TMERS group was significantly associated 
with poorer OS, while low TMERS group was associated 
with better OS (Log-rank test, p < 0.0001, Fig. 1a, b). To 
assess the predictive value of the TMERS, its performance 
was measured in some other independent cohorts, includ-
ing 1 external cohort (GSE13507) for OS validation as well 
as 1 internal cohort (TCGA-BLCA) and 3 external cohorts 
(GSE13507, GSE32548 and GSE32894) for DFS validation. 
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Fig. 1   TMERS is significantly associated with established molecu-
lar subtypes. a, b KM survival curves and risk score of OS based on 
TMERS in TCGA-BLCA training cohort. KM curves with Log-rank 
p value < 0.0001 showed a significant survival difference between 
low and high TMERS groups. The low TMERS group showed sig-
nificantly better OS than high TMERS group. c, d KM survival 
curves and risk score of OS based on TMERS in GSE13507 cohort. 
KM curves with Log-rank p value = 0.018 showed a significant sur-
vival difference between low and high TMERS groups. The low 
TMERS group showed significantly better OS than high TMERS 
group. f The bar plots demonstrated the relationship between TMERS 
and molecular subtypes, as well as alteration in TP53, RB1, FGFR3, 

KDM6A and PPARγ. The correlation between TMERS and those 
factors was measured with the χ2 test. The asterisks represented 
the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001). f Allu-
vial diagram showing the changes of TMERS, indicated molecular 
subtypes and vital status in TCGA-BLCA cohort. g–i) Differences 
in TMERS between different molecular subtypes. The upper and 
lower ends of the boxes represented interquartile range of values. 
The lines in the boxes represented median value. One-way ANOVA 
tests were used to compare the statistical difference between MDA 
(g), TCGAcluster (h) and Lund (i) molecular classification systems. 
(p < 2.2e−16)
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Consistent with the outcomes for OS prediction in TCGA-
BLCA cohort, we found that the TMERS worked well in 
all validation cohorts and that high TMERS groups were 
associated with a poorer prognosis (GSE13507, Log-rank 
test, p = 0.018, Fig. 1c, d and TCGA-BLCA cohort, Log-
rank test, p = 0.013, Supplementary Fig. 4a, b; GSE13507, 
Log-rank test, p = 0.00028, Supplementary Fig.  4d, e; 
GSE32548, Log-rank test, p = 0.00028, Supplementary 
Fig. 4 g, h; GSE32894, Log-rank test, p = 0.0035, Supple-
mentary Fig. 4j, k). Moreover, time-dependent ROC curves 
showed a high accuracy of TMERS in prediction prognosis 
in MIBC (Supplementary Fig. 4c, f, i, l and Supplementary 
Fig. 5a, b).

Correlations between TMERS and molecular 
classification as well as clinicopathological 
characteristics

As so many classification systems have been established, 
we next aimed to investigate their association with TMERS. 
TMERS was dichotomized at median cut-off into high or 
low TMERS groups. Surprisingly, we found that low 
TMERS group was concentrated on the subtypes of luminal, 
luminal papillary, TCGA I, II, uroA, and GU, which were 
all related with low malignancy and better survival. How-
ever, basal, basal squamous, TCGA IIII, IV, infiltrated and 
basal/SCC-like, characterized by high malignancy and worse 
prognosis, significantly accumulated in high TMERS group 
(Fig. 1e, f). Moreover, we also found that TMERSscore 
increased in the high malignancy subtypes and decreased 
in low malignancy subtypes, which was consistence with 
above findings (Student t tests or one-way ANOVA tests, 
p < 2.2e–16, Fig. 1g–i and Supplementary Fig. 6a–d). Then 
the correlations of TMERS with clinicopathological charac-
teristics were further evaluated. In terms of clinical features, 
TMERSscore was markedly increased in patients who were 
elderly, as well as non-papillary, lymphovascular invasion, 
and more advanced stages and grades, which again revealed 
TMERS is indicator of MIBC malignancy (Supplementary 
Fig. 7a–i and Supplementary Table 11). The cluster heat 
map showed that the expression of the TME prognostic 
genes ALDH1L2, CD109, FLRT2, KANK4, NCAM1 and 
TLL1 was upregulated in high TMERS group, while the 
expression of FER1L4 was downregulated in high TMERS 
group. Immune scores, stromal scores and ESTIMATE 
scores were all strongly upregulated in high TMERS group 
compared to low TMERS group, indicating that TMERS 
can better represent the TME patterns in MIBC (Fig. 3a). 
As the TMERSscore was highly correlated with the above 
clinical features, we sought to clarify whether the TMERS 
had prognostic value independent of these clinicopathologi-
cal characteristics. Stratified survival analyses showed that 

TMERSscore could efficiently predict the survival rate of 
patients in most of the subgroups (Supplementary Fig. 8a–r).

The TMERS can be utilized as an independent 
prognostic factor in MIBC

As the TMERS was significantly correlated with high 
malignancy and played a vital role in MIBC tumorigenesis, 
we sought to clarify whether our selective TMERS was a 
clinically independent prognostic factor for MIBC patients 
through univariate and multivariate cox regression analy-
ses. The TMERS and TMB, together with other clinical fea-
tures, including age, sex, histological subtype, grade, lym-
phovascular invasion, the number of positive lymph nodes 
by HE staining, pathological T stage, pathological N stage, 
pathological M stage and pathological tumour stage, were 
enrolled as covariates to perform the analysis. The results 
demonstrated that the TMERS, TMB, pathological N stage 
and age were the only four independent factors that could be 
utilized to predict the prognosis of MIBC patients (Fig. 2a, b 
and Supplementary Fig. 9). Combining the four prognostic 
factors, we constructed a nomogram that serves as a clini-
cally relevant quantitative method by which clinicians can 
predict mortality in MIBC patients (Fig. 2c). Every patient 
is assigned a total point value by adding the point for each 
prognostic parameter. Higher total points correspond to a 
worse clinical outcome of patients. Furthermore, calibration 
curves indicated that the nomogram had similar performance 
to that of an ideal model (Fig. 2d, e). DCA also revealed that 
the nomogram had high potential clinical utility (Fig. 2f, g). 
Moreover, we also validated TMERS was still an independ-
ent factor when compiling with TMB in IMvigor210 (mUC) 
cohort (Supplementary Fig. 10a–c).

The landscape of TME immune infiltration in MIBC

Due to the potential role of the TMERS in representing the 
TME, we next prepared to depict the TME immune land-
scape, which is one of the most important components within 
the TME in MIBC. Thus, the abundance of TME immune 
infiltration cells were calculated via ssGSEA according to 
the specific reference gene sets (Supplementary Table 12). 
We established an immune cell network characterizing a 
comprehensive landscape of TME immune cell interactions, 
cell clusters, and their prognostic effect on the OS of MIBC 
patients (Fig. 3b; Supplementary Tables 13, 14). Four clus-
ters were identified within the immune cells. The results 
showed that Treg cells were strongly positively correlated 
with almost all other immune cells but negatively correlated 
with NK CD56bright cells. KM survival analyses demon-
strated that the infiltration of certain innate immune cells 
(DCs, eosinophils, and NK CD56bright cells) and adaptive 
immune cells (T cells, CD8 + T cells, TFH cells, Th17 cells, 
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and cytotoxic cells) was a favourable prognostic factor, while 
the infiltration of other innate immune cells (mast cells, 
macrophages, and NK CD56dim cells) had an unfavourable 
impact on the prognosis of MIBC patients (Supplementary 
Fig. 11). As the variations in immune infiltration allowed us 
to more clearly observe the intrinsic traits of individual dif-
ferences, the relationship between the TMERS and immune 
infiltration was measured. We found that high TMERS 
patients had high levels of immune infiltration (Fig. 3a and 
Supplementary Table 11). Moreover, the TMERS, stromal 
scores, immune scores, and ESTIMATE scores were related 
to high infiltration of almost all immune cells except for 
NK CD56bright cells and TH17 cells (Fig. 3c, d).Then we 
performed GSVA to explore the biological behaviours based 
on TMERS. We found high TMERS group was remarkably 
enriched in angiogenesis, complement, epithelial-mesen-
chymal transition (EMT), inflammatory response, KRAS 
signalling up, which implied highly chronic inflammation. 
While, low TMERS group only presented enrichment in 
DNA repair pathway, which hinted the immune activation 
(Supplementary Fig. 12 and Supplementary Tables 15–18). 

Therefore, comprehensive consideration of function annota-
tions supported the hypothesis that the TMERS could repre-
sent TME patterns and is associated with immune regulation 
in MIBC.

TMERS is highly negative correlated with TMB

As BLCA is a disease that features highly somatic altera-
tions, we next determined the distributions of somatic 
mutations and whether a correlation existed between the 
TMERS and mutation load. The total mutation load and 
mutation distribution derived from the TCGA-BLCA 
cohort were obtained by analysing the mutect2 muta-
tion annotation files (Supplementary Fig.  13). Then, 
we found that TMB was associated with good OS and 
patients with lower TMERS displayed higher TMB level 
(Log-rank test, p = 0.00031, Fig. 4a; Fisher’s exact test, p 
value = 0.005335, Fig. 4b). Moreover, a significant nega-
tive correlation was found between the TMERS and the 
TMB (spearman correlation analysis, p = 0.022, Fig. 4c; 
Student t test, p = 0.019, Fig.  4d).The top 30 highly 

Fig. 2   TMERS is an independent prognosis factor in the nomo-
gram. a, b Forest plot summary of the univariate and multivariable 
cox analyses of the TMERS and clinicopathological characteristics. 
Four independent prognosis factors including age, pathologic N stage, 
TMB and TMERS were indicated. The blue diamond squares on the 
transverse lines represent the HR, and the black transverse lines rep-

resent the 95% CI. The p value and 95% CI for each clinical feature 
are displayed in detail. c Nomograms for predicting the probability 
of patient mortality at 3- or 5-year OS based on TMERS. d–e Cali-
bration curves of the nomogram for predicting the probability of OS 
at 3-, and 5-years. f, g Decision curve analyses (DCA) curve of the 
nomogram based on TMERS for 3-years and 5-years OS prediction
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mutated genes were selected to determine the mutation 
distribution based on the TMERS. We found that mutation, 
fusion and focal amplification in FGFR3, focal amplifica-
tion in PPARγ as well as mutation in KDM6A, which is 
often altered in NMIBC and low malignancy molecular 
subtypes, such as luminal, GU, TCGA I and II, mark-
edly increased in the low TMERS group and was rarely 
observed in the high TMERS group (Figs. 1e, 4e left). 
Moreover, we did see the mutation frequency of TP53 
and RB1, which is always mutated and acted as driver 

in MIBC, was upregulated in high TMERS group com-
pared with low TMERS group (Figs. 1e, 4e right). All of 
these again verified that the TMERS was positively cor-
related with tumour malignancy from a different view-
point. Moreover, our analyses provided a new perspective 
for the formation of the TME and its relationship with 
tumour mutation, as well as its role in onco-immunology 
and immunotherapy. As patients with a high TMB robustly 
responded to ICIs targeting immunotherapy, we inferred 

Fig. 3   The landscape of TME immune cell infiltration and its correla-
tion with TMERS. a Cluster heat map of TME-related genes, immune 
scores/stromal scores/ESTIMATE scores and abundance of 24 types 
of immune cells stratified by the TMERS in TCGA-BLCA cohort. 
Yellow indicates upregulated and blue indicates downregulated. The 
relationship between TMERS and each clinicopathological character-
istics, which was divided into the indicated group, was measured with 
the χ2 test. The asterisks represented the statistical p value (*P < 0.05; 
**P < 0.01; ***P < 0.001). b Immune cells interaction within TME. 
Cell cluster-A, blue; Cell cluster-B, yellow; Cell cluster-C, red; Cell 
cluster-D, brown. The size of each cell represents the impact on OS 
of each immune cell type, calculated used the formula log10 (Log-
rank test p value). The lines connecting immune cells were repre-

sentative of cellular interactions. The thickness of the line indicates 
the degree of correlation estimated by Spearman correlation analysis. 
The red indicated positive correlation, while blue indicated negative 
correlation. c Correlation matrix of TMERS, TME-related genes, 
immune score/stromal score/ESTIMATE score and the abundance of 
24 types of immune infiltration cell. The blue indicated positive cor-
relation, while yellow indicated negative correlation. Shading colour 
and asterisks represents the value of corresponding correlation coef-
ficients (*P < 0.05; **P < 0.01; ***P < 0.001). d Violin plots visual-
izing the correlation between TMERS and 24 types of immune infil-
tration cells. Within each group, the scattered dots represent TMERS 
in each patient
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that the TMERS may also be useful for predicting response 
benefits in MIBC patients treated with ICIs.

The TMERS was a predictive biomarker 
for immunotherapy

We next aimed to explore whether the TMERS could pre-
dict immunotherapeutic benefits in MIBC. The TIDE algo-
rithm was utilized to calculate the immunotherapy response 
rates in the TCGA-BLCA cohort. Then, we found that high 
TMERSscore was associated with disease progression 
when receiving immunotherapy, while low TMERSscore 

was related with better outcome (Student t test, p < 2.2e–16, 
Fig. 5d). And the proportion of immunotherapy respond-
ers was significantly high among low TMERS patients 
compared with high TMERS patients (Fisher’s exact 
test, p value < 0.00001, Fig. 5m right and Supplementary 
Tables 19).

Then, four independent transcriptomic cohorts with 
immunotherapy data were retrieved to validate the abil-
ity of the TMERS to predict immunotherapeutic benefits. 
The KM curve revealed that low TMERS patients had 
significantly longer PFS than high TMERS patients in the 
IMvigor210 (mUC) cohort (Log-rank test, p = 0.0441, 

Fig. 4   TMERS is significantly negative correlated with TMB. a KM 
survival curves for high and low TMB groups stratified at median 
cut-off in TCGA-BLCA cohorts (Log-rank test, p = 0.00031). b The 
proportion of patients with low/high TMB based on TMERS stratifi-
cation (Fisher’s exact test, p value = 0.005335). c Scatter plots depict-
ing the negative correlation between TMERS and TMB. The spear-
man correlation between TMERS and TMB was shown (p = 0.022). 
d Box plot showing the correlation of TMB with TMERS (Student 
t test, p = 0.015). e The waterfall plot of tumour somatic mutation 

displayed distribution of top 30 highly variant mutated genes cor-
related with TMERS. The mutational type include frame shift del, 
frame shift ins, in frame del, in frame ins, missense mutation, multi 
hit, nonsense mutation and splice site. Each column represented indi-
vidual patients. The upper bar plots showed TMERSscore, TMB and 
OStime, The number on the left indicated the mutation frequency in 
each gene. The right bar plot showed the proportion of each variant 
type. The TMERS, TMB, vital status and Lund molecular subtypes 
were used as patient annotations
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Fig. 5a). We also found a survival benefit of low TMERS 
in the GSE78220 cohort (Log-rank test, p = 0.21, Sup-
plementary Fig.  14a). Furthermore, we found that all 
the patients in the low TMERS group were more likely 
to be immunotherapy responders than those in the high 
TMERS group in the IMvigor210 (mUC) (Student t test, 
p = 0.0485, Fig.  5f; Fisher’s exact test, p = 0.011359, 
Fig.  5n right), as well as GSE78220, GSE35640, 
GSE117358 cohorts (GSE78220, left, Student t test, 
p = 0.055, right, Fisher’s exact test, p = 0.1201, Supple-
mentary Fig. 14b; GSE35640, Student t test, p = 0.087, 
Supplementary Fig.  14c; GSE117358, Student t test, 
p = 9.3e−7, Supplementary Fig.  14d). Moreover, the 
ROC curve showed that the TMERS performed well in 
prediction of the ICIs response in the IMvigor210 (mUC) 
(Fig. 6k), GSE78220, GSE35640 and GSE117358 cohorts 
(Supplementary Fig. 14c, e, g). As all the patients in the 
IMvigor210 (mUC) cohort are suffering from metastatic 
urothelial carcinoma, we also measure the relationship 
between TMERS and molecular subtypes, the results were 
consistence with TCGA-BLCA cohort (Fig. 5c; one-way 
ANOVA test, p = 2.2e−16, Fig. 5h–j; Fisher’s exact test, 
p < 0.00001, Fig. 5l right and Supplementary Fig. 15a).

As mentioned above, the expression of immune check-
points, such as PD-L1 on IHC examination, was used to pre-
dict immunotherapeutic benefits in multiple malignancies. 
Therefore, we selected CD274 (PD-L1), CTLA-4, LAG-3, 
LGALS9 (GAL9), HAVCR2 (TIM-3), PDCD1 (PD-1), 
PDCD1LG2 (PD-1LG2) and TIGIT as immune checkpoint-
related candidate genes to assess their relationships with 
our TMERS. The results showed that the TMERSscore was 
strongly positive associated with the expression of critical 
immune checkpoints (CTLA-4, LAG-3, PD-1, PD-1LG2, 
PD-L1, TIM-3 and TIGIT) (Fig. 6a and Supplementary 
Table 20–22). In addition, we found that the above immune 
checkpoints were all upregulated in the high TMERS 
group, indicating that the cause of the poor prognosis of 
high TMERS patients might be due to the tumour immuno-
suppressive microenvironment (Fig. 6b and Supplementary 
Table 20–22).

Considering the potential ability of the TMERS to assess 
the immunotherapy response and their negative relationship, 
we investigated whether the combination of the TMERS and 
TMB, which represent nonsynonymous variants, could be a 
more powerful predictive biomarker for the ICIs response. 
We found that patients with high TMB lived significantly 
longer than patients with low TMB in the IMvigor210 
(mUC) cohort, which was consistent with the results in the 
TCGA-BLCA cohort (Log-rank test, p = 0.0016, Fig. 5b). 
Furthermore, patients with high TMB were more likely to be 
ICIs responders in the IMvigor210 (mUC) cohort (Student 
t test, p = 3.7e–7, Fig. 5 g; Fisher’s exact test, p < 0.00001, 
Fig. 5n left). However, we could not determine the effect of 

TMB in the TCGA-BLCA cohort (Student t test, p = 0.11, 
Fig. 5e; Fisher’s exact test, p = 0.556367, Fig. 5m left). 
Moreover, IMvigor210 study demonstrated that patients 
within GU subtype in Lund classification system was more 
tend to be immunotherapy responders, while the effect of 
infiltrated subtype was completely opposite. Fortunately, we 
found that the proportion of GU subtype was significantly 
higher in low TMERS and high TMB group, while the infil-
trated subtype displayed the opposite distribution (Fig. 5c; 
TCGA-BLCA, TMERS, Fisher’s exact test, p < 0.00001, 
TMB, Fisher’s exact test, p = 0.184495, Fig. 5k; IMvigor210 
(mUC), TMERS, Fisher’s exact test, p < 0.00001, TMB, 
Fisher’s exact test, p = 0.000944, Fig. 5l left and Supple-
mentary Fig. 15a).

Next, we integrated the TMERS and the TMB to stratify 
all the samples into high TMB/low TMERS (group 1), low 
TMB/low TMERS (group 2), low TMB/high TMERS (group 
3), and high TMB/high TMERS (group 4) groups. The 
waterfall plots showed that group1 displayed highest muta-
tion burden and characterized as high mutation in FGFR3 
and KDM6A, as well as low mutation in RB1, while group3 
demonstrated opposite distribution (Fig. 6c and Supplemen-
tary Fig. 15b, c). Moreover, group1 patients have the largest 
number of GU subtypes and lowest number of infiltrated 
subtype, and group3 displayed an opposite distribution in 
both TCGA and IMvigor210 (mUC) cohorts (TCGA-BLCA, 
IMvigor210 (mUC), Fisher’s exact test, p < 0.00001, Fig. 6f; 
Fisher’s exact test, p < 0.00001, Fig. 6j and Supplementary 
Fig. 15b-c). Furthermore, patients in group1 exhibited sig-
nificantly clinical benefits and a markedly prolonged survival 
compared patients in group3 in both cohorts (TCGA-BLCA, 
Log-rank test, p < 0.0001, Fig. 6d; IMvigor210 (mUC), Log-
rank test, p = 0.0069, Fig. 6 h). Moreover, the number of 
immunotherapy responders were highest in group 1 and low-
est in group 3 in both cohorts (TCGA-BLCA, Fisher’s exact 
test, p < 0.00001, Fig. 6e; IMvigor210 (mUC), Fisher’s exact 
test, p = 0.000015, Fig. 6i). Then, we observed a predictive 
advantage of TMERS compared with TMB via ROC analy-
sis in the TCGA-BLCA cohort, whereas the opposite results 
were observed in the IMvigor210 (mUC) cohort (Fig. 6 g, 
k). Moreover, we found that compared with the TMB or 
TMERS alone, combining the TMB and TMERS improved 
the predictive value in the IMvigor210 (mUC) cohort 
(Fig. 6 k). Although the predictive value was slightly higher 
in the combination group than that in the TMERS alone 
group (Fig. 6e), TMB predictive value was not very high in 
the TCGA-BLCA cohort, again validating that the combi-
nation of the TMB and TMERS could be a more effective 
biomarker for predicting the ICIs immunotherapy response 
and prognosis.
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Discussion

Instead of focusing only on tumour cells, increasing atten-
tion has recently been directed towards the TME, which con-
sists of stromal cells, immune cells and the factors that they 

release around tumour cells. Tumour cells can reconstruct 
their surroundings to build the TME. Thus, the TME can 
not only interact with tumour cells to allow them to prolifer-
ate and protect them from apoptosis and metastasis but also 
play a vital role in therapeutic efficacy [39]. TME-mediated 
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drug resistance is not usually permanent unless perpetual 
crosstalk occurs between the TME and tumour cells. When 
the components within the TME altered, drug sensitivity 
change. To kill tumour cells, effector immune cells must 
be released from the multiple immunosuppressive milieus, 
which constitute the TME, to counteract their own activation 
barriers. This effect has been achieved by ICIs, which target 
key inhibitory factors at the core of these networks.

ICIs exert a beneficial effect on survival in patients with 
advanced and metastatic MIBC, which was one of the first 
cancers to be recognized as immunogenic [40], highlight-
ing the potential role for these immunotherapeutic drugs in 
facilitating potent anti-tumour immune responses. Notably, 
most patients with MIBC did not respond to ICIs or benefit 
from them, the mechanisms remain incompletely under-
stood. In recent years, transcriptomic signatures representa-
tive of the TME have been identified, and their potential role 
in MIBC has been evaluated. Researchers have conducted 

immunogenomic analyses of the tumour immune microen-
vironment (TIME), its ability to predict levels of tumour 
inflammation and patient survival, as well as its correlation 
with the expression of immune checkpoints. Thus, many 
studies have also shown that infiltration of stromal cells, 
such as cancer-associated fibroblasts (CAFs), can exhaust 
immune cells and consequently reverse the survival ben-
efit of immune infiltration through upregulation of immune 
checkpoints [41]. However, the roles of stromal cells and 
TME signature-related immune response status in MIBC 
have not yet been explored.

In the current study, we comprehensively elucidated the 
TME, including stromal cells status, via ESTIMATE algo-
rithm by using transcriptomic data. Immune scores and stro-
mal scores represent the diversity of immune and stromal 
cells within the TME in MIBC. The results showed that stro-
mal scores were highly positive correlated with malignancy 
and negatively correlated with prognosis in MIBC patients, 
demonstrating the indispensable role of stromal cells within 
the TME in tumorigenesis from different perspectives. By 
merging the DEGs obtained from either immune or stromal 
cells, 788 TME DEGs were identified as candidate genes 
representing the TME patterns in MIBC. Furthermore, KM 
survival analyses and a machine-learning method—LASSO 
Cox regression analysis—were used to screen the optimal 
selected genes to establish a TMERS, which showed high 
accuracy in predicting mortality risks and the immunother-
apy response in MIBC patients.

We found that patients in the high TMERS group had 
a markedly shorter OS and DFS than patients in the low 
TMERS group in the TCGA-BLCA cohort, and these find-
ings were next validated in several independent cohorts. The 
ROC curves also revealed that our TMERS had a beneficial 
effect on prognosis prediction. Furthermore, we found that 
high TMERS was strongly positive correlated with high 
malignancy molecular subtypes including basal, TCGA III, 
IV, infiltrated, basal/SCC-like, while low TMERS concen-
trated on low malignancy and better prognostic molecular 
subtypes, such as luminal papillary, TCGA I, II, uroA, and 
GU. Moreover, the TMERSscores were highly associated 
with all prognostic malignancy clinicopathological charac-
teristics, such as TNM stage and lymph node metastasis. The 
stratified survival analyses demonstrated that TMERS was 
an efficient independent prognostic predictor in all strati-
fied clinicopathological features. Additionally, we found that 
the TMERS remained as an independent prognostic factor 
when compiling with clinicopathological characteristics in 
TCGA-BLCA and IMvigor210 (mUC) cohorts. All of these 
results suggested that the TMERS, which is representative 
of TME status, played a pro-oncogenic role and was capable 
of improving the prognostic accuracy of traditional clinical 
features in MIBC. The constructed nomogram offers a com-
plementary perspective for specifically evaluating individual 

Fig. 5   The TMERS and TMB alone were efficient in prediction the 
immunotherapy response. a Survival analyses for low (117 cases) 
and high (117 cases) TMERS groups in IMvigor210 (mUC) cohort 
using KM curves (Log-rank test, P = 0.0441). b Survival analyses for 
low (114 cases) and high (120 cases) TMB groups in IMvigor210 
(mUC) cohort using KM curves (Log-rank test, P = 0.0016). c Allu-
vial diagram showing the changes of TMERS, indicated molecu-
lar subtypes, vital status, overall response and binary response in 
IMvigor210 (mUC) cohort. d, e Distribution of TMERSscore (Stu-
dent t test, p < 2.2e−16, d) and TMB (Student t test, p = 0.11, e) in 
distinct immunotherapy clinical response groups in TCGA-BLCA 
cohort. f, g Distribution of TMERSscore (Student t test, p = 0.0485, 
f) and TMB (Student t test, p = 3.7e−7, g) in distinct immunotherapy 
clinical response groups in IMvigor210 (mUC) cohort. h–j Differ-
ences in TMERSscore between different molecular subtypes. The 
upper and lower ends of the boxes represented interquartile range of 
values. The lines in the boxes represented median value. One-way 
ANOVA test was used to compare the statistical difference between 
Lund1 (h), Lund2 (i) and TCGA (j) molecular classification system 
(p < 2.2e–16). k–i The proportion of Lund molecular subtypes in the 
low or high TMERS and TMB groups in TCGA-BLCA cohort (k) 
and IMvigor210 (mUC) cohort (l). UroA subtype, blue; UroB sub-
type, brown; Genomically unstable subtype, red; Infiltrated subtype, 
green; Basal/SCC-like subtype, yellow. The statistical difference was 
measured with the Fisher’s exact test. Differences of TMB between 
Lund molecular subtypes in TCGA-BLCA cohort (p = 0.184495) 
(k left); Differences of TMERS between Lund molecular subtypes 
in TCGA-BLCA cohort (p < 0.0001) (k right); Differences of TMB 
between Lund molecular subtypes in IMvigor210 (mUC) cohort 
(p = 0.000944) (l left); Differences of TMERS between Lund molec-
ular subtypes in IMvigor210 (mUC) cohort (p < 0.0001) (l right). 
m, n The proportion of patients with response to immunotherapy 
in low or high TMERS and TMB groups in TCGA-BLCA cohort 
(m) and IMvigor210 (mUC) cohort (n). Responder or CR/PR, red; 
Non-responder or SD/PD, blue. The statistical difference was meas-
ured with the Fisher’s exact test. Differences of TMB between over-
all response in TCGA-BLCA cohort (p = 0.556367) (m left); Dif-
ferences of TMERS between overall response in TCGA-BLCA 
cohort (p < 0.00001) (m right); Differences of TMB between overall 
response in IMvigor210 (mUC) cohort (p < 0.00001) (n left); Differ-
ences of TMERS between overall response in IMvigor210 (mUC) 
cohort (p = 0.011359) (n right)

◂
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patients and may be a promising tool for clinical use in the 
future.

For the GSVA based on the TMERS, we observed that 
angiogenesis, EMT, inflammatory response, complement 
and IL2-STAT5 signalling, which are considered immuno-
suppressive and harmful to patients, were enriched in the 

high TMERS group. In addition, the DNA repair signal-
ling pathway was enriched in the low TMERS group, indi-
cating beneficial survival and immunotherapy responses. 
Functional annotation again demonstrated that the TMERS 
could be representative of TME patterns and was signifi-
cantly associated with immune infiltration status in MIBC.
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According to the consequences of clinical trials with ICIs, 
in situ immune cell infiltration was identified as critical ret-
rospective information for tumour development and lateral 
immunotherapy responses [42, 43]. Thus, ssGSEA was per-
formed to depict the TME immune landscape, namely, the 
infiltration status of 24 immune cell types in MIBC. Amaz-
ingly, we found that in patients with high TMERS, almost 
all immune cells were enriched, except for NK CD56bright 
cells, which are vigorous innate immune cells that can eradi-
cate tumour cells [44]. Moreover, no relationship was found 
between the TMERS and the numbers of Th17 and CD8 + T 
cells, which are adaptive immune cells that are beneficial for 
patient survival. However, the results showed that effector T 

cells and cytotoxic cells were upregulated in the high 
TMERS group, which was unexpected and inconsistent with 
previous data. However, we cannot easily draw a conclusion 
as immune cell infiltration is dynamic. In our exploration 
of the immune landscape, we found that the numbers of 
robustly immunosuppressive cells, macrophages, pDCs and 
Tregs were markedly increased in the high TMERS group, 
far exceeding the numbers of T cells and cytotoxic cells. 
Macrophages, pDCs and Tregs can cooperate with each 
other to produce local IL-10 and TGF-β, deprive costimula-
tory ligands, neutralize the function of APCs, and directly 
or indirectly inhibit the actions and activation of T cells 
and NK cells within the TME, leading to immune response 
suppression and tumorigenesis. Notably, even if tumour-
infiltrating lymphocytes (TILs) recognize tumour-specific 
antigens, the loss of co-stimulation or suppression of various 
pathways prevents effective TILs from clonal expansion or 
exerting anti-tumour function [45]. Therefore, we inferred 
that the activity of T cells, CD8 + T cells and cytotoxic 
cells, which played a central role in anti-tumour immunity 
among the TILs, was forcefully suppressed by immunosup-
pressive cells within the TME. Thus, we observed that the 
levels of Treg cells were significantly positively correlated 
with all the other immune cells, supporting our speculation 
and indicating the existence of a negative regulation process 
leading to an immunosuppressive milieu within the TME in 
MIBC. Accordingly, a supportive TME status was found to 
be crucial for initiating the adaptive immunity cascade to 
inhibit tumorigenesis. The poor prognosis of patients in the 
high TMERS group may be a result of this tumour immu-
nosuppressive microenvironment. This assumption could be 
validated that high TMERS group mainly accumulated in 
infiltrated and basal/SCC-like molecular subtype, which is 
characterized by suppressive immune cells infiltration and 
activation of EMT/TGFβ pathway. Our TMERS provided 
an individual scoring system to expand the TME status in 
MIBC patients.

In addition to immune cell infiltration, some inhibitory 
molecules, which act as rheostats in the immune response, 
are also involved in priming TIL activation or function and 
restoring immune surveillance. These inhibitory molecules, 
namely, immune checkpoints, including CTLA-4 and PD-1/
PD-L1, have been well described [46, 47]. The results dem-
onstrated that nearly all immune checkpoints were upregu-
lated in the high TMERS group, which was consistent with 
the survival analyses, prompting us to determine whether our 
TMERS could predict the response to ICIs. Encouragingly, 
the TMERSscore was proven to be predictive of immuno-
therapeutic benefits in the TCGA-BLCA and IMvigor210 
(mUC) cohorts. These findings were further validated in 
cohorts of human metastatic melanoma patients receiving 
anti-PD-1 and anti-MAGE-A3 immunotherapy and mice 
receiving antibodies against CTLA-4 and PD-L1. Although 

Fig. 6   Combination of TMERS and TMB was an efficiency tool for 
immunotherapy response prediction. a The correlation chord chart 
showed the mutual correlation between TMERS and several promi-
nent immune-checkpoint-relevant genes (CTLA-4, LAG-3, GAL9, 
PD-1, PD-1LG2, PD-L1, TIM-3 and TIGIT). b Violin plots indicated 
the significantly correlation between TMERSscore and immune-
checkpoint-relevant genes. c The waterfall plot of tumour somatic 
mutation established by stratified with TMERS and TMB. Each col-
umn represented individual patient. Group1, TMBhigh/TMERSlow, 
blue; Group2, TMBlow/TMERSlow, red; Group3, TMBlow/TMER-
Shigh, yellow; Group4, TMBhigh/TMERShigh, green. The muta-
tional type include frame shift del, frame shift ins, in frame del, in 
frame ins, missense mutation, multi hit, nonsense mutation and splice 
site. The upper bar plots showed TMERSscore, TMB and OStime. 
The Lund molecular subtypes and vital status were used as patient 
annotations. d Survival analyses for four groups stratified by com-
bining TMERS with TMB in TCGA-BLCA cohort. Kaplan–Meier 
curves with Log-rank p value < 0.0001 showed a significant survival 
difference among different groups. The group1 showed significantly 
better overall survival than the other groups, especially to group3. 
e–f The proportion of patients with response to immunotherapy (e) 
or Lund molecular subtypes (f) in TCGA-BLCA cohort stratified by 
combining with TMB and TMERS. Responder, red; Non-responder, 
blue. UroA subtype, blue; UroB subtype, brown; Genomically unsta-
ble subtype, red; Infiltrated subtype, green; Basal/SCC-like subtype, 
yellow. The statistical difference was measured with the Fisher’s 
exact test. Differences of indicated groups between overall response 
in TCGA-BLCA cohort (p < 0.00001) (e); Differences of  indicated 
groups between Lund molecular subtypes in TCGA-BLCA cohort 
(p < 0.00001) (f). g ROC curves measuring the predictive value of the 
TMERS, TMB, and combination of TMERS and TMB in the TCGA-
BLCA cohort. h Survival analyses for four groups stratified by com-
bining TMERS with TMB in IMvigor210 (mUC) cohort. Kaplan–
Meier curves with Log-rank p value = 0.0069 showed a significant 
survival difference among different groups. The group1 showed 
significantly better overall survival than the other groups, especially 
to group3. (i-j) The proportion of patients with response to immu-
notherapy (i) or Lund molecular subtypes (j) in IMvigor210 (mUC) 
cohort stratified by combining with TMB and TMERS. CR/PR, red; 
SD/PD, blue. UroA subtype, blue; UroB subtype, brown; Genomi-
cally unstable subtype, red; Infiltrated subtype, green; Basal/SCC-
like subtype, yellow. The statistical difference was measured with the 
Fisher’s exact test. Differences of indicated  groups between overall 
response in IMvigor210 (mUC) cohort (p = 0.000015) (i); Differences 
of indicated groups between Lund molecular subtypes in IMvigor210 
(mUC) cohort (p < 0.00001) (j). k ROC curves measuring the predic-
tive value of the TMERS, TMB, and combination of TMERS and 
TMB in IMvigor210 (mUC) cohort

◂
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the difference was statistically significance only in the mouse 
cohort, the TMERSscore was negatively associated with the 
immunotherapy response in all cohorts. And more immuno-
therapeutic responders were noticed in low TMERS groups 
than in the high TMERS groups. All of these results indi-
cated that TMERS is a potent biomarker for predicting the 
immunotherapy response.

With the development of genome sequencing and bio-
informatics, the mutational landscape is beginning to be 
regarded as a potent biomarker for responses to immunother-
apies as initiation of the adaptive tumour immunity cascade 
relies on recognition of neo-antigens induced by somatic 
nonsynonymous coding mutations [48]. As the overall neo-
antigen load is difficult to measure, the TMB, which can 
be easily detected and used to assess the neo-antigen load, 
has been proven to serve as either an indicator of clinical 
benefits or a prognostic factor with the potential to predict 
the ICI response [16, 17]. Considering their negative cor-
relation, the predictive value for immunotherapy efficiency 
of the TMB alone or in combination with the TMERS was 
evaluated in the TCGA-BLCA and IMvigor210 (mUC) 
cohorts. The results showed that a high TMB was a favour-
able prognostic and predictive factor for survival and the 
ICIs treatment response in IMvigor210 (mUC) cohort. But 
we have noticed that high TMB could not predict immuno-
therapy response in TCGA-BLCA cohort. The reason might 
be relied on the distribution of Lund molecular subtypes. As 
mentioned above, patients within GU subtype were more 
likely to be immunotherapy responders, while response rate 
of patients within infiltrated subtype was lowest. We can 
see that high TMB group displayed a high proportion of GU 
subtype, but there is no significantly difference of infiltrated 
subtype between low and high TMB group in TCGA-BLCA 
cohort. Moreover, the GU and infiltrated subtypes were 
both differential distributed in low and high TMB group 
in IMvigor210 (mUC) cohort. And different distribution of 
GU and infiltrated subtypes in TMERS was significant in 
both cohorts. Furthermore, we surprisingly found that the 
combination of TMERS and TMB could stratify the MIBC 
patients more clearly and precisely, demonstrating that the 
prognosis of patients with high TMB/low TMERS was the 
best, while the prognosis of patients with low TMB/high 
TMERS was the worst in both cohorts. Moreover, the num-
ber of immunotherapy responders was highest in the high 
TMB/low TMERS group and lowest in the low TMB/high 
TMERS group. And more GU subtype and less infiltrated 
subtype located in high TMB/low TMERS group, which is 
consistent with the results described before. However, the 
ROC curves revealed that the TMERSscore had a predic-
tive advantage over the TMB in the TCGA-BLCA cohort, 
while the opposite has been seen in the IMvigor210 (mUC) 
cohort. According to the predictive efficiency of the combi-
nation, we found that the TMERS contributed more in the 

TCGA-BLCA cohort, while the TMB gave greater contribu-
tions in IMvigor210 (mUC) cohorts. This indicated that as 
the patients varied, the predictive value of the TMERS and 
TMB was entirely different. All of these findings emphasize 
the importance of merging the TMERS and TMB to produce 
a more effective individual biomarker to predict prognosis 
and ICIs response.

Our study has some limitations as all cohorts utilized 
were retrospective. Therefore, the efficiency of the TMERS 
should be further validated in prospective studies. In addi-
tion, the platforms were very diverse, and using standard 
gene expression values through nanostring technologies is 
appropriate to avoid the consequences of applying uncer-
tain cut-off values. Moreover, we should incorporate more 
clinical parameters into the TMERS scoring system to 
improve the prediction accuracy, as not all patients with a 
high TMB/low TMERS showed a favourable response to 
immunotherapy.

Conclusion

In conclusion, we comprehensively estimated the TME 
infiltration patterns associated with the cellular, molecular, 
and mutation features of MIBC and established a prognostic 
and predictive TMERS that could predict the response of 
ICIs when combined with the TMB. These findings have 
improved our understanding of immunotherapies and may 
provide useful guidance for their clinical use.
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