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Abstract
Purpose To comprehensively elucidate the landscape of the tumor environment (TME) of lung adenocarcinoma (LUAD), 
which has a profound impact on prognosis and response to immunotherapy.
Methods and materials Using a large dataset of LUAD patients from The Cancer Genome Atlas, Gene Expression Omnibus 
database (GEO), and our institution (n = 1411), we estimated the infiltration pattern of 24 immune cell populations in each 
sample and systematically correlated the TME phenotypes with genomic traits and clinicopathologic characteristics.
Results The LUAD microenvironment was classified into two distinct TME clusters (A and B), and a random forest clas-
sifier model was constructed. TMEcluster A was characterized by sparse distribution of immune cell infiltration, relatively 
low levels of immunomodulators and slightly higher mutation load. By contrast, enrichment of both cytotoxic T cells and 
immunosuppressor cells was observed in TMEcluster B. Moreover, several immune-related cytokines or markers including 
IFN-γ, TNF-β, and several immune checkpoint molecules such as PD-L1 were also upregulated in TMEcluster B. Mul-
tivariable Cox analysis revealed that the TMEcluster was an independent prognostic factor (TMEcluster B vs. A, hazard 
ratio = 0.68, 95% confidence interval = 0.50–0.91, p = 0.010). These findings were all externally validated in the data from 
the GEO database and our institution.
Conclusions Our findings describe a comprehensive landscape of LUAD immune infiltration pattern and integrate several 
previously proposed biomarkers associated with distinct immunophenotypes, thus shedding light on how tumors interact 
with immune microenvironment. Our results may guide a more precise immune therapeutic strategy for LUAD patients.
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Introduction

Lung cancer is the most common cancer worldwide and the 
leading cause of cancer deaths in men and women (18.4% of 
total cancer deaths), accounting for an estimated 2,093,876 
new cases (11.6% of the total cases) in 2015 alone [1]. Fol-
lowed by lung squamous cell carcinoma, lung adenocarci-
noma (LUAD) is currently the most common subtype of 
non-small cell lung cancer (NSCLC), accounting for more 
than 40% of cases of lung cancer [2]. Recently, immune 
checkpoint blockade with the use of Nivolumab and Pem-
brolizumab has delivered unprecedented success in treating 
NSCLC to extend overall survival [3, 4]. However, recent 
clinical trials have indicated that only a portion of patients 
experienced clinical benefits [5, 6]. Biomarkers including 
PD-L1, tumor mutation burden, and preexisting cytotoxic-
ity that can predict responsiveness to immune checkpoint 
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blockade are being investigated to further improve precision 
immunotherapy [7–9].

Solid tumors and the immune cells infiltrating them inter-
act in a dynamic equilibrium that shapes disease progression 
[10]. An increasing number of studies has emphasized the 
critical role of the tumor environment (TME), which con-
sists of not only different immune cell types from both the 
innate and adaptive immune responses but also a series of 
immune-related cytokines, in cancer progression and tumor 
escape from immunosurveillance [6, 11–15]. Newly reported 
computational methods including CIBERSORT [16], sin-
gle sample gene set enrichment analysis (ssGSEA) [17], 
and gene set variation analysis (GSVA) [18] have enabled 
researchers to estimate the relative abundance of immune 
cells in the infiltrate of tumors, based on which several kinds 
of “immune signatures” aiming at depicting the immune 
infiltration pattern in TME have been proposed to precisely 
select the potential candidates for immunotherapy in vari-
ous malignancies such as gastric cancer and NSCLC [12, 
19, 20].

In the present study, we estimated the fraction of 24 
immune cell types based on the gene expression profiles of 
1611 LUAD patients from website databases and our own 
institution and clustered the patients into two different TME 
clusters. Genomic characteristics, clinical features, and the 
expression level of immune-associated cytokines were sys-
tematically compared between distinct clusters, and a ran-
dom forest classifier model was established to serve as a 
robust prognostic factor and predictive biomarker for the 
response of LUAD patients to immune checkpoint inhibitor 
treatment.

Methods and materials

Acquisition and preprocessing of LUAD expression 
data sets

Discovery cohort: Level 4 gene expression data of LUAD 
patients (FPKM normalized) and corresponding clinical 
information of The Cancer Genome Atlas (TCGA) were 
downloaded from the UCSC Xena browser (GDC hub: https 
://gdc.xenah ubs.net). We removed patients whose clinical 
outcome information including survival time and vital sta-
tus were vague or absent. Data were analyzed with the R 
Bioconductor package.

Validation cohort: For Gene Expression Omnibus (GEO) 
data, the criteria for the enrollment of publicly available 
LUAD patient data were as follows: gene expression data 
were generated by a similar chip platform (Affymetrix 
Human Genome U133 Plus 2.0 or Affymetrix Human 
Genome U133a), and reliable clinical survival information 
was publicly accessible. Following systematic screening, 

microarray data from the datasets GSE30219, GSE31210, 
GSE3141, GSE37745, GSE50081, and GSE68465 repre-
senting different independent studies of LUAD were directly 
downloaded from the GEO database (https ://www.ncbi.
nlm.nih.gov/geo). The probe sets of Affymetrix Human 
Genome U133 Plus 2.0 and U133A chips were annotated 
to gene names based on the annotation platforms GPL570 
and GPL96, respectively. The batch effect resulting from 
the heterogeneity among different studies was eliminated by 
the use of the COMBAT empirical Bayes method in the sva 
package, and background adjustments and data normaliza-
tion were performed with the limma package [21].

We also retrospectively selected 34 patients with LUAD 
who underwent lobectomy and systematic lymph node resec-
tion at the Department of Thoracic Surgery, Zhongshan Hos-
pital, Fudan University, from 2016 to 2017. All patients pro-
vided written informed consent to conduct genomic studies 
in accordance with the ethical principles of the Declaration 
of Helsinki, the International Conference on Harmoniza-
tion Guidelines for Good Clinical Practice. The study was 
approved by the ethical committees of Zhongshan Hospital 
(No. 201986122). All pulmonary resections were performed 
by experienced thoracic surgeons in our institution, and 
resected tumors and lymph node specimens were all labeled 
in the operating theater and reviewed by at least two quali-
fied pathologists to confirm the diagnosis of LUAD through 
hematoxylin and eosin-stained sections and immunochemi-
cal analysis. Patients with evidence of metastasis at the time 
of diagnosis, or history of chemotherapy, radiotherapy, and 
immunological therapy were excluded. RNA sequencing for 
all tumor samples was performed using Illumina Hiseq 2500 
and BGI-500RNAseq platforms. Patients’ postoperative data 
were collected annually by outpatient follow-up and phone 
call.

Estimation of microenvironment cell abundance

To construct a compendium of microenvironment genes 
related to specific microenvironment cell subsets, we sys-
tematically searched published studies and adopted the gene 
signatures proposed by Bindea et al. [22], which consist of 
585 genes representing 24 microenvironment cell subsets 
from both innate and adaptive immunity, including B cells, 
dendritic cells (DCs), immature DCs, activated DCs (aDCs), 
eosinophils, macrophages, mast cells, neutrophils, natural 
killer (NK) cells, NK CD56dim cells, NK CD56bright cells, 
T cells, cytotoxic cells, and CD8 T cells, as well as Tγδ, T 
helper, Tcm, Tem, Th1, Th2, Th17, Tfh, Tgd, and Treg cells 
(Supplementary Table 1). The relative abundances of the 24 
immune cell populations were computed from RNA sequenc-
ing of each bulk sample by the use of the GSVA algorithm in 
the GSVA package [18], and an unsupervised gene set enrich-
ment method that computes an enrichment score by integrating 
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the collective expression of a given gene set relative to the 
other genes in the sample. We performed our analysis with 
the GSVA method rather than ssGSEA [23] because GSVA 
includes normalization of gene expression aimed at reduc-
ing the noise of the data and has been shown to outperform 
ssGSEA when measuring the signal-to-noise ratio in differen-
tial gene expression and differential pathway activity identifi-
cation analyses [13]. Finally, a matrix containing the enrich-
ment score ranging from − 1 to 1 for each cell type in each 
tumor sample was produced by GSVA function, representing 
the relative abundances of the immune cell populations used 
for further analyses.

Consensus clustering for TME‑infiltrating cells, 
correlation matrix, and heatmaps

Tumors with qualitatively different immune cell infiltrating 
patterns were grouped by an unsupervised clustering method 
based on Euclidean distance and Ward’s linkage. The optimal 
number of “TMEclusters” was determined based on the per-
centage of variance of the data using the ConsensusCluster-
Plus package with 1000 repeats. The correlation matrix was 
calculated using Spearman’s test and visualized using ggplot2. 
The distribution patterns of the 24 immune cell subsets in dif-
ferent patients were plotted using the pheatmap package.

Construction of the random forest classifier model

The TME cluster classifier model was established using 
the random forest algorithm, a machine learning dimen-
sion reduction strategy based on the construction of thou-
sands of classification or regression trees [24]. This proce-
dure was performed using the randomForest package in R 
[24]. First, patients in the TCGA database were randomly 
assigned into training and testing groups at a ratio of 7:3. 
Then, the optimal value of mtry and ntrees, respectively, 
defined as the number of variables randomly sampled as 
candidates at each split and the number of trees to grow, 
was selected after 10,000 iterations until the lowest error 
rate was achieved in the training group. Finally, the random 
forest classifier model was established with the determined 
parameters and each cell type was given a variable impor-
tance (VIMP) value, which measures the variation of the 
random forest model’s prediction error rate when a cell type 
was randomly added in the model. The error rate of this 
model was also validated in the testing group to ensure the 
stability of classification.

Differentially expressed genes and functional 
analysis

Differentially expressed genes (DEGs) were identified in 
different TME clusters using the package limma, which 

implements an empirical Bayesian approach to estimate 
gene expression changes using the moderated t test [21]. 
Log (fold change) > 0.5 and adjusted p value < 0.05 were 
considered cutoff criteria to screen for DEGs. Functional 
enrichment analyses of the detected DEGs were performed 
with the clusterProfiler package. Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) terms 
were identified with a strict cutoff of adjusted p < 0.01 and 
false discovery rate (FDR) < 0.05. To explore the enrichment 
patterns of other biological processes, we employed a series 
of gene signatures associated with tumor development and 
immune response proposed or summarized by Sanchez-Vega 
et al., Zeng et al., and Tamborero et al. for ssGSEA (GSVA 
package) [18, 23]. Subsequently, we determined the distribu-
tion of the enrichment score of each pathway in the patients 
from different TME clusters in a heatmap after transferring 
the score into z-score format. We also identified pathways 
that were up- or downregulated in TME clusters with GSEA 
[25]. Gene sets for analysis were obtained from the MSigDB 
database of the Broad Institute, and c5.bp.symbols gene sets 
were selected to perform quantification of pathway activ-
ity. Enrichment p values were calculated based on 10,000 
permutations and subsequently adjusted for multiple test-
ing using the Benjamini–Hochberg procedure to control the 
FDR.

Comparison of somatic mutations and copy number 
variation among TMEclusters

Somatic mutation and copy number variation data were 
obtained from the Xena browser. Comparison of the dis-
tribution of somatic mutations and copy number variation 
in TMEclusters was tested by Kruskal–Wallis test, where p 
value < 0.01 after adjustment for mutational frequency was 
considered significant. The results were shown with the 
oncoplot function in the maftools package.

Statistical analysis

All statistical analyses were conducted using R software 
(Version 3.5.3; R Foundation for Statistical Computing, 
Vienna, Austria) and Stata (Version 13.0, Stata Corp, Col-
lege Station, TX, USA). A description and comparison of 
the baseline characteristics of the patients from different 
risk groups was conducted in which categorical variables 
were compared by the Chi-square test and Fisher’s exact test 
when appropriate. Student’s t test and the Wilcoxon test were 
used to compare continuous variables such as the expression 
level of a specific cytokine or chemokine, or mutation load. 
Kaplan–Meier survival curves visualized by ggplot2 pack-
age and log-rank tests were used to compare overall survival 
(OS) between different populations. The cutoff values were 
determined based on the association between OS and the 
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GSVA score using the survminer package when assessing 
the prognostic value of each immune cell population; the 
results were presented using the forestplot package. A multi-
variable Cox proportional risk analysis was performed to test 
the prognostic value of the TME cluster when other factors 
including age and stage were adjusted. The p values were 
all two-sided. In the Chi-square test, Fisher’s exact test, log-
rank test, and Cox analysis, p values < 0.05 were considered 
significant.

Results

Landscape of the microenvironment phenotype 
in LUAD

The study design is shown in Supplementary Fig. 1A. A 
total of 1611 patients were enrolled in our study: 514 from 
TCGA were assigned to the discovery cohort, while 1063 
from the GEO database and 34 from our institution were 
assigned to the validation cohort. To systematically char-
acterize the immune infiltration phenotype of each LUAD 
patient, we employed the GSVA enrichment score of the 24 
immune cell populations to define the relevant abundance 
in each tumor sample (Supplementary Table 2). To select 
the optimal and stable cluster number, we then performed 
unsupervised consensus clustering based on the GSVA score 
of the 24 cell populations using the ConsensusClusterPlus 
package (Supplementary Fig. 1B). The result of k-means 
clustering indicated that the best segregation was obtained 
by the dichotomization of the train cohort (TCGA data), 
dividing the 514 patients into two heterogeneous clusters 
(based on Euclidean distance and Ward’s linkage) named 
TMEcluster A (242 patients) and B (272 patients) (Supple-
mentary Table 2), which reflected the different infiltration 
patterns of the 24 immune cells of the adaptive and innate 
immune system in each patient (Fig. 1a).

Significant differences in OS could be observed between 
the two TME clusters. (log-rank test, p = 0.015; Fig. 1b). 
TMEcluster A, the “cold region,” was characterized by 
relatively low microenvironment cell infiltration; thus, we 
selected a blue light for this cluster to depict the sparse dis-
tribution of immune cells. By contrast, TMEcluster B, the 
“hot region,” was characterized by activation of both the 
innate and adaptive immune response, which exhibited high 
infiltration of pDCs, Tgd cells, macrophages, B cells, T cells, 
cytotoxic cells, and Treg cells. Therefore, we selected a “red 
light” for this cluster to denote the abundant immune infil-
tration (Fig. 1a, c). The significant differences in immune 
cell infiltration pattern between the two TME clusters was 
confirmed by Wilcoxon tests (Supplementary Table 3). The 
almost all-round positive correlation among the abundances 
of the 24 immune cell subsets is shown in Supplementary 

Fig. 1C. This phenomenon was likely due to the co-infiltra-
tion effect.

Considering the role of the TME in prognosis, we inves-
tigated the prognostic relevance of each immune cell type. 
As shown in the forest plot (Fig. 1d), except for Th2, neutro-
phils, and aDCs, most of the tumor-infiltrated immune cells 
were associated with better OS, including immune suppres-
sor cells such as Treg cells. This finding was consistent with 
the better prognosis of patients in TMEcluster B, of which 
the abundance of immune cells was significantly higher in 
comparison with that of TMEclusterA.

In terms of baseline characteristics, we investigated the 
distribution of age, sex, stage, and pathological subtypes in 
the TME clusters (Fig. 1e and Table 1). The median patient 
age at diagnosis was 63 years in TMEcluster A and 68 years 
in TMEcluster B (two sample t test, p < 0.001), and a signifi-
cantly higher frequency of females was observed in TME-
cluster B, indicating that older and female patients tended to 
have higher immune infiltration levels. No significant differ-
ence in the distribution of stage and pathological subtypes 
was observed in the two TME clusters (chi-square, p = 0.386 
for stage and p = 0.425 for pathological subtypes), which 
revealed that the distribution in TME clusters is independent 
of stage and pathological subtype.

Construction and validation of the random forest 
classifier model

To develop a clinically applicable approach to classify 
LUAD patients from different populations into TMEcluster 
A or B, we established a classification model based on Brei-
man’s random forest algorithm using a forest of trees. First, 
the 514 patients in TCGA were randomly assigned into a 
training cohort (n = 360) or testing cohort (n = 154), while 
the relative abundance of the 24 immune cell populations 
mentioned above (GSVA scores) were set as input variables 
and the TME phenotypes (A or B) determined by unsuper-
vised clustering (Fig. 1a) were set as the response factor. 
In the training cohort, the optimal mtry and ntrees were 
selected as 5 and 5000 after 10,000 iterations. To evaluate 
the discriminatory ability of this random forest classifier 
model, we validated its performance by fitting it into both 
the training and internal testing cohorts and found that the 
correct prediction rates were 100% and 95.58%, respectively. 
Indeed, the scatter diagram displayed the distinct character-
istics of the two TME clusters and only few overlaps were 
apparent (Supplementary Fig. 2). Therefore, we can con-
clude that we have successively captured a well-performed 
and stable classification model.

Next, we applied this random forest model in two external 
validation cohorts (Cohort 1, a meta-cohort from the GEO 
database consisting of 1063 LUAD patients in GSE30219, 
GSE31210, GSE3141, GSE37745, GSE50081, and 
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GSE68465; and Cohort 2 consisting of 34 LUAD patients 
from our institution). After computing the GSVA score of 
the 24 immune cell subsets and fitting the data into the clas-
sifier model as mentioned above, the patients were stratified 
into TMEcluster A and B. As shown in the heatmaps and 
corresponding boxplots, enrichment of immune cells of both 
the innate and adaptive immune systems was also observed 
in TMEcluster B (the “hot” region) for the two external 
validation cohorts, which was consistent with the immune 
infiltration pattern defined in TCGA patients (Fig. 2a–d). 

Similarly, TMEcluster B was also associated with better OS 
in the two cohorts (Fig. 2e, f). Taken together, these find-
ings further confirm the clinical and immune significance of 
our classification pattern and the reliability of the random 
forest model.

DEGs and functional annotation

To identify the potential biological characteristics of the two 
TME clusters, expression profiles were examined for DEGs. 

Fig. 1  LUAD TME clusters in TCGA cohort. a Unsupervised cluster-
ing of tumor microenvironment immune cells for 514 LUAD patients 
from TCGA. Clinicopathological information including age, location, 
pathology, vital status, stage, as well as TME clusters, is shown in 
annotations above. b Kaplan–Meier curves for overall survival (OS) 
stratified by TME clusters in the TCGA cohort. c The fraction of 
immune cells in TMEcluster A and B in patients from TCGA. Within 
each group, the scattered dots represent the GSVA score of immune 
cells. The thick lines in the boxes represent the median value. The 

bottom and top of the boxes are the 25th and 75th percentiles (inter-
quartile range). The whiskers encompass 1.5 times the interquartile 
range. The statistical difference of two TME clusters was compared 
through the Wilcoxon test. *, p < 0.05; **, p < 0.01; ***, p < 0.001; 
****, p < 0.0001. d The prognostic value of each type of immune 
cell, shown in the forest plot with corresponding hazard ratio (HR) 
and 95% confident interval (95% CI). e The distribution of baseline 
information in TMEcluster A and B
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In total, 1220 genes were upregulated and 80 were down-
regulated in TME cluster B (Fig. 3a and Supplementary 
Table 4). GO and KEGG enrichment analyses of the 1300 
DEGs, conducted by the R clusterProfiler package, identified 
enrichment of immune-related pathways in TMEcluster B, 
including regulation of leukocyte activation and cytokine-
cytokine receptor interaction, which supported the “hot and 
abundant” immune cell infiltration pattern in TMEcluster B 
(Fig. 3b, c). In TMEcluster A, top-ranked enrichment path-
ways were driven by several classic metabolic pathways. 
The enrichment plot computed by the GSEA algorithm also 
demonstrated similar results (Supplementary Fig. 3 and Sup-
plementary Table 5).

We selected a comprehensive collection of published 
biological pathway signatures involved in cancer develop-
ment and inferred their differential activation patterns in 
the two TME clusters with ssGSEA. As shown in Supple-
mentary Fig. 4, aside from the immune-related pathways, 
several pathways such as Wnt, Notch, RAS, EMT TGF-β, 
and energy metabolism were upregulated in TMEcluster 
B as well, indicating the complicated interaction between 
immune infiltration and classic signaling pathways related 
to tumorigenesis and invasion.

Immune microenvironment traits in the TME 
clusters

To further depict the genetic and molecular milieu char-
acterizing the two TME clusters, we comprehensively 

investigated the expression profile of several immune-
related genes, cytokines, and microRNAs (miRNAs) in the 
514 LUAD samples. First, we employed a seven-gene panel 
designed in the POPLAR trial as a surrogate index for quan-
tifying the level of effector T cell infiltration (CD8A and 
CXCL10) and IFN-γ associated cytotoxicity (IFNG, GZMA, 
GZMB, EOMES, and TBX21) [4]. Second, the cytolytic 
activity score defined by Rooney et al., which is calculated as 
the geometrical mean of PRF1 and GZMA, was also exam-
ined to reflect the magnitude of the antitumor response. As 
shown in Fig. 4a, all of the eight parameters were expressed 
at significantly higher levels in TMEcluster B (all p < 0.05), 
indicating that cytotoxic function was efficiently increased 
in those patients. Comparison of the molecules potentially 
involved in initiation of innate immunity in the two pheno-
types, such as IRF3, MYD88, and TICAM1, exhibited simi-
lar tendencies (except for TLR9, all p < 0.05; Fig. 4b, left). 
Moreover, TMEcluster B showed an enrichment of MHC-I/
II-related antigen-presenting molecule expression compared 
with TMEcluster A (all p < 0.001; Fig. 4b, right). Differen-
tially expressed miRNAs in the two clusters are shown in 
Supplementary Fig. 5A.

TMEcluster B had not only abundant active innate and 
adaptive immune cells, but also immunosuppressor cells, such 
as Tregs and iDCs (Fig. 1a and Supplementary Fig. 1C). There-
fore, we determined the CD8+ T cell/Treg ratio to explore 
the relative magnitude of immune activation and suppression 
(Fig. 4c). Interestingly, this ratio was significantly lower in 
TMEcluster B, suggesting a potential feedback mechanism 

Table 1  Baseline characteristics 
of the LUAD patients in the 
2 TME clusters from TCGA 
database

Characteristics TMEcluster A (n = 242) TMEcluster B (n = 272) p value

Age
 ≤ 60 89 (36.8%) 74 (27.2%) 0.005
 60–70 92 (38.0%) 95 (34.9%)
 > 70 61 (25.2%) 103 (37.9%)

Sex
 Female 119 (49.2%) 158 (58.1%) 0.043
 Male 123 (50.8%) 114 (41.9%)

Location
 Left 87 (36.0%) 108 (39.7%) 0.681
 Right 138 (57.0%) 146 (53.7%)
 Unknown 17 (7.0%) 18 (33.5%)

Stage
 Stage I 130 (53.7%) 152 (55.9%) 0.386
 Stage II 58 (24.0%) 68 (25.0%)
 Stage III 38 (15.6%) 43 (15.8%)
 Stage VI 16 (6.7%) 9 (3.3%)

Pathology 0.425
Micropapillary/papillary 28 (11.6%) 24 (8.8%)
Solid 24 (9.9%) 34 (12.5%)
Others or unknown 190 (78.5%) 214 (78.7%)
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initiated by the recruitment of effector T cells in the TME. 
To further validate this finding, we studied the expression 
patterns of several immunomodulators in the TMEclusters, 
including 15 immune checkpoint molecules (Fig. 4d, left) and 
20 co-stimulating molecules (Fig. 4d, right). As shown in the 
heatmap, we observed relatively high expression of both co-
stimulating and co-inhibitory molecules (most p < 0.001, such 
as CTLA4, PD-1 [PDCD1], and PD-L1 [CD274], Fig. 4e) in 

TMEcluster B, demonstrating that these patients might ben-
efit from immune checkpoint inhibitors. When investigating 
the expression profile of immune-related molecules in the 
two external validation cohorts, a similar trend was observed 
(Supplementary Fig. 6). The correlation matrix of the immune 
checkpoints, immune cells, and mutational load is shown in 
Fig. 4f.

Fig. 2  Validation of the random forest classifier model in data from 
GEO and our institution. a, b The relative abundance of 24 types of 
immune cells in 1074 LUAD patients [1063 from GEO (a) and 34 
from our institution (b)]. c, d The fraction of immune cells in TME-
cluster A and B in patients from GEO (c) and our institution (d). 
Within each group, the scattered dots represent the GSVA score 
of immune cells. The thick lines in the boxes represent the median 

value. The bottom and top of the boxes are the 25th and 75th per-
centiles (interquartile range). The whiskers encompass 1.5 times the 
interquartile range. The statistical difference of two TME clusters was 
compared through the Wilcoxon test. *, p < 0.05; **, p < 0.01; ***, 
p < 0.001; ****, p < 0.0001. e, f Kaplan–Meier curves for overall sur-
vival (OS) stratified by TME clusters in GEO (e) and our institution 
(f)
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Tumor genomic alterations associated with TME 
clusters

Recent research has suggested an association between the 
number of somatic genomic mutations and responsiveness 
to immunotherapy [8]. Therefore, we next investigated the 
distribution patterns of somatic mutations and copy number 
variation in the two TME clusters. An average of 288.12 
and 224.15 somatic mutations per sample was identified 
in TMEcluster A and B, respectively, (p = 0.0065, Fig. 5a 
and Supplementary Fig. 5B and C), suggesting that the 
mutational load cannot fully explain the different patterns 
of immune infiltration. By mining the sequencing data, we 
identified 735 differently mutated genes in TMEcluster A 
and B (by Fisher’s exact tests, adjusted p value < 0.01 was 
considered significant). In LUAD, TP53, EGFR, KRAS, and 
ALK are important tumoral driver genes and were among 
the top mutated genes. However, although slightly higher 
in TMEcluster A, none of the four genes was found to have 
significantly different mutation frequencies in the two TME 
clusters. Compared to TMEcluster A, another six prominent 
cancer-related genes including ROS1 (15% in TMEcluster 
A, 5% in TMEcluster B; adjusted p = 0.006), KEAP1 (31% 
in TMEcluster A, 14% in TMEcluster B; adjusted p = 0.001), 
and STK11 (33% in TMEcluster A, 18% in TMEcluster B; 
adjusted p = 0.008) had lower somatic mutational rates in 
TMEcluster B, whereas others had consistent mutational 
rates between the two populations (Fig. 5b and Supplemen-
tary Table 6). These data enabled us to depict the scenario of 
TME clusters more comprehensively, as well as to uncover 
the underlying complex interaction between individual 
somatic alterations and cancer immunity. However, we failed 
to find a significant correlation between mutation load and 
the parameters related to local cytotoxicity (Fig. 4f).

Prognostic value of TME clusters

Finally, we performed univariable and multivariable analyses 
to assess the prognostic value of TME clusters and several 

clinical factors. The results of the Cox proportional haz-
ard regression model are shown in Table 2, which revealed 
that TMEcluster B independently predicted better OS than 
TME cluster A (hazard ratio, 0.68; 95% confidence interval 
[CI], 0.50–0.91; p = 0.010). Because of the limited num-
ber of patients in the validation cohort from our institution, 
the external validation of this process was only performed 
in the GEO cohort. Furthermore, by calculating Harrell’s 
C-index, we found that the addition of TME phenotype into 
the proportional hazards model significantly increased its 
prognostic efficacy compared with the model only imple-
menting age and stage (age + stage + TMEcluster, Harrell’s 
C-index = 0.69, 95% CI: 0.64–0.73 vs. age + stage, Harrell’s 
C-index = 0.67, 95% CI: 0.62–0.71), indicating that TME 
clusters based on the abundance of immune cells are a robust 
and independent prognostic factor in different populations 
(Table 2).

Discussion

Immunotherapy with checkpoint inhibitors is changing 
the face of LUAD treatments. However, although promis-
ing clinical efficacy has been confirmed in patients with 
various types of cancer including LUAD [3, 26, 27], some 
LUAD patients have failed to respond to anti-PD-1/PD-L1 
treatment. To gain more insight into the functional roles of 
immune cells in the microenvironment of LUAD and iden-
tify the potential responders to immunotherapy, we estab-
lished a classification tool named “TME cluster” to define 
different immune infiltration patterns, thus guiding thera-
peutic strategies for individuals with LUAD more precisely. 
The TME cluster was also an independent prognostic factor 
in LUAD patients in the data from TCGA, GEO, and our 
institution.

As reported by Tumeh et al. and Fehrenbacher et al. [4, 
9], one of the most useful features discriminating immuno-
therapy-sensitive versus insensitive LUAD patients is pre-
existing immunity, which is partly defined by the presence 

Fig. 3  Differentially expressed genes (DEGs) and functional annotation between the TME clusters. a The volcano plot showing the DEGs 
between TMEcluster A and B. b, c GO (b) and KEGG (c) functional enrichment analyses of the DEGs
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Fig. 4  Immune microenvironment traits in the TME clusters in 
patients from TCGA. a Violin plots showing the expression profil-
ing of the 7 immune-related genes in the POPLAR study and cyto-
lytic activity (CYT) score defined by Rooney et  al. The differences 
between every two groups were compared through the Wilcoxon test. 
p values indicated. b Relative expression level of molecules poten-
tially involved in initiation of innate immunity (left) and MHC-I/II 
antigen-presenting process (right). c Violin plots showing the CD8+ 
T cells/Treg ratio in the two TME clusters. d Relative expression 
level of immune co-inhibitors (left) and co-stimulators (right). e The 

expression pattern of the four important immune checkpoint mol-
ecules in TMEcluster A and B. Within each group, the thick lines 
in the boxes represent the median value. The bottom and top of the 
boxes are the 25th and 75th percentiles (interquartile range). The 
whiskers encompass 1.5 times the interquartile range. The statistical 
difference of two TME clusters was compared through the Wilcoxon 
test. ****, p < 0.0001. F, Correlation between tumor immunogenic-
ity, immune infiltration, immune checkpoint molecules, and mutation 
load
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or absence of tumor-specific CD8+ T effector cells. In the 
present study, by integrating GSVA and the random forest 
algorithm, we revealed two distinct LUAD TME phenotypes. 
TMEcluster A, or the “cold tumor,” was characterized by 
sparse distribution of immune cell infiltration, relatively low 
levels of immunomodulators, and slightly higher mutation 
load. By contrast, an enrichment of both cytotoxic T cells 
and immunosuppressor cells was observed in TMEcluster 
B. Moreover, several immune-related cytokines or markers 
proposed by previous studies, including IFN-γ, TNF-β, and 
several immune checkpoint molecules such as PD-L1 [4, 28, 
29], were also upregulated in TMEcluster B.

Certain genomic and transcriptomic features of tumors 
that we have found to be associated with particular immu-
nophenotypes have been reported by previous studies with 
similar approaches and findings [6, 12, 14, 15, 30]. There-
fore, we wondered whether different TME clusters of LUAD 
had distinct tumor immune escape mechanisms. As summa-
rized by Spranger et al. [11], tumor cells can escape immune 
surveillance through extrinsic and intrinsic mechanisms. 
The extrinsic mechanism mainly consists of three aspects: 
inadequate immune effector cell infiltration (e.g., CD8+ T 
cells and CD8α/CD103+ DCs), the presence of immunoin-
hibitory cells (e.g., type 2 macrophages and Treg cells), and 
upregulation of immunoinhibitory cytokines (e.g., IL10, 

TGF-β. and IDO1). In the intrinsic mechanism, there are two 
major aspects: increased expression of immune checkpoint 
molecules and aberrant immunogenicity, including down-
regulation of MHC class I molecules and altered expression 
of immunogenetic antigens, through genetic or epigenetic 
alterations of tumor cells [31, 32].

In TMEcluster B, aside from the considerable cytotox-
icity exhibited by the infiltration of cytotoxic cells and 
other parameters (Fig. 4a), we also found that immune cells 
with suppressive functions against antitumor cytotoxicity, 
such as Tregs, tumor-associated macrophages, and iDCs, 
were highly enriched. These findings were further sup-
ported by functional enrichment analyses. Specifically, the 
lower CD8+ T cell/Treg ratio suggested that enrichment of 
immune suppressive cells in TMEcluster B participated in 
tumor cell immune escape. We believe this phenomenon 
of co-infiltration is partly due to the negative feedback 
mechanism embedded in the systematic nature of immune 
regulation [33]. The recruitment of Tregs is also linked 
with the presence of activated effector T cells that pro-
duce CCL22, the dominant chemokine that predominantly 
recruits CCR + Tregs [34]. Consequently, the presence of 
Tregs could negatively impact the TME and in particular 
CD8+ effector T cell function, through three mechanisms: 
(1) soaking up IL-2, (2) releasing CTLA-4, which competes 

Fig. 5  Tumor genomic alterations associated to TME clusters. a Vio-
lin plots showing the mutation load in the two clusters. The differ-
ences between two clusters were compared through the Wilcoxon test. 
p values indicated. b The waterfall plots summarizing the genomic 

alterations including somatic mutations and copy number variations 
in the two TME clusters. The type of alterations was annotated by dif-
ferent colors (bottom)
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with CD28, and (3) generation of adenosine [11]. The 
upregulated immune checkpoint molecules, including PD-1, 
PD-L1, and CTLA-4, also help tumor cells in TMEcluster 
B avoid recognition and killing by the immune system. Pre-
clinical and clinical studies have indicated that the produc-
tion of IFN-γ by CD8+ T cells induces PD-L1 expression 
on tumor resident cells [35, 36], which is consistent with 
our findings in TMEcluster B. Taken together, it is conceiv-
able that patients in TMEcluster B would benefit more from 
immune checkpoint inhibitor therapy, and the key to a higher 
response rate is to restore preexisting immunity.

As for TMEcluster A, we observed a higher mutation load 
but significantly lower immune infiltration. Previous stud-
ies have suggested that a high tumor mutation burden may 
increase the likelihood of benefit from immunotherapy, since 
a high tumor burden may enhance tumor immunogenicity by 
increasing the number of neoantigens, which are recognized 
by T cells as non-self, thus leading to an augmentation of the 
antitumor immune response [8, 37]. However, we failed to 
find a strong correlation between mutation burden and local 
cytotoxic cells (r = − 0.06), or immune checkpoints (PD-1, 
r = − 0.09; PD-L1, r = − 0.11). These findings are consist-
ent with previous studies, indicating that tumor mutation 
burden and cytotoxicity are two independent parameters for 

the evaluation of the antitumor immune response [6, 14, 30, 
38]. Several factors in addition to tumor mutation burden, 
such as the initiation of innate immune sensing driven by 
the STING pathway [39], antigen presentation by Batf3-
driven DCs, recruitment of effector T cells, and neoanti-
gen quality [38, 40], might determine the TME together. 
Some specific mutations, such as those in CASP8, TP53, 
and MYC, may be critical to activate oncogenic pathways 
and reprogram the TME, thus facilitating their escape from 
immunosurveillance [41, 42]. We found that STK11, a tumor 
suppressor gene in NSCLC, had a significantly higher muta-
tion frequency in TMEcluster A. Koyama et al. showed that 
genetic ablation of STK11/LKB1 resulted in accumula-
tion of neutrophils with T cell suppressive effects, along 
with a corresponding increase in the expression of T cell 
exhaustion markers and tumor-promoting cytokines. Fur-
thermore, STK11/LKB1 inactivating mutations were asso-
ciated with reduced expression of the PD-1 ligand PD-L1 
[43]. Therefore, identification of such genes might lead to 
further insight into the complex interaction between tumor 
cells and the immune system and thus facilitate the devel-
opment of personalized immune therapeutic regimens and 
enhance the response rate to immune checkpoint inhibitors 
in LUAD patients.

Table 2  Univariate and 
multivariate analysis of overall 
survival in LUAD patients from 
TCGA and GEO database

Univariable Multivariable

HR (95%CI) p value HR (95%CI) p value

Variable (TCGA)
Age
 ≤ 60 – – – –
 60–70 0.68 (0.49–0.93) 0.016 0.84 (0.58–1.23) 0.38
 > 70 1.44 (1.07–1.95) 0.017 1.49 (1.04–2.14) 0.03

Sex (Female vs. Male) 0.90 (0.67–1.20) 0.47 – –
Stage
 Stage I – – – –
 Stage II 1.43 (1.04–1.97) 0.026 2.41 (1.67–3.48) < 0.001
 Stage III 2.38 (1.70–3.34) < 0.001 3.23 (2.20–4.75) < 0.001
 Stage VI 2.40 (1.41–4.09) 0.001 4.28 (2.41–7.59) < 0.001

TMEcluster (B vs. A) 0.71 (0.53–0.96) 0.015 0.68 (0.50–0.91) 0.010
Variable (GEO)
Age
 ≤ 60 – – – –
 60–70 0.79 (0.57–1.09) 0.146 1.15 (0.79–1.71) 0.454

  > 70 2.27 (1.63–3.17) < 0.001 2.44 (1.61–3.69) < 0.001
Sex (Female vs. Male) 1.31 (0.96–1.79) 0.091 – –
Stage
 Stage I – – – –
 Stage II 1.93 (1.38–2.71) < 0.001 2.23 (1.58–3.15) < 0.001
 Stage III 3.71 (2.06–6.71) < 0.001 3.88 (2.20–4.75) < 0.001
 Stage VI 2.55 (0.81–8.00) 0.110 2.64 (0.83–8.40) 0.101

TMEcluster (B vs. A) 0.82 (0.74–0.98) 0.036 0.78 (0.58–0.93) 0.028
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Our study has several limitations. First, the information 
regarding to immunotherapy process and outcome was not 
provided in TCGA database. Meanwhile, after systematically 
searching the published studies, we found several datasets 
containing both transcriptome data for individual patients 
receiving immune checkpoint inhibitor and their response 
data to immunotherapy. Two datasets on melanoma [27, 44] 
and one on urothelial cancer [45] were publicly available. 
However, accessible gene expression data and clinical infor-
mation of LUAD patients who have acquired or will acquire 
immunotherapy is still insufficient, thus we failed to validate 
our findings in a cohort of LUAD patients receiving immuno-
therapy. A comprehensive study integrating RNA-sequence, 
somatic mutation, and clinical outcome for immune check-
point inhibitor-treated LUAD patients is needed in the future. 
Second, considering the spatial heterogeneity of intratumor 
immunoreactivity, the lack of multi-loci sampling data within 
a single tumor in TCGA and the GEO database might weaken 
the predictive value of the TME clusters. Third, due to the 
limitation on research funding, unfortunately we failed to per-
form RNA-sequence and subsequent bioinformation analysis 
on a larger internal validation cohort. Therefore, to overcome 
this shortcoming, we enrolled a large GEO cohort consisting 
of 1063 patients with lung adenocarcinoma to demonstrate 
and validate our findings. Further prospective exploration in 
this field is still warranted. In summary, by applying machine 
learning methods and multi-omics profiling, our large-cohort 
study described a comprehensive landscape of LUAD immune 
infiltration patterns and integrated several previously proposed 
biomarkers associated with distinct immunophenotypes, thus 
shedding light on how tumors interact with the immune micro-
environment and may guide a more precise and personalized 
immune therapeutic strategy for LUAD patients.
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