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Abstract
Hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) is usually considered an inflammation-related cancer 
associated with chronic inflammation triggered by exposure to HBV and tumor antigens. T-cell exhaustion is implicated 
in immunosuppression of chronic infections and tumors. Although immunotherapies that enhance immune responses by 
targeting programmed cell death-1(PD-1)/PD-L1 are being applied to malignancies, these treatments have shown limited 
response rates, suggesting that additional inhibitory receptors are also involved in T-cell exhaustion and tumor outcome. 
Here, we analyzed peripheral blood samples and found that coexpression of PD-1 and T-cell immunoglobulin and immuno-
receptor tyrosine-based inhibitory motif (ITIM) domain (TIGIT) was significantly upregulated on  CD4+ and  CD8+ T cells 
from patients with HBV-HCC compared with those from patients with chronic HBV or HBV-liver cirrhosis. Additionally, 
PD-1+  TIGIT+  CD8+ T-cell populations were elevated in patients with advanced stage and progressed HBV-HCC. Impor-
tantly, PD-1+  TIGIT+  CD8+ T-cell populations were negatively correlated with overall survival rate and progression-free 
survival rates. Moreover, we showed that PD-1+  TIGIT+  CD8+ T cells exhibit features of exhausted T cells, as manifested 
by excessive activation, high expression of other inhibitory receptors, high susceptibility to apoptosis, decreased capacity for 
cytokine secretion, and patterns of transcription factor expression consistent with exhaustion. In conclusion, PD-1+  TIGIT+ 
 CD8+ T-cell populations are associated with accelerated disease progression and poor outcomes in HBV-HCC, which might 
not only have important clinical implications for prognosis but also provide a rationale for new targets in immunotherapy.
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LAG-3  Lymphocyte-activation gene 3
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MELD  Model for end-stage liver disease
NLR  Neutrophil–lymphocyte ratio
NK  Natural killer cells
OS  Overall survival
PBMC  Peripheral blood mononuclear cell
PD-1  Programmed cell death-1
PD-L1  Programmed death-ligand 1
PFS  Progression-free survival
TBIL  Total bilirubin
TCM  Central memory T cells
TEM  Effector memory T cells
TEMRA  Terminally differentiated effector T cells
TIGIT  T-cell immunoglobulin and immunorecep-

tor tyrosine-based inhibitory motif (ITIM) 
domain

TILs  Tumor-infiltrating lymphocytes
TIM-3  T-cell immunoglobulin domain and mucin 

domain 3
TNF-α  Tumor necrosis factor

Introduction

The incidence of HCC ranks fifth among all cancer and the 
mortality rate ranks second among men and sixth among 
women [1, 2]. Chronic HBV infection can lead to liver dam-
age and is, therefore, major risk factors for liver cirrhosis 
(LC). Moreover, chronic HBV infection is associated with 
more than 80% of total HCC cases in China due to the high 
rate of HBV infection [3–5].

Inherent immune responses are usually unable to reject 
tumors because of the immunosuppressive tumor micro-
environment, which is conducive to the proliferation and 
survival of tumor cells and can promote angiogenesis and 
metastasis and subvert the adaptive immune response 
[6–8]. T-cell exhaustion, which represents a state of T-cell 
dysfunction caused by persistent antigen stimulation dur-
ing chronic infection and cancer, plays an essential role 
in these tumor-promoting effects [9, 10]. Inhibitory mol-
ecules that have been shown to contribute to repression of 
T-cell responses include T-cell immunoglobulin domain 
and mucin domain 3 (TIM-3), lymphocyte-activation gene 
3 (LAG-3), 2B4, B- and T-lymphocyte attenuator (BTLA), 
and, most recently, TIGIT [9, 11]. Recent immunotherapy 
strategies that can reverse T-cell exhaustion and reactivate 
T-cell responses by blocking T-cell inhibitory receptors 
such as programmed cell death 1 (PD-1)/programmed 
death-ligand 1 (PD-L1) or cytotoxic T-lymphocyte antigen 
4 (CTLA-4) have shown limited clinical response rates of 
up to 35% in advanced lung cancer, renal cancer, and mel-
anoma [12–15]. To our knowledge, these strategies have 

only been evaluated in liver cancer in a single phase I/II 
study, in which patients with advanced liver cancer showed 
a complete response rate of 4% and a partial response rate 
of 18% when treated with nivolumab [16]. There is a sub-
stantial need to identify additional inhibitory receptors 
that may lead to poor prognosis by suppressing anti-tumor 
responses in human cancer.

TIGIT has been reported to be expressed on effec-
tor T cells, regulatory  CD4+ T cells, and natural killer 
(NK) cells [17–20]. Recently, TIGIT expression has been 
observed on tumor infiltrating lymphocytes (TILs) in 
several mice tumor models and melanoma patients, and 
the protein was found to be coordinately expressed with 
PD-1 [19, 21, 22]. However, the expression patterns of 
TIGIT during the pathogenesis and progression of liver 
cancer are poorly characterized, and the roles of TIGIT 
in clinical prognosis and T-cell exhaustion in liver can-
cer are unknown. In the current study, we have included 
patients with chronic HBV infection (CHB), patients with 
LC, and patients with HBV-HCC to compare the frequency 
of PD-1+  TIGIT+ T cells during the pathogenesis of HBV-
HCC. We report that PD-1+  TIGIT+ T-cell populations 
are increased in patients with liver cancer, especially at 
advanced stages. Importantly, the frequency of PD-1+ 
 TIGIT+  CD8+ T cells is positively associated with tumor 
progression (including tumor invasion, recurrence, and 
death) and is therefore related to poor clinical outcomes 
in HBV-HCC. Moreover, we provide evidence that PD-1+ 
 TIGIT+  CD8+ T cells display an exhausted phenotype, 
as indicated by excessive activation, high expression of 
other inhibitory receptors, high susceptibility to apoptosis, 
decreased cytokine secretion, and patterns of transcrip-
tion factor expression indicative of exhaustion. Therefore, 
PD-1+  TIGIT+  CD8+ T cells might be highly correlated 
with the progression in hepatocellular carcinoma.

Materials and methods

Patients

We prospectively enrolled 122 patients with HBV-HCC, 27 
patients with HBV-related LC, 20 patients with CHB and 
35 healthy volunteers from March 1, 2016 to May 1, 2017 at 
Beijing Ditan Hospital, Capital Medical University (Beijing, 
China). The diagnosis of HCC was the same as our previ-
ous study [23]. We excluded the patients if they meet the 
following criteria: (1) evidence of HCV or HIV infection; 
(2) other cause of chronic liver disease; (3) metastatic liver 
cancer or with other tumors. The diagnosis of cirrhosis was 
based on histopathology, radiology, or clinical complications 
like ascites, variceal bleeding, hepatorenal syndrome, and 
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hepatic encephalopathy. The healthy donors were recruited 
from patients receiving a physical examination at Beijing 
Ditan Hospital. Clinical and demographic characteristics of 
all patients are summarized in Table 1.

Sample collection and separation of peripheral 
blood mononuclear cells (PBMCs)

We collected 5 ml peripheral blood samples from all above 
patients and healthy volunteers. The PBMCs were isolated 
as described before [24].

Flow cytometry staining and analysis

The following antibodies were used: anti-human BV786-
conjugated anti-CD3, APC-H7-conjugated anti-CD4, 
BV510-conjugated anti-CD8, AF700-conjugated anti-
CD45RA, BV421-conjugated anti-CCR7, BV711-conju-
gated anti-PD-1, BV650-conjugated anti-TIM-3, FITC-
conjugated anti-2B4, PE-CF594-conjugated anti-CD95, 
PE-conjugated anti-CTLA-4, FITC-conjugated anti-CD38, 
PE-conjugated anti-HLA-DR (BD Biosciences), PE-con-
jugated anti-perforin, AF700-conjugated anti-Granzyme B 
(BioLegend), PE-Cy7-conjugated anti-TIGIT, APC-con-
jugated anti-LAG-3 (eBioscience), and the corresponding 
isotype controls.

For intracellular staining, PBMCs were stimulated 
for 5 h with anti-CD3/anti-CD28 (2 µg/mL and 5 µg/mL, 
respectively; eBioscience). Then, cells were stained with 
CD3, CD4, CD8, PD-1, and TIGIT antibodies, and intra-
cellularly stained with AF700-conjugated anti-IFN-γ, FITC 
-conjugated anti-TNF-α, or PE-conjugated anti-IL-2 (BD 
Biosciences) antibodies. For analysis of ki67, perforin, 
and T-bet staining, cells were stained for surface antibod-
ies described above, and then intracellularly stained with 
APC-conjugated anti-perforin, FITC-conjugated anti-ki67, 
AF700-conjugated anti-Granzyme B, BV421-conjugated 

anti-T-bet, or PE-conjugated anti-Eomes (BD Biosciences) 
antibodies. We used a fixable viability dye  (eFluor® 506, 
eBioscience) to evaluate the cell viability.

For apoptosis analysis, we used FITC Annexin V Apopto-
sis Detection Kit (BioLegend), according to the instruction. 
Data were acquired with an LSR Fortessa flow cytometer, 
and then analysis with FlowJo software (Tree Star).

Statistical analysis

Statistical analysis was performed by GraphPad 5.0 and 
SPSS version 19.0. Quantitative data accorded were 
expressed as the mean ± standard deviation (SD) and they 
were analyzed by t tests. One-way ANOVA for more than 
two independent samples was used by Tukey’s multiple 
comparison test. The non-normally distributed data were 
expressed as median with quartile range and analyzed by 
Mann–Whitney U test. Pearson’s and Spearman’s correlation 
coefficients were used to evaluate correlations for normally 
and non-normally distributed data, respectively. We used 
Kaplan–Meier method for survival analyses. The predic-
tion value of the observation indexes was estimated by areas 
under the receiver-operating characteristics (AUROC) curve. 
P values < 0.05 were considered statistically significant.

Results

Elevated levels of PD‑1+  TIGIT+ T cells in patients 
with HBV‑HCC

To evaluate the roles of PD-1 and TIGIT expression in the 
pathogenesis and progression of HBV-HCC, we performed 
flow cytometric analysis of PD-1 and TIGIT on  CD4+ and 
 CD8+ T cells from CHB, HBV-LC, and HBV-HCC patients. 
Age-matched healthy donors were taken as controls. The 
percentages of PD-1+ and  TIGIT+ cells in the  CD4+ 
T-cell population were apparently elevated in HBV-HCC, 

Table 1  Clinical characteristics 
of all patients

CHB chronic hepatitis B, HBV-LC hepatitis B virus-related liver cirrhosis, HBV-HCC HBV-related hepato-
cellular carcinoma, ALT aspartate aminotransferase
*p value < 0.05 vs healthy donors, HBV-LC or HBV-HCC group

Healthy 
donors 
(n = 35)

CHB (n = 20) HBV-LC (n = 27) HBV-HCC (n = 122) P values

Age (years) 54.6 ± 7.0 41.5 ± 9.8* 52.2 ± 11.9 56.4 ± 10.4 < 0.0001
Sex (male/female) 22/13 16/4 21/6 97/25 0.22
ALT (U/L) NA 27.0 (18.2, 36.3) 19.8 (15.7, 38.0) 29.5 (19.3, 48.4) 0.06
HBeAg (±) NA 11/9 19/8 94/28 0.11
HBV-DNA 

(≥ 100/< 100 IU/
ml)

NA 4/16 4/23 29/93 0.58
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compared with healthy donors and CHB or HBV-LC patients 
(P < 0.01) (Fig. 1a, b). The percentage of PD-1+ cells in 
the  CD8+ T cell was also elevated in HBV-HCC patients 

(Fig.  1a). We further analyzed the correlation between 
PD-1 and TIGIT on  CD4+ and  CD8+ T cells. Interestingly, 
the frequency of TIGIT expression on  CD8+ T cells from 

Fig. 1  Coexpression of PD-1 and TIGIT is upregulated on T cells 
in HBV-HCC patients. a, b The expression of PD-1 and TIGIT on 
 CD4+ and  CD8+ T cells from HBV-HCC (n = 122), compared with 
healthy donors (n = 35), CHB (n = 20) LC patients (n = 27) by flow 
cytometry analysis. c Correlation analysis of PD-1 and TIGIT on 
 CD4+ T cells (left) and  CD8+ T cells (right) from patients with HBV-

HCC. d Representative flow data of PD-1 and TIGIT expression on 
 CD4+ and  CD8+ T cells within each group. e Percentages of PD-1+ 
 TIGIT+  CD4+ cells (left) and PD-1+  TIGIT+  CD8+ cells (right) of 
all CD4 and CD8 T cells, respectively, from patients with HBV-HCC. 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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HBV-HCC patients was strongly positively correlated with 
the frequency of PD-1 expression (r = 0.70, P < 0.0001), 
while in the case of  CD4+ T cells, a moderate correlation 
was observed (r = 0.55, P < 0.0001) (Fig. 1c). Accordingly, 
we observed increased coexpression of PD-1 and TIGIT on 
both  CD4+ and  CD8+ T cells in HBV-HCC, compared with 
those from healthy donors and patients with CHB or HBV-
LC (Fig. 1d, e).

Elevation of PD‑1+  TIGIT+  CD8+ T‑cell levels is related 
to HBV‑HCC progression

We divided the HBV-HCC group into two subgroups based 
on the percentage of PD-1+  TIGIT+ cells in  CD8+ T cell: 
 PThi (≥ 12.8%) and  PTlo (< 12.8%). We used the median per-
centage (12.8%) of PD-1+  TIGIT+  CD8+ T cells from 122 
patients with HBV-HCC as the cut-off. We analyzed differ-
ences in clinical characteristics between the two subgroups 
(Table 2). We found that the neutrophil–lymphocyte ratio 
(NLR), which has been identified as a poor prognostic indi-
cator in some tumors [25–28], was elevated in the  PThi group 
(P = 0.002). The  PThi group also displayed some differences 
in tumor features; specifically, a higher number of patients 
in this group showed tumors ≥ 5 cm in size and multiple 
tumors (approximately 50%). No differences in the vascular 
invasion or intrahepatic metastasis were detected. Finally, 
the  PThi group exhibited more patients with BCLC stage C 
and D HCC (P = 0.002, Table 2).

We next used CT/MRI imaging to investigate whether 
PD-1+  TIGIT+ T-cell populations are associated with dis-
ease progression, which encompasses tumor recurrence, 
tumor invasion, and death. We observed a dramatically 
higher rate of disease progression in the  PThi group com-
pared with the  PTlo group [48/13 (78.7%) vs. 23/38 (37.7%), 
P < 0.0001, Table 2]. Similarly, we found that the percentage 
of PD-1+  TIGIT+  CD8+ T cells was higher in patients with 
BCLC stage C and D HCC and patients with progression 
(P = 0.002, Fig. S1a, b). Though the tumor size and mul-
tiplicity were associated with PD-1+  TIGIT+  CD4+ T-cell 
populations, the HCC progression had a slight difference 
between the high and low PD-1+  TIGIT+  CD4+ groups 
(Table S1). Together, our results showed a more strong cor-
relation between PD-1+  TIGIT+  CD8+ T cells and prognosis 
in HBV-HCC than PD-1+  TIGIT+ CD4 + T cells, suggesting 
that these cells may play a critical role in the pathogenesis 
and progression of HBV-HCC.

Increased prevalence of PD‑1+  TIGIT+  CD8+ T cells 
predicts poor prognosis in HBV‑HCC patients

To determine whether PD-1+  TIGIT+  CD8+ T-cell popu-
lations are associated with prognosis in HBV-HCC, 
we followed up 122 patients for a median of 59 weeks 
(32–84 weeks). The overall survival rate at 24 weeks and 
48 weeks were 78.7% and 72.1%, respectively. The progres-
sion-free survival (PFS) rates at 24 weeks and 48 weeks 

Table 2  Demographic 
and clinical characteristics 
of different level of 
PD-1 + TIGIT + CD8 + cells in 
patients with HBV-HCC

NLR neutrophil–lymphocyte ratio, ALT alanine aminotransferase, TBIL total bilirubin, AFP alpha-fetopro-
tein

PT+lo (n = 61) PT+hi (n = 61) P values

Age (mean ± SD) 56.2 ± 9.9 56.7 ± 10.8 0.77
Sex (male/female) 50/11 49/12 0.82
Cirrhosis (present/absent) 58/3 53/8 0.114
NLR (mean ± SD) 2.86 ± 2.20 4.78 ± 4.02 0.002
ALT (≥ 50/< 50U/L) 14/47 14/47 1
TBIL (≥ 18.8/< 18.8 μmol/L) 38/23 36/24 0.796
Albumin (≥ 40/< 40 g/L) 18/43 16/45 0.686
AFP (≥ 400/< 400 ng/ml) 13/48 18/43 0.298
HBeAg ( ± ) 18/43 10/51 0.085
HBV-DNA ( ≥ 100/< 100 IU/ml) 15/46 14/47 0.832
Tumor size (≤ 5/> 5 cm) 49/12 35/26 0.007
Tumor multiplicity (solitary/multiple) 33/28 20/41 0.02
Vascular invasion (present/absent) 40/21 33/28 0.2
Intrahepatic metastasis (yes/No) 11/50 11/50 1
BCLC stage (A + B/C + D) 39/22 22/39 0.002
Progression (yes/no) 23/38 48/13 < 0.0001
Antiviral therapy (yes/no) 50/11 54/7 0.445
Treatments for HCC (resection/minimally 

invasive/palliative)
10/36/15 14/28/19 0.342
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were 59.0% and 45.1%, respectively. All patients were 
divided into two groups  (PThi and  PTlo) according to the 
percentage of PD-1+  TIGIT+  CD8+ T cell at the time of join-
ing the study, as described above. By Kaplan–Meier survival 
analysis, we found that  PThi group had a lower survival rate 
than the  PTlo group (Fig. 2a; HR = 4.94, 95% CI 1.51–10.80, 
P = 0.004). However, the PD-1+hi group and  TIGIT+hi group 
had no difference in the overall survival rate than PD-1+lo 
and  TIGIT+lo group, respectively (Fig. S2a, b). Furthermore, 
we showed that the  PThi group had a significantly higher 
proportion of tumor recurrence and progression compared 
with the  PTlo group (Fig. 2b; HR = 2.38, 95% CI 1.58–3.92, 
P = 0.0001). The area under the receiver-operating charac-
teristic (AUROC) curve for PD-1+  TIGIT+ cell population 
was 0.758 (95% CI 0.672–0.831), which was higher than 
that of PD-1+ and  TIGIT+ cell populations alone (Fig. 2c; P 
values were 0.038 and 0.0006, respectively, when compared 
to PD-1+  TIGIT+ cell population).

To precisely determine the prognostic value of PD-1+ 
 TIGIT+ cells in HBV-HCC, we compared the PFS of the 
 PThi and  PTlo groups at different BCLC stages (Fig. 2d, e). 
For both patients in stages A or B and patients in stages C 
or D, the PFS rates of patients with high PD-1+  TIGIT+ 
cell populations were significantly lower than those with 
low PD-1+  TIGIT+ cell populations throughout the fol-
low-up period (stages A and B, P = 0.006; stages C and 
D, P = 0.001). We also performed Kaplan–Meier survival 
analysis to assess the effect of tumor burden on PFS. The 
PFS rate of the  PThi group was obviously lower than the 
 PTlo group in patients with tumors < 5 cm in size (Fig. 2f; 
HR = 2.80, 95% CI 1.55–5.88, P = 0.001) and solitary and 
multiple tumors (Fig. 2h–i), but not in the subgroups of 
patients with tumors ≥ 5 cm in size (P = 0.06; Fig. 2g).

In this study, most of the patients with HBV-HCC (111, 
91.0%) had associated chronic liver disease and cirrhosis, 
which are usually associated with a decline in liver func-
tion. Since it is widely perceived that clinical outcomes 
in HBV-HCC depend not only on tumor stage but also on 
liver function, we assessed the efficacy of PD-1+  TIGIT+ 
cell populations as a predictor of PFS rates in patients with 

different levels of liver function/dysfunction, as measured 
by the model for end-stage liver disease (MELD) scores. 
 PThi patients had worse outcomes than  PTlo patients in both 
the subgroup of patients with below-median MELD scores 
(MELD < 6.16, P = 0.003) and the subgroup of patients with 
above-median MELD scores (MELD ≥ 6.16, P = 0.001) 
(Fig. 3a, b).

Since chronic virus infection affects expression of the 
coinhibitory molecules PD-1 and TIGIT, we assessed the 
prognostic value of PD-1+  TIGIT+  CD8+ T cells in HBV-
HCC patients with different virus levels. The PFS of  PThi 
patients was significantly lower than that of  PTlo patients 
regardless of whether the HBV-DNA level ≥ 100 IU/mL 
or < 100 IU/mL (Fig. 3c, d). We also examined the predictive 
value of PD-1+  TIGIT+ cell populations for HBV-HCC prog-
nosis in three groups of patients with different serum AFP 
levels: AFP < 8.8 ng/mL, 8.8 ng/mL ≤ AFP < 400 ng/mL, 
and AFP ≥ 400 ng/mL (where the normal reference value is 
0.9–8.8 ng/mL). At all three AFP levels,  PThi patients had 
a higher rate of progression (P < 0.05) (Fig. 3f–h). For anti-
viral and anti-tumor treatments,  PThi patients had a poorer 
survival in the minimally invasive treatment group and with 
or without antiviral therapy (Fig. 3e, i).

However, we found a minor difference in PFS between 
low PD-1+  TIGIT+  CD4+ T-cell groups and high groups 
(Table S1, Fig. S3a–c). Thus, irrespective of tumor stage, 
liver function, HBV virus, load and AFP, the given cut-off 
value for the percentage of PD-1+  TIGIT+ cells in the  CD8+ 
T-cell population has a principal predictive value for the 
prognosis of HBV-HCC, with particular clinical significance 
for predicting the outcomes of BCLC stage A and B, HBV-
DNA < 100 IU/mL, and AFP-negative patients.

PD‑1+  TIGIT+  CD8+ cells from HBV‑HCC patients 
exhibit an exhausted phenotype and overactivation

Previous studies have reported that PD-1 and TIGIT are 
highly expressed on antigen-experienced T cells in tumor 
patients [29]; therefore, we examined the expression of 
PD-1 and TIGIT on naïve T cells (TN) and mature, anti-
gen-experienced T-cell subsets. The proportion of TN cells 
was decreased in patients with HBV-HCC compared with 
patients with CHB or HBV-LC, although this difference 
was not statistically significant, and the portion of termi-
nally differentiated effector (TEMRA) cells was significantly 
increased in the HBV-HCC group compared with the CHB 
group (P < 0.01; Fig. 4a, b). Consistent with upregulation 
of PD-1 and TIGIT in antigen-experienced  CD8+ T cells, 
PD-1 and TIGIT were highly expressed on central memory 
(TCM) and effector memory (TEM) cells in all three groups of 
patients (Fig. 4c). The frequency of PD-1+  TIGIT+ cells in 
each subset of  CD8+ cells was more than twofold higher in 

Fig. 2  Kaplan–Meier curve analysis showing the efficacy of PD-1+ 
 TIGIT+  CD8+ cell levels as a predictor of progression-free survival in 
HBV-HCC across different tumor burdens. a, b Kaplan–Meier curve 
analysis showing the efficacy of PD-1+  TIGIT+  CD8+ cell levels as a 
predictor of overall survival (a) and progression-free survival (b) in 
HBV-HCC patients. (c) ROC curve for PD-1+  TIGIT+  CD8+ T cell, 
PD-1+  CD8+ T cell and  TIGIT+  CD8+ T-cell frequency as a predic-
tor of progression-free survival for HBV-HCC patients. d–i Subgroup 
analysis of patients with (d) BCLC stage A and B HCC, (e) BCLC 
stage C and D HCC, (f) patients with tumor size < 5 cm, (g) patients 
with tumor size > 5  cm, (h) patients with single tumors, and (i) 
patients with multiple tumors. P values and HRs were obtained using 
the log-rank test

◂
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the HBV-HCC group compared with the CHB and HBV-LC 
groups, with especially high frequencies observed in TCM 
and TEM cells. These results provided further evidence that 
the frequency of PD-1+  TIGIT+ cells is elevated in patients 
with HBV-HCC.

Since T-cell overactivation caused by sustained antigenic 
stimulation results in T-cell exhaustion and a stepwise loss 
of function [9, 11, 30, 31], we next investigated whether the 
activation status is different in PD-1+  TIGIT+  CD8+ T cells. 
We found that the frequencies of  CD38+ cells, HLA-DR+ 

Fig. 3  Kaplan–Meier curve analysis showing the efficacy of PD-1+ 
 TIGIT+  CD8+ cell levels as a predictor of progression-free survival in 
HBV-HCC across different liver function scores, HBV virus load, and 
AFP levels and treatments. a, b Patients with different MELD scores, 
c, d patients with different levels of serum HBV-DNA, (e) patients 

with or without antiviral therapy, (f–h) patients with different levels 
of serum AFP, (i) patients with resection, minimally invasive treat-
ment or palliative treatment. P values and HRs were obtained using 
the log-rank test
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cells, and  CD38+ HLA-DR+ cells were significantly higher 
in the PD-1+  TIGIT+  CD8+ T-cell population than in the 
PD-1−  TIGIT−  CD8+ T-cell population (P < 0.0001, Fig. 4d, 
e). We also found that 2B4, LAG-3, and CTLA-4 were 
expressed at higher frequencies in the PD-1+  TIGIT+ popu-
lation than in the PD-1−  TIGIT− population in patients with 
HBV-HCC (P < 0.0001, Fig. 4f). Finally, we compared the 
expression of 2B4, LAG-3, CTLA-4, and TIM-3 on PD-1+ 
 TIGIT+  CD8+ T cells from patients in the  PThi and  PTlo 
groups; the  PThi group exhibited increased levels of each of 
these inhibitory receptors (P < 0.05, Fig. S4).

PD‑1+  TIGIT+  CD8+ T cells from patients 
with HBV‑HCC showed functional 
and transcriptional characteristics of exhaustion

To better understand the characteristics of PD-1+  TIGIT+ 
 CD8+ exhausted T cells, we applied functional assays and 
evaluated the cytokine production. PD-1+  TIGIT+  CD8+ 
T cells exhibited reduced capacity to produce IFN-γ and 
TNF-α compared with PD-1−  TIGIT−  CD8+ and PD-1+ 
 TIGIT−  CD8+ T cells (P < 0.05, Fig. 5a, b). There was no 
change in the production of perforin and granzyme B in 
PD-1+  TIGIT+  CD8+ T cells (data not shown). We next 
assessed the susceptibility of PD-1+  TIGIT+  CD8+ T cells 
to apoptosis. Annexin V and CD95 expression were greatly 
increased on PD-1+  TIGIT+  CD8+ T cells, suggesting that 
these cells were highly susceptible to apoptosis (Fig. 5c, d). 
Since excessive apoptosis could lead to a reduction of T 
cells in HBV-HCC, we analyzed the correlation between the 
percentage of PD-1+  TIGIT+  CD8+ T cells and the absolute 
number of  CD8+ T cells. The percentage of PD-1+  TIGIT+ 
 CD8+ T cells was negatively correlated with the absolute 
number of  CD8+ T cells, especially in patients with pro-
gressed HBV-HCC (r = − 0.74, P < 0.0001; Fig. S5). We 
also found that the expression levels of PD-1 and TIGIT 
were higher on intratumor than in peritumor in HBV-HCC 
patients by immunohistochemical analysis (Fig. S6).

We further tested the intrinsic regulation of PD-1+ 
 TIGIT+  CD8+ T cells by evaluating two key transcription 
factors, T-bet and Eomesodermin (Eomes), which involved 
in  CD8+ T-cell exhaustion. It was reported that T-betdim 
 Eomeshi  CD8+ T cells were linked to a terminal exhausted 
phenotype, whereas T-bethi  Eomesdim cells retain some 
residual T-cell functions [11, 31–33]. Consistent with pre-
vious reports, PD-1+  TIGIT+ cell populations contained a 
significantly higher percentage of T-betdim  Eomeshi cells 
than PD-1−  TIGIT− and PD-1+  TIGIT− cell populations 
(P < 0.01) (Fig. 5e, f). However, no differences in the per-
centages of T-bethi  Eomesdim cells were observed among the 
four subpopulations.

Discussion

T-cell exhaustion contributes to cancer immune escape by 
impeding tumor clearance [9, 10]. Increased expression of 
multiple inhibitory molecules is a key characteristic of this 
phenomenon. Recently, TIGIT expressed on TILs in various 
mouse tumor models and melanoma patients and to be coor-
dinately expressed with PD-1 [21, 22]. However, the rela-
tionship between PD-1+  TIGIT+ T cells and the prognosis 
of cancer patients was not clear. In our study, we have dem-
onstrated that HBV-HCC pathogenesis is associated with 
the increase of PD-1+  TIGIT+  CD8+ T cells. Importantly, 
we revealed that high levels of PD-1+  TIGIT+  CD8+ T cells 
are closely associated with a poor HBV-HCC prognosis. To 
our knowledge, this study provides the first evidence that 
PD-1+  TIGIT+ T cells are related to disease progression in 
HBV-HCC. Our results provide a potential rationale for liver 
cancer therapeutics that target both PD-1 and TIGIT to pre-
vent disease progression and promote survival.

Several reports have shown that increases in circulating 
and intratumor PD-1+  CD8+ T-cell populations can predict 
poor disease progression and high recurrence in HCC after 
operation and cryoablation [34–36]. Recently, a clinical 
trial testing the safety and anti-tumor activity of an anti-
PD-1 antibody in patients with HBV-related advanced HCC 
revealed that treatment with this antibody yielded a complete 
response rate of only 2% and a partial response rate of 12% 
[16]. Given the low response rate, there is an urgent need to 
explore the possibility of treatment with additional immune 
checkpoint inhibitors in combination with anti-PD-1 therapy. 
Recently, a small sample study of 49 patients with HCC 
showed that expression of both PD-1 and BTLA was upreg-
ulated on  CD4+ TILs and that these PD-1+  BTLA+ cells 
were highly dysfunctional [37]. However, few studies have 
examined the coexpression of PD-1 and other inhibitory 
molecules in liver cancer.

TIGIT is an inhibitory receptor that expressed at the high-
est levels on effector T cells and NK cells. Inhibition of 
NK cell-mediated tumor killing via engagement of PVR, 
the receptor of TIGIT, on target cells and reduction of IFN-γ 
secretion is the most well-understood aspect of TIGIT sign-
aling [38–40]. TIGIT can suppress immune responses by 
limiting T-cell priming and depressing effector function in 
chronically stimulated  CD8+ T cells [41]. TIGIT can also 
restrain anti-tumor responses, as indicated by the observa-
tion that TIGIT deficiency resulted in significantly delayed 
tumor growth in melanoma and colon carcinoma mice mod-
els [21, 22]. In this study, we showed that PD-1+  TIGIT+ 
T-cell populations are increased in liver cancer, especially at 
advanced stages. Moreover, PD-1/TIGIT double-positive T 
cells had a more excellent and broader prognostic value than 
PD-1+ or  TIGIT+  CD8+ T cells alone, as indicated by the 
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fact that it can predict the overall survival rate when com-
pared with the single one. In addition, our results showed 
that the NLR of the  PThi group was nearly twofold higher 
than that of the  PTlo group. Several reports have shown that 
the NLR, as a marker of the inflammatory microenviron-
ment, predicts poor survival and recurrence in liver cancer 
[25–27]. In a previous study, we confirmed that the NLR is 
related to the pathogenesis and progression of HBV-HCC 
and that increases in NLR were associated with reductions 
in T cells [42].

Chronic infection and cancers are usually considered to 
cause T-cell exhaustion due to constant antigen exposure 
and inflammation. In this study, some patients exhibited high 
levels of serum HBV-DNA, which may contribute to dual 
antigen stimulation by viruses and tumors. Consistent with 
the effects of severe antigen stimulation, the HR for high 
PD-1+  TIGIT+ populations in patients with HBV-DNA lev-
els ≥ 100 IU/mL was very high. Based on this observation, 
we may infer that T-cell exhaustion plays a more important 
role in HBV-HCC patients who have not received antiviral 
therapy, providing further confirmation of the importance 
of antiviral treatment. Antigen burden is a key determinant 
of the severity of T-cell exhaustion resulting from chronic 
infection with lymphocytic choriomeningitis [43, 44]. To 
determine whether the same is true for patients with HBV-
HCC, we analyzed tumor characteristics in patients with dif-
ferent levels of PD-1+  TIGIT+ T cells. Indeed,  PThi patients 
had a higher tumor burden than  PTlo patients, with a twofold 
higher frequency of tumors ≥ 5 cm in size and a nearly 1.5-
fold higher frequency of tumors more than two in number. 
Furthermore, recent evidence has indicated that tumor bur-
den, defined as the sum of the lengths of the long axes of 
tumor lesions, is related to circulating Tex cells in melanoma 
patients [44]. Interestingly, we found no difference in PFS 
between patients with high and low levels of PD-1+  TIGIT+ 
T cells in the subgroup of patients with tumor > 5 cm in size, 
which may be explained by the fact that large tumors have 
a relatively high susceptibility to progression and death; 

therefore, differences between the  PThi and  PTlo groups did 
not reach statistical significance. Using subgroup analysis, 
we discovered that patients with higher PD-1+  TIGIT+ T-cell 
populations experienced significantly higher progression 
rates in subgroups characterized by different levels of serum 
AFP. These results showed that, especially in AFP-negative 
patients, PD-1+  TIGIT+  CD8+ T cells are valuable tools for 
predicting the prognosis of HBV-HCC patients. Thus, our 
finding that high levels of PD-1+  TIGIT+  CD8+ T cells pre-
dict poor prognosis in HBV-associated primary liver cancer 
has considerable clinical significance.

The results from this research showed that PD-1+  TIGIT+ 
 CD8+ T cells derived from HBV-HCC patients exhibit 
features of T-cell exhaustion. Given that previous reports 
have demonstrated that PD-1 and TIGIT inhibit antiviral 
and anti-tumor immune responses at the effector phase [45, 
46], upregulation of PD-1 and TIGIT on  TEM cells might 
account for the pathogenesis and progression of liver can-
cer. In chronic viral infections and cancer, the coinhibitory 
receptors CTLA-4, 2B4, LAG-3, and TIM-3 are induced 
by persistent antigen stimulation. In HBV-HCC patients, 
PD-1+  TIGIT+  CD8+ T cells exhibit higher coexpression of 
CTLA-4, 2B4, and LAG-3, indicative of greater exhaustion. 
Furthermore, consistent with exhaustion, PD-1+  TIGIT+ 
 CD8+ T cells is more prone to apoptosis, which may explain 
the reduced absolute T-cell counts and elevated NLRs of 
patients with HBV-HCC, as reported in our early research 
[42]. In contrast, PD-1+  TIGIT+  CD8+ T cells retained 
cytotoxic capacity or exhibited higher cytotoxic capacity. 
Two possible mechanisms can account for this discrepancy. 
Firstly, T cell lose the function in a progressive and hierar-
chical form, with exhausted T cells losing some character-
istics while retaining others at early stages [9]; the ability to 
degranulate is often lost at later stages of dysfunction. Sec-
ond, the PD-1+  TIGIT+  CD8+ T cells analyzed in our study 
are not tumor antigen-specific  CD8+ T cells, which could 
contribute to heterogeneity. Few studies have reported on 
the cytotoxic functions of antigen-specific T cells in HBV-
HCC patients, because HBV-specific responses are rarely 
detected.

The main focus of this study in peripheral blood rather 
than the liver compartment should be acknowledged as a 
limitation. A recent study showed that immune-cell subsets 
become progressively suppressive from circulating blood to 
non-tumor and to tumor microenvironment in liver cancer 
[47]. The change of coinhibitory receptors in circulating T 
cells is consistent with that in tumor-infiltrating T cells. Fur-
thermore, detection of PD-1+  TIGIT+ T cells in peripheral 
blood, which is accurate, simple, and noninvasive, is more 
readily applied in a clinical setting.

Fig. 4  PD-1+  TIGIT+  CD8+ cells in HBV-HCC patients exhibit an 
exhausted phenotype and overactivation. a–b Distribution of TN, 
TCM, TEM, and TEMRA cells in  CD8+ T-cell populations derived from 
patients with CHB, LC, and HCC. Representative flow cytometry 
data gated on CD8 (a) and histograms showing the percentage of 
each T-cell subset in each group (b) are shown (n = 20, 27, and 48 
for the CHB, LC, and HCC groups, respectively). c Percentages of 
PD-1+  TIGIT+ on each subset (TN, TCM, TEM, and TEMRA) of  CD8+ T 
cells. d–e Representative flow cytometry data (d) and plots (e) show-
ing the percentage of HLA-DR+,  CD38+, and  CD38+ HLA-DR+ sub-
populations within PD-1−  TIGIT−, PD-1+  TIGIT−, PD-1−  TIGIT+, 
and PD-1+  TIGIT+  CD8+ T-cell populations from patients with HBV-
HCC (n = 20). f Frequency of 2B4, LAG-3, CTLA-4 and TIM-3 on 
PD-1−  TIGIT−, PD-1+  TIGIT−, PD-1−  TIGIT+, and PD-1+  TIGIT+ 
 CD8+ T cells from HBV-HCC patients. **P < 0.01, ***P < 0.001, 
****P < 0.0001
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Fig. 5  PD-1+  TIGIT+  CD8+ T cells are defective in cytokine produc-
tion, susceptible to apoptosis, and display unique patterns of T-bet/
Eomes expression. a, b Intracellular staining for IFN-γ (a) and 
TNF-α (b) in PD-1+  TIGIT+  CD8+ T cells from HBV-HCC patients 
(n = 19) upon in vitro anti-CD3/anti-CD28 stimulation. c–d Percent-
age of apoptotic (Annexin  V+  7AAD−) cells and expression of CD95 

on PD-1−  TIGIT−, PD-1+  TIGIT−, PD-1−  TIGIT+ and PD-1+  TIGIT+ 
 CD8+ T cells from patients with HBV-HCC (n = 13). e–f Representa-
tive flow cytometry data (e) and histogram (f) showing the percentage 
of T-betdim/Eomeshi and T-bethi/Eomesdim cells in different subpopula-
tions of PD-1+  TIGIT+  CD8+ T cells from patients with HBV-HCC 
(n = 20). *P < 0.05, **P < 0.01, ***P < 0.001
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Conclusion

In conclusion, we have profiled the phenotypes and functions 
of PD-1+  TIGIT+ T cells and their role in the pathogenesis 
and progression of HBV-related liver cancer. We identified 
that PD-1+  TIGIT+  CD8+ T-cell populations are elevated in 
patients with recurrent and progressed HBV-HCC and dem-
onstrated that this T-cell subset exhibits features indicative 
of T-cell exhaustion. These findings highlight the negative 
immune effect of PD-1+  TIGIT+  CD8+ T cells as a predictor 
of poor outcome.
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