
Vol.:(0123456789)1 3

Cancer Immunology, Immunotherapy (2019) 68:1157–1169 
https://doi.org/10.1007/s00262-019-02349-1

ORIGINAL ARTICLE

Clinicopathological implications of  TIM3+ tumor‑infiltrating 
lymphocytes and the miR‑455‑5p/Galectin‑9 axis in skull base 
chordoma patients

Jinpeng Zhou1  · Yang Jiang1,2 · Haiying Zhang3 · Lian Chen1 · Peng Luo1 · Long Li1 · Junshuang Zhao1 · Fei Lv4 · 
Dan Zou4 · Ye Zhang4 · Zhitao Jing1

Received: 16 August 2018 / Accepted: 24 May 2019 / Published online: 13 June 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Chordoma is difficult to eradicate due to high local recurrence rates. The immune microenvironment is closely associated 
with tumor prognosis; however, its role in skull base chordoma is unknown. The expression of Galectin-9 (Gal9) and tumor-
infiltrating lymphocyte (TIL) markers was assessed by immunohistochemistry. Kaplan–Meier and multivariate Cox analyses 
were used to assessing local recurrence-free survival (LRFS) and overall survival (OS) of patients. MiR-455-5p was identified 
as a regulator of Gal9 expression. Immunopositivity for Gal9 was associated with tumor invasion (p = 0.019), Karnofsky 
performance status (KPS) score (p = 0.017), and total TIL count (p < 0.001); downregulation of miR-455-5p was correlated 
with tumor invasion (p = 0.017) and poor prognosis; and the T-cell immunoglobulin and mucin-domain 3 (TIM3)+ TIL count 
was associated with chordoma invasion (p = 0.010) and KPS score (p = 0.037). Furthermore, multivariate analysis indicated 
that only  TIM3+ TIL density was an independent prognostic factor for LRFS (p = 0.010) and OS (p = 0.016). These results 
can be used to predict clinical outcome and provide a basis for immune therapy in skull base chordoma patients.
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C-Cbl  C-Casitas B lineage lymphoma
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CTLA-4  Cytolytic T lymphocyte-associated Ag-4
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LRFS  Local recurrence-free survival
MiRNAs  MicroRNAs
NC  Negative control
qPCR  Quantitative real-time polymerase chain 

reaction
SOX9  Sex-determining region Y (SRY)-box 9
TIM3  T-cell immunoglobulin and mucin-domain 3

Introduction

Chordoma is a rare malignant neoplasm with an incidence of 
0.08 per 100,000 persons that arises from embryonic noto-
chord remnants, with as many as 32% of tumors located in 
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the clivus region [1–3]. Chordomas can invade surround-
ing neurovascular tissues, making total resection difficult to 
achieve, and there are no effective radiotherapeutic or chem-
otherapeutic options for treatment, which poses a significant 
challenge for clinical treatment and patient prognosis [4–8]. 
Several studies have shown that immunosuppression affects 
the proliferation and invasion of tumors in gastric and breast 
cancer and glioma. Novel immune checkpoint proteins such 
as PD-1, PD-L1, and cytolytic T lymphocyte-associated 
Ag-4 (CTLA-4) modulate the apoptosis and immunosup-
pression of tumor-infiltrating lymphocytes (TILs) to enable 
tumors to escape immune surveillance [9–13]. However, lit-
tle is known about the efficacy of immunotherapy for chor-
domas [14, 15]. The identification of chordoma-specific 
immune checkpoint proteins could improve therapeutic 
efficacy and patient prognosis.

As the major subtypes of TILs, the cluster of differen-
tiation 8 (CD8)+ TILs and  FOXp3+ TILs have been shown 
to correlate with the clinical prognosis of different cancers 
[16, 17]. Most  CD8+ TILs can recognize particular tumor-
associated antigens presented on MHC class I molecules 
at the cancer cell surface and possess the ability to destroy 
cancer cells directly [18].  FOXp3+ TILs have been known to 
disrupt anti-tumor activity by inhibiting activation of various 
immune cells and are implicated in the immune escape of 
cancer cells [17]. T-cell immunoglobulin and mucin-domain 
3 (TIM3)+ TIL density was associated with the accumula-
tion of TILs in the microenvironment. TIM3, a transmem-
brane protein that contains an immunoglobulin and a mucin-
like domain, was originally identified as a specific molecule 
expressed on Th1 cells and cytotoxic T cells [19–21]. Galec-
tin-9 (Gal9), a member of the S-type lectins, is one of the 
previously identified TIM3 ligands [22–24]. When binding 
to TIM3 on T cells, it can generate an inhibitory signal to 
induce the apoptosis of T cells [25]. In addition, other stud-
ies have shown that the expression of TIM3 is associated 
with dysfunctional or exhausted lymphocytes, which depend 
on the ability of TIM3 to modulate TCR signaling [26]. Pre-
vious clinical trials have already shown immunosurveillance 
by TIM3/Gal9 pathway expression in gliomas, osteosarco-
mas and gastrointestinal stromal tumors [27–29].

MicroRNAs (miRNAs) are a class of small, non-coding, 
single-stranded RNAs that are known to regulate the immune 
response [30, 31]. Several studies have shown that miR-21 
and miR-124 are downregulated in the tumor microenvi-
ronment as compared to normal tissue and target relevant 
immune signaling pathways to modulate the immunosup-
pressive effects of tumors [32, 33]. A recent study showed 
that high miR-22 expression in liver cancer disrupted the 
interaction between Tim-3 and Gal9, prevented apoptosis 
of lymphocytes, partially restored effector T-cell function, 
and enhanced the tumor immune response, thereby reduc-
ing tumor cell proliferation and immune escape [34]. In the 

present study, we investigated the relationship between the 
expression of Gal9, miR-455-5p, and  TIM3+ TIL densities 
and clinicopathological features and prognosis of skull base 
chordoma patients. Gal9 overexpression in chordoma was 
associated with TIL infiltration, whereas low miR-455-5p 
expression was related to increased tumor invasion. In addi-
tion, patients with both negative Gal9 and high miR-455-5p 
expression had longer survival times. Finally,  TIM3+ TILs 
were independent predictors of LRFS and OS.

Methods and materials

Patients and specimens

We retrospectively examined 93 chordoma tissue specimens 
from skull base chordoma patients who underwent surgery 
at the First Affiliated Hospital of China Medical University 
between January 2010 and January 2013. Clinicopathologi-
cal features, including age, sex, tumor size, invasion condi-
tion, preoperative recurrence, the extent of resection, Kar-
nofsky performance status (KPS) score and histopathology 
were retrospectively reviewed from patients’ medical records 
(Table 1). The exclusion criteria for this study included 
patients who received any type of tumor-specific therapy 
and patients who suffered from other diseases that affect 
genetic changes or prognosis.

As gross resection of skull base chordoma is difficult to 
achieve, tumor progression was defined as recurrence or 
re-growth of the residual tumor in this study. Chordoma 
diagnosis was made from the histological examination of 
hematoxylin and eosin (HE)-stained tumor tissue sections 
by two pathologists as previously described [35]. As a result, 
this group only included conventional and chondroid types. 
To facilitate comparison of resection extent, tumor resec-
tion was defined as follows: (> 90%) gross total resection 
and subtotal resection; (≤ 90%) partial removal and biopsy. 
Tumor invasion was defined as chordoma invading into 
adjacent bone or the dura structure, which was detected by 
radiographical examinations such as preoperative MRI and 
computed tomography (CT) images [36]. All patients under-
went pre-operative MRI or CT to determine whether the 
invasion was present.

Patient characteristics

This study included 93 patients with skull base chordoma 
who underwent radical resection in our hospital. There were 
53 males and 40 females with an average age of 45.8 years 
(range 9–74 years). Seventy-four patients had the conven-
tional chordoma subtype and 19 patients had the chondroid 
subtype. The largest tumor diameter was 4.6 cm. All skull 
base chordomas were located in the clival region. The clivus 
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was divided into three parts (superior, middle and inferior) 
by anatomical structure [37]. There were 45 chordomas in 
the superior clivus, 30 chordomas in the middle clivus and 
18 chordomas in the inferior clivus. Fifty patients (53.8%) 
underwent postoperative image-guided radiation therapy. 
The radiotherapy dose-fractionation schedule was approxi-
mately 66–78 Gy at 2 Gy per day. Other patient characteris-
tics are summarized in Supplementary Table 1.

Follow‑up

The median follow-up period was 36.9  months (range 
14–66 months), during which 35 patients died. Local recur-
rence-free survival (LRFS) was defined as the time inter-
val from the date of surgery to the diagnosis of the first 
local recurrence. Similarly, OS was defined as the inter-
val between surgery and death from any cause. No patient 
was lost to follow-up in this study. For surviving patients, 
data were censored at the last follow-up at the time of the 
analysis.

Cell culture

The human chordoma cell line UM-Chor1 was maintained 
in a 4:1 mixture of Iscove’s modified Dulbecco’s medium 
(HyClone, Logan, UT, USA) and RPMI-1640 medium 
(HyClone), supplemented with 10% fetal bovine serum 
(FBS, Gibco, Carlsbad, CA, USA) and 1% penicillin/strepto-
mycin (Gibco) at 37 °C with 5%  CO2.

Quantitative real‑time PCR (qPCR)

Total miRNA was extracted from the frozen skull base chor-
doma tissues via RNAiso for Small RNA (TaKaRa, Kyoto, 
Japan) according to the manufacturer’s instructions. RNA 
quantity and quality were determined using the NanoDrop 
2000 (Thermo Fisher Scientific, Waltham, MA, USA). The 
isolated RNA was then reverse transcribed using the Tian-
Script RT kit (Tiangen Biotech, Beijing, China) and real-
time PCR was performed using SYBR FAST qPCR Mas-
ter Mix (Kapa Biosystems, Inc., Wilmington, MA, USA) 
according to the manufacturer’s protocol. U6 RNA was 
chosen as an internal control for normalization. The primer 
sequences were designed by TaKaRa and the sequences were 
as follows: miR-455-5p stem–loop: 5ʹ-GTC GTA TCG AGT 
GGA GCG TCG GAG CTA TAC GCA CTC GAT ACG ACA CAA 
A-3ʹ, miR-455-5p forward: 5′-CGA GCT TCC TTC TGC AGG 
T-3′, miR-455-5p reverse: 5′-CAC CAC TGC CAT CCC ACA 
-3′, U6 stem–loop: 5ʹ-GTC CTA TCC AGT GCA GGG TCC 
GAG GTG CAC TGG ATA CGA CAA AAT ATG GAAC-3ʹ, 
U6 forward: 5ʹ-TGC GGG TGC TCG CT TCG CAG C-3ʹ, U6 
reverse: 5ʹ-CCA GTG CAG GGT CCG AGG T-3ʹ.Ta
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Immunohistochemistry

Immunohistochemistry staining of chordoma specimens was 
performed as previously described [38]. Paraffin-embedded 
sections were labeled with primary antibody against Gal9, 
TIM3, CD8, and FOXp3 (1:200, Abcam, Cambridge, UK) 
and samples were imaged under a BX-51 light microscope 
(Olympus).

Semiquantitative analysis

Immunoreactivity was evaluated and scored semi-quantita-
tively by two pathologists who were blinded to the patients’ 
clinical data. As previously described, the overall degree of 
TILs was evaluated to be: absent (0), rare/few (1), moder-
ate (2) or prominent (3); the tissue samples were classified 
into negative expression (score 0–1) and positive (score 2–3) 
[39, 40]. Gal9 expression was evaluated by staining intensity 
and percentage of positive cells. The staining intensity was 
determined as follows: absent—0; weak—1; moderate—2; 
and strong—3. The percentage of positive cells was scored 
as follows: 0%, 0; 1–10%, 1; 11–50%, 2; 51–80%, 3; and 
81–100%, 4. The immunohistochemical score was defined 
as the multiplication of both grading results (percentage of 
positive cells × staining intensities) and the positive expres-
sion was defined as a score ≥ 4 [35, 41, 42].

Quantitative evaluation

Quantitative evaluation was performed by examining each 
section using at least three different high-power fields with 
the most abundant TILs. The number of  CD8+,  FOXp3+ 
and  TIM3+ TILs was manually counted five times for each 
photograph and the score was re-evaluated when an obvi-
ous difference occurred. Finally, the numbers of positively 
stained cells per unit area  (mm2) were calculated and the 
mean densities were obtained [43].

Bioinformatic analysis

Three online miRNA databases—miRanda (www.micro 
rna.org), miRDB (http://mirdb .org) and TargetScan (www. 
targetscan.org)—were used to predict the possible miRNAs 
that target Gal9 by examining the Gal9 3′-UTR with bioin-
formatics algorithms [44–46]. We summarized the results 
from these three databases and chose candidate miRNAs to 
validate our experiments.

Lentivirus vector, plasmid construction, 
and transduction

The mature miR-455-5p sequence was obtained from 
the miRBase database. The lentivirus-based vector for 

miR-445-5p was constructed by Gene-Chem (Shanghai, 
China) and transfected into UM-Chor1 cells as previously 
described [38]. Then, 10 μg/ml puromycin (Sigma, Santa 
Clara, CA, USA) was used to screen the transfected cells for 
2 weeks and the effectiveness of miR-445-5p was assessed 
using qPCR.

Dual luciferase reporter assay

The dual luciferase reporter assay was performed as previ-
ously described [38]. In brief, UM-Chor1 cells were seeded 
in 96-well plates at a density of 1 × 104 cells per well, fol-
lowing 3′-UTR plasmids co-transfection for 48 h. The Dual-
Luciferase Reporter Assay System (Promega, Madison, WI, 
USA) was used to harvest cell lysates and detect firefly and 
renilla luciferase activities.

Statistical analysis

All statistical analyses were performed using GraphPad 
Prism software version 6.0. The data were analyzed using 
the independent samples t test for continuous variables (pre-
sented as mean ± standard deviation) and the Chi-square test 
for categorical variables. Pearson’s correlation test was used 
to examine the relationship between two continuous vari-
ables. Cutoff Finder Web Application (http://molpa th.chari 
te.de/cutof ) was used to determine the threshold value for 
prognosis analysis [47]. Patient survival curves of OS and 
LRFS were generated using the Kaplan–Meier method and 
log-rank test. The prognostic factors associated with LRFS 
and OS were identified by multivariate Cox analysis. A two-
tailed p value of 0.05 was regarded as significant.

Results

Identification of miR‑455‑5p as a potential regulator 
of Gal9 expression in skull base chordoma

We predicted possible miRNAs that target Gal9 using the 
miRNA databases, miRanda, miRDB, and TargetScan. Only 
miR-455-5p was predicted in all three databases (Fig. 1a). 
We, therefore, evaluated miR-455-5p levels by qPCR and 
Gal9 expression by immunohistochemistry in the 93 chor-
doma cases. There was a negative correlation between miR-
455-5p and Gal9 expression levels (t  =  3.548,  p  =  0.001, r  
= − 0.629, p < 0.001; Fig. 1b and Supplementary Fig. 1a). 
Potential miR-455-5p binding sites in the 3′-UTR of Gal9 
transcript were predicted with miRanda (Fig. 1c). We per-
formed a luciferase reporter assay to determine whether 
miR-455-5p regulated Gal9 expression (Fig. 1d). The trans-
fection efficiency of miR-445-5p in UM-Chor1 cells was 
confirmed by qPCR (Fig. 1e). Relative luciferase activity 

http://www.microrna.org
http://www.microrna.org
http://mirdb.org
http://molpath.charite.de/cutof
http://molpath.charite.de/cutof
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was lower in UM-Chor1 cells co-transfected with pGL3-
Gal9-wt and miR-455-5p than in those co-transfected with 
pGL3-Gal9-wt and miR-negative control (NC) (p < 0.01). 
Additionally, there was no difference in luciferase activity 
between UM-Chor1 cells co-transfected with pGL3-Gal9-mt 
and miR-455-5p as compared to pGL3-Gal9-mt and miR-
NC co-transfection (Fig. 1f). These results indicated that 
miR-455-5p was a regulator of Gal9 expression in skull base 
chordoma.

Relationship between miR‑455‑5p and Gal9 
expression, TIL expression, and clinicopathological 
factors

The level of miR-455-5p in chordoma tissue was sig-
nificantly associated with reduced invasion (t = 2.430, 

p = 0.017, Table 1). Positive Gal9 expression in tumor cells 
was observed in 70/93 patients (75.3%: Supplementary 
Fig. 2a–c). We also found that positive Gal9 expression was 
more common in patients with tumor invasion and lower 
KPS scores (Z = 5.477, p = 0.019 and Z = 11,374, p = 0.001, 
respectively; Table 1).

TILs were present in all 93 patient samples, as determined 
by HE staining. TILs were scored as rare or few in 30 cases 
(32.3%), moderate in 37 cases (39.7%), and prominent in 
26 cases (28%) (Supplementary Fig. 2d–f). Thus, the extent 
of overall TIL expression was negative in 30 (32.3%) and 
positive in 63 (67.7%) cases. TIM3 was expressed in TILs 
in all 93 specimens (Supplementary Table 2 and Supple-
mentary Fig. 2g–i). Average  TIM3+ TIL density was 249.1 
cells/mm2 (Supplementary Table 1).  TIM3+ TILs densities 
were associated with higher invasion into surrounding bone 

Fig. 1  a Identification of a miRNA that potentially regulates Gal9 
expression. b Independent t test results for the association between 
miR-455-5p and Gal9 expression. c Putative miR-455-5p bind-
ing sites in the 3′-untranslated region of Gal9 mRNA predicted by 

miRanda. d Luciferase reporter assays for evaluating Gal9 regula-
tion by miR-455-5p. e Transfection efficiency of miR-455-5p in UM-
Chor1 cells. f UM-Chor1 cells co-transfected with pGL3-Gal9-wt and 
miR-455-5p vs. cells co-transfected with pGL3-Gal9-wt and miR-NC
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structures and lower KPS score (t = 2.627, p = 0.010, and 
t = − 2.112, p = 0.037, respectively; Table 1). The pattern 
of  CD8+ or  FOXp3+ TILs in chordoma tissues were clas-
sified into three categories and these TIL populations were 
also detected in all specimens (Supplementary Fig. 2j–l and 
Supplementary Fig. 2m–o). The mean  CD8+ and  FOXp3+ 
TILs densities were 408.1 and 174.4 cells/mm2, respectively 
(Supplementary Table 1). However, there was no statisti-
cally significant association between  CD8+ or  FOXp3+ TIL 
density and clinicopathological features (Table 1).

Correlation between TIL subtypes in the chordoma 
microenvironment and miR‑455‑5p/Gal9 axis

Tumors positive for Gal9 expression were more likely to 
exhibit total infiltration of TILs (χ2 = 15.19, p < 0.001, Sup-
plementary Table 3 and Supplementary Fig. 3a). However, 
miR-455-5p expression was not correlated with TIL infil-
tration into the chordoma microenvironment (Fig.  2a). 
However, the density of  TIM3+,  CD8+, and  FOXp3+ TILs 
were not associated with Gal9 expression (Fig. 2b–d). Other 

correlations/associations presented in Supplemental Table 3 
are shown in Supplementary Figs. 1 and 3.

Prognostic value of miR‑455‑5p and Gal9 expression 
and TIL subtypes in skull base chordoma patients

During the follow-up period, tumor progression was 
observed in 45 patients (48.4%) and estimated 1- and 3-year 
LRFS rates were 84.7% and 34.6%, respectively. 41 patients 
(44.1%) died and estimated 1-, 3-, and 5-year OS rates were 
100, 79.2, and 44.3%, respectively. The median survival time 
of LRFS and OS was 23.0 months (range 3–40 months) and 
42.0 months (range 14–66 months), respectively.

We predicted the cutoff values for miR-455-5p expression 
level and TIL densities associated with LRFS and OS (Sup-
plementary Table 4). According to the cutoff value, patients 
were divided into high and low expression groups. We found 
that high tumor miR-455-5p expression was associated with 
better LRFS (p = 0.002, Table 2 and Fig. 3a). Furthermore, 
Kaplan–Meier analysis showed that coexpression of Gal9 
and miR-455-5p in tumor cells was related to survival time 
(p = 0.010, Table 2 and Fig. 3b). When compared to positive 

Fig. 2  a Association between miR-455-5p expression and total TIL counts. b–d Association between Gal9 expression and  TIM3+ TIL densities 
(b),  CD8+ TIL densities (c),  FOXp3+ TIL densities (d)
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Gal9 and high miR-455-5p levels, positive Gal9 expression 
and low miR-455-5p levels were correlated with worse sur-
vival (p = 0.006). In addition, patients with low  TIM3+ TIL 
counts had longer LRFS (p  < 0.001, Table 2 and Fig. 3c). 
Multivariate Cox analysis revealed that  TIM3+ TIL count 
was an independent predictor of LRFS (p = 0.010, Table 2). 

Survival analysis revealed that high tumor miR-455-5p 
expression was related to longer OS (p = 0.018, Table 3 and 
Fig. 3d). Furthermore, coexpression of Gal9 and miR-455-5p 
in chordoma was associated with OS (p = 0.049, Table 3). 
Positive Gal9 expression and low miR-455-5p levels were 
related to worse survival compared with positive Gal9 
expression and high miR-455-5p levels (p = 0.016). We 
also found that there was a significant difference in OS 
between patients with high vs. low  TIM3+ TIL counts 
(p = 0.009, Table 3 and Fig. 3e). Multivariate Cox analy-
sis showed that  TIM3+ TIL counts were associated with an 
increased risk of death (p = 0.016, Table 3).

Discussion

In the present study, we found that miR-455-5p expression 
was associated with patient survival. In addition, patients 
with both negative Gal9 and high miR-455-5p expression 
had longer survival times. The results showed that  TIM3+ 
TILs were independent predictors of LRFS and OS. These 
findings may be useful for predicting the prognosis of 

chordoma patients and provide a basis for individualized 
immunotherapy.

Although the brain was previously believed to be an 
immune privileged organ, there is an evidence suggesting 
that it serves as an immune site with a microenvironment 
that provides opportunities for immunotherapy of central 
nervous system tumors [13]. TIM3 protein is mainly local-
ized on the cell surface and its expression on T cells could 
modulate the immune response [48]. TIM3 also has been 
investigated in myeloid cells, such as monocytes, mac-
rophages, and dendritic cells. However, the function of 
TIM-3 in myeloid cells and the underlying mechanisms are 
not fully understood [49]. Gal9 is a ligand of TIM3 that is 
expressed on numerous tumor cells and whose expression 
may be induced by interferon-γ secreted by multiple cell 
types [50, 51]. Gal9 binding to TIM3 on T cells can lead to 
T cell apoptosis, inhibition of T cell responses, and immune 
escape of tumor cells [52]. Thus, the TIM3/Gal9 pathway 
negatively regulates T cell-mediated immune responses [53]. 
However, in our study, we found that tumors positive for 
Gal9 expression were more likely to exhibit total infiltra-
tion of TILs by immunohistochemistry and semiquantita-
tive analysis. We speculated that TILs contained not only 
T cells, but also other cells such as NK cells and dendritic 
cells and that the binding of Gal9 and TIM3 resulted in the 
apoptosis of T cells, which might increase the infiltration 
of other types of lymphocyte, thereby increasing overall 
TIL infiltration. There was no direct relationship between 
 TIM3+ TILs and overall TIL infiltration. We also found that 

Table 2  Univariate and multivariate analyses of different prognostic parameters for local recurrence-free survival of 93 skull base chordoma 
patients

Factors Categories Univariate analysis Multivariate analysis

χ2 p values p values HR (95%CI)

Sex Male/female 0.706 0.401
Age ≤ 50/> 50 0.005 0.943
Tumor size ≤ 4 cm/> 4 cm 0.442 0.506
Location Superior/middle /inferior 0.426 0.808 0.099 0.363 (0.113–1.166)
Invasion condition Yes/no 15.591 0.001 0.079 1.899 (0.929–3.883)
Preoperative recurrence Yes/no 2.540 0.111
Extent of resection > 90%/≤ 90% 9.307 0.002 0.237 0.655 (0.325–1.321)
KPS ≥ 80/< 80 0.358 0.549
Histopathology Conventional/chondroid 0.094 0.759
Expression of overall TILs Positive/negative 0.326 0.568
Tumor galectin-9 expression Positive/negative 1.098 0.295
Tumor miR-455-5p expression High/low 9.251 0.002 0.357 1.379 (0.696–2.733)
Galectin-9/miR-455-5p coexpression Negative/low 9.269 0.010 0.826 1.126 (0.391–3.239)

Negative/high
Positive/low
Positive/high

TIM3+ TILs High/low 12.606 < 0.001 0.010 0.425 (0.221–0.815)
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according to our previous inference, Gal9 and  TIM3+ TIL 
expression should be negatively correlated. However, our 
results showed that there was no correlation between Gal9 
and  TIM3+ TIL expression. This may be because of the 
small sample size in our study. We will expand the sample 
size in future studies to confirm our inference. In addition, 
recent studies have shown that low  TIM3+ TIL counts are 
associated with better prognosis in hepatocellular carcinoma 
and gastric cancer patients, which is consistent with our find-
ings [54, 55].

Recent studies showed that miR-1, miR-16-5p, miR-
219-5p, miR-574-3p, and miR-1237-3p were downregulated 
in chordoma tissues. MiR-1, miR-16-5p, and miR-219-5p 
were shown to inhibit chordoma cell proliferation or inva-
sion. Moreover, miR-574-3p was investigated to promote 
immune escape by regulating the expression of PD-L1 in 
the PD-1/PD-L1 axis [56–61]. In this study, we predicted 
and confirmed that miR-455-5p is downregulated and can 
negatively regulate Gal9 expression. It has been suggested 
that miR-455-5p expression is downregulated in gastric can-
cer tissue and overexpression of miR-455-5p can inhibit the 
proliferation, invasion, and metastasis of gastric cancer cells 
[62], which is consistent with our findings. However, another 
study showed that miR-455-5p expression was upregulated 
in colon cancer and promoted colon cancer cell prolifera-
tion and inhibited apoptosis by suppressing Gal9 expres-
sion [63]. Thus, the expression level of miR-455-5p varies 
depending on the cancer type. Our results also showed that 
there was a positive correlation between TIM3 and miR-
455-5p expression. Therefore, we inferred that the lower 

expression of miR-455-5p could upregulate the expres-
sion of Gal9 in chordoma and then induce the apoptosis of 
 TIM3+ lymphocytes and lower  TIM3+ TIL densities in chor-
domas. It remains unclear whether miR-455-5p can prevent 
the binding between TIM3 and Gal9. Furthermore, patients 
with high miR-455-5p and negative Gal9 levels showed pro-
longed survival. These results indicate that miR-455-5p may 
provide a therapeutic strategy for patients with chordoma by 
targeting the TIM3/Gal9 pathway.

Several studies have reported that oncogenes such as sex 
determining region Y (SRY)-box 9 (SOX9) or c-Casitas B 
lineage lymphoma (c-Cbl) are associated with the prognosis 
of skull base chordoma patients [35, 64]. However, a single 
biomarker cannot predict clinical outcome and drug treat-
ment response in chordoma due to intratumoral heterogene-
ity. It has been suggested that the tumor immune microenvi-
ronment is minimally affected by tumor heterogeneity [65]. 
In our study, we found that  TIM3+ TILs in the tumor micro-
environment were associated with LRFS or OS of skull base 
chordoma patients. These findings may allow the predic-
tion of patient survival and provide a basis for personalized 
immune therapy. However, additional studies are required 
to elucidate the detailed mechanisms of miR-455-5p and 
Gal9 signaling and to explore the influence of other immune 
factors on the prognosis of skull base chordoma patients.
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