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Abstract
Lymph nodes draining the primary tumor are essential for the initiation of an effective anti-tumor T-cell immune response. 
However, cancer-derived immune suppressive factors render the tumor-draining lymph nodes (TDLN) immune compro-
mised, enabling tumors to invade and metastasize. Unraveling the different mechanisms underlying this immune escape will 
inform therapeutic intervention strategies to halt tumor spread in early clinical stages. Here, we review our findings from 
translational studies in melanoma, breast, and cervical cancer and discuss clinical opportunities for local immune modulation 
of TDLN in each of these indications.
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Abbreviations
BrC	� Breast cancer
cDC	� Conventional dendritic cell(s)
CxCa	� Cervical cancer
ICD	� Immunogenic cell death
LN−	� Tumor-negative lymph node
LN+	� Tumor-positive lymph node
LNDC	� Lymph node resident dendritic cell(s)
NAC	� Neo-adjuvant chemotherapy
pCR	� Pathologic complete response
pDC	� Plasmacytoid dendritic cell(s)
PGE2	� Prostaglandin-E2
SLN	� Sentinel lymph node(s)
SNB	� Sentinel node biopsy
TDLN	� Tumor-draining lymph node(s)

Introduction

Many complex processes are involved in the metastatic 
spread of cancer cells from the primary tumor to lymph 
nodes and distant organs. The sentinel lymph node (SLN) is 
the first node to receive lymphatic drainage from the primary 
lesion and is of great importance in initiating an effective 
anti-tumor immune response; it also constitutes a first line 
of defense against metastatic spread [1]. For many malignan-
cies, the presence of tumor cells in tumor-draining lymph 
nodes (TDLN), and in the SLN in particular, is a key prog-
nostic factor and, in some cases, predicates the course of 
treatment [2]. In some tumors, e.g., cervical cancer (CxCa) 
or oral cancer, a complete lymphadenectomy provides over-
all survival benefit [3–6]. However, for other indications, 
such as melanoma [7] and breast cancer (BrC), this is not 
the case [8].

Tumor‑draining lymph nodes as a target 
for immunotherapy

The main focus of current immunotherapeutic strategies is 
on targeting the microenvironment of primary tumors and/
or metastatic lesions, most notably by checkpoint inhibitors. 
As therapeutic targets, TDLN, and SLN in particular, are 
relatively undervalued, and clinically under-utilized. They 
are, nonetheless, essential players in anti-tumor immunity. In 
this focused review, we will discuss the importance of, and 
clinical opportunities for, therapeutic targeting of TDLN, 
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based on findings from pre-clinical and clinical studies car-
ried out by our group.

In the TDLN, tumor-specific T-cell responses are ini-
tiated. Here, effective priming of cytotoxic CD8+ T cells 
takes place upon tumor-specific (neo)antigen recognition, 
presented by APC, including DC and macrophages [9]. 
Although DC represent only a small population of all the 
immune cell subsets in the LN, they are crucial in initiat-
ing an effective immune response. In cancer, however, 
TDLN are under the influence of tumor-derived factors, 
such as extracellular vesicles [1], IL-6 [10], TGF-β [11], 
prostaglandin-E2 (PGE2) [10], and VEGF [12, 13]. As a 
result, DC are suppressed and acquire an immature and M2 
macrophage-like phenotype, and will, therefore, not prop-
erly cross-present in TDLN [14]. During tumor progression 
and prior to metastasis, TDLN undergo many additional 
profound alterations leading to invasion by cells derived 
from the primary tumor [1, 2, 15]. Such alterations include 
increased lymphangiogenesis, blood vessel remodeling, 
and increased chemokine and cytokine secretion, which 
can ultimately lead to changes in immune cell composition, 
resulting in a ‘tumor-supportive’ microenvironment, i.e., the 
pre-metastatic niche [1]. Moreover, with the ability of tumor 
cells to evade immune surveillance by the upregulation of 
immunosuppressive ligands and downregulation of MHC 
class I-molecules, this can eventually lead to the metastatic 
growth of tumor cells that have reached the TDLN [1].

Thus, immune modulation of TDLN could generate effec-
tive tumor-specific T-cell responses and in this way prevent 
metastatic spread. Considering that only a minor fraction 
of systemically administered drugs reaches the TDLN [16], 
locally applied therapies may be more effective in counter-
acting immune suppression in TDLN. Based on immune 
profiling and ex vivo proof-of-concept studies, we have con-
ducted and are currently conducting a number of clinical 
trials aimed at immune potentiation of the TDLN through 
local delivery of immune modulatory drugs.

Immune profiling of lymph nodes in cancer

Over the past 2 decades, our group has pioneered the flow 
cytometry-based immune profiling of TDLN in humans. In 
these studies, we employ a scraping method (i.e., we scrape 
the cutting surface of a bisected TDLN) to obtain viable leu-
kocytes from the TDLN, which was shown not to interfere 

with diagnostic procedures [17]. Compared to dissociation 
of the entire node, we found similar viabilities and pheno-
typic characteristics of T-cell and DC subsets in scrapes 
[18]. In addition, using multiparameter (fluorescent) IHC, 
we are currently working on improving our understanding 
of the TDLN architecture and cellular networks by study-
ing (co-)localization of diverse immune cell subsets in their 
microenvironment [19–21].

The influence of primary and invasive melanoma 
on conventional DC in SLN

In early pioneering studies on the immune status of mela-
noma SLN, Cochran and colleagues convincingly demon-
strated that DC in SLN were more immune suppressed than 
DC in further downstream located TDLN [22, 23]. This 
observation suggested DC to be a prime target of melanoma-
induced immune suppression, consistent with their pivotal 
role in initiating T-cell-mediated anti-tumor immunity. Our 
group was the first to characterize and functionally test 
conventional DC (cDC) subsets, distinguishing migratory 
from LN-resident (LNDC) subsets, in human skin-draining 
LN using multiparameter flow cytometry [24] closely fol-
lowed by Segura and colleagues [25]. We identified two 
migratory CD1a+ cDC subsets, i.e., dermal DC (DDC) and 
Langerhans cells (LC), and two LNDC CD1a− cDC subsets, 
distinguished by absence or presence of CD14 expression 
(see Table 1). The relative importance and varying roles of 
these cDC subsets in the priming of immune responses in 
healthy human LN remains largely elusive, but some clues 
are emerging. The migratory subsets take up antigens in 
the skin and will subsequently migrate to the skin-draining 
LN, where they can present those antigens to T cells. The 
two LNDC subsets are found in skin-draining LN but not 
among DC migrated from skin explants and are recruited 
from the peripheral blood to the LN [26]. They are key play-
ers in cross presentation as evidenced by the high surface 
levels of cross-priming associated markers CLEC9A and 
BDCA3/CD141 (as well as expression of BATF3 mRNA; 
van de Ven et al., unpublished data) and by correlation of 
their frequencies to cross-presentation ability of melanoma 
SLN single-cell suspensions, which we observed after 
TLR9-mediated conditioning [26]. Importantly, although 
the migratory subsets appeared more phenotypically mature 
under steady-state conditions, ex vivo isolated LNDC (both 

Table 1   Conventional dendritic 
cell subsets found in skin-
draining lymph nodes

Name Phenotype [24] Origin [24] Most affected by [27]

Langerhans cells CD1ahiCD11cint Skin (migratory) Primary tumor
Dermal dendritic cells CD1aintCD11chi Skin (migratory) Primary tumor
CD14− LNDC CD1a−CD11c+BDCA3hiCD14− Circulation (LN resident) LN metastasis
CD14+ LNDC CD1a−CD11c+BDCA3loCD14+ Circulation (LN resident) LN metastasis
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CD14− and CD14+) subsets proved more powerful in vitro 
primers of allogeneic effector T cells, which might tie in 
with higher release levels of T-cell-activating cytokines [24]. 
Functional differentiation between the CD14− and CD14+ 
subsets remains obscure, but both may be involved in the 
priming of systemic anti-tumor effector T-cell responses, as 
we found the activation state of either to be associated with 
distant recurrence-free survival in early stage melanoma 
[27]. Another DC subset in skin-draining LN are plasmacy-
toid DC (pDC) [26]. These cells are poor antigen presenters, 
but are powerful producers of type I interferons upon TLR 
activation [28]. As such, pDC play an important role in the 
activation of cDC and other immune cells.

In melanoma, we observed a significant negative corre-
lation between the activation state (based on CD83 expres-
sion) of DDC and LC in the SLN and primary tumor burden 
(Breslow thickness) [27]. Interestingly, primary tumor bur-
den was not shown to have a significant effect on either the 
frequency or activation state of LNDC subsets. However, 
the presence of SLN tumor metastases did have a significant 
impact on both the frequency and activation state of conven-
tional LNDC, the latter showing a reverse correlation with 
the size of the metastasis (Table 1). This suggests that the 
primary melanoma can create a pre-metastatic niche in the 
TDLN by suppressing the activation states of migratory cDC 
subsets, which was shown to be associated with a shorter 
local recurrence-free survival. Subsequently, TDLN metas-
tasis suppress LNDC which, interestingly, was shown to be 
associated with a worse distant recurrence-free survival [27]. 
The latter indicates an essential role for conventional LNDC 
in the induction of effective systemic anti-tumor immunity.

Immune modulation of the melanoma SLN

The 10-year melanoma-specific survival of stage I and II 
melanoma patients, defined as any primary tumor with-
out regional or distant metastases, ranges from 98 to 75% 
depending on risk factors, such as Breslow tumor depth 
and tumor ulceration. After tumor spread to the regional 
LN, the 10-year melanoma-specific survival can drop to as 
low as 24% in patients with stage IIID melanoma [29]. The 
unmet medical need for many of these patients stems from 
the fact that there is no widely used adjuvant treatment avail-
able to reduce the chances of disease recurrence, although 
systemic treatment (neo-adjuvant, i.e., preceding complete 
lymph node dissection) with immune checkpoint inhibitors 
in patients who are at very high risk of recurrence (high-risk 
stage III) and treatment with dual BRAF and MEK inhibitors 
in patients with BRAF V600E or V600K mutated stage III 
melanoma, has shown to improve recurrence-free survival 
[30–33], and has recently been approved by the FDA. For all 
other early stage patients, there is a “wait and see” approach 
after surgical removal of the primary lesion and SLN.

Interestingly, we were able to show in multiple rand-
omized and placebo-controlled clinical trials that there is a 
good rationale to treat these early stage melanoma patients 
with local immunotherapy aiming to prevent loco-regional 
and, eventually, distant spread, while minimizing immune-
related side effects in this essentially healthy population. 
Our earliest results were published in 2004 and reported on 
a 2-armed (1:1) randomized placebo-controlled phase II trial 
in which 12 patients received four daily intradermal injec-
tions directly adjacent to the scar from the primary mela-
noma excision from day − 3 to day 0, just before the sentinel 
node biopsy (SNB) and re-excision of the (former) primary 
tumor site. Patients received either 3 μg/kg body weight 
recombinant human GM-CSF dissolved in 1 mL saline or 
1 mL plain saline alone. GM-CSF administration resulted in 
higher frequencies and enhanced maturation and activation 
state of CD1a+ migratory cDC in the SLN [34]. In two more 
recent trials, we showed that low-dose intradermal injec-
tions with the TLR9 agonist CpG-B, either alone or com-
bined with GM-CSF, at 1 week prior to the SNB, resulted 
in enhanced activation of conventional CD14− and CD14+ 
LNDC as well as of pDC in the SLN [26, 35]. Interestingly, 
this local immunotherapy instigated local (i.e., in the SLN) 
as well as systemic tumor-specific CD8+ T-cell reactivity 
[36]. A recent meta-analysis showed that patients in the 
treatment arm of these two studies had fewer tumor-positive 
SLN after SNB and a longer recurrence-free survival [37]. 
These studies thus deliver an important proof-of-concept, 
showing that local immune modulation, specifically of 
TDLN, may lead to systemic protection against later tumor 
recurrences (see Fig. 1). We are currently planning a con-
firmatory randomized and placebo-controlled phase II clini-
cal trial with a next-generation CpG oligodeoxynucleotide 
in 214 patients with stage II melanoma (Netherlands Trial 
Registry no. NTR7355).

Immune modulation of TDLN in breast cancer

Comparable DC-targeting therapeutic approaches may be 
implemented in patients with BrC, since both melanoma 
and BrC drain to LN in the skin catchment area with com-
parable migratory and LN-resident DC subset distribution 
profiles. In BrC, neoadjuvant chemotherapy (NAC) is one 
of the treatment options. A pathologic complete response 
(pCR) upon NAC is an independent predictor for favorable 
clinical outcome in all molecular subtypes [38]. Interest-
ingly, T-cell infiltration in BrC holds predictive value for 
response to chemotherapy [39]. Since certain cytostatic 
drugs can induce immunogenic cell death (ICD), leading to 
the release of tumor-associated antigens [40], there is a clear 
rationale to combine NAC with DC-potentiating strategies 
to optimize tumor-specific T-cell priming in the TDLN. An 
early study from 1999 already showed a favorable effect on 
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patient survival of combined GM-CSF with NAC in patients 
with locally advanced BrC [41]. Patients were treated with 
doxorubicin, cyclophosphamide (both agents known to 
induce ICD) and GM-CSF at three-weekly intervals. After 
a maximum of six cycles, patients underwent surgery and 
postoperative radiotherapy. We observed higher frequencies 
of mature DCs in the TDLN of these patients, suggesting 
that GM-CSF is able to improve patient outcome via DC 
recruitment and maturation, and a subsequent anti-tumor 
response [42]. Interestingly, we have observed a similar rela-
tionship between hampered activation of LNDC and tumor 
involvement of SLN in patients with BrC as we previously 
reported in melanoma (van Pul et al. manuscript submitted). 
Therefore, in analogy to our clinical findings in melanoma, 
CpG-based local immune potentiation in combination with 
NAC may improve response rates in patients with BrC. This 
certainly deserves further (pre-)clinical exploration.

The role of TDLN in cervical cancer

In contrast to melanoma and BrC, CxCa is caused by a 
persistent infection with high-risk strains of the human 
papillomavirus (HPV), mainly HPV16 and HPV18. HPV-
specific T cells [43] as well as T cells that target non-viral 
tumor-associated (neo-)antigens [44] have been detected in 
CxCa TDLN. As HPV-derived antigens are highly immuno-
genic, it is assumed that an immunosuppressive environment 

facilitates immune escape and thereby causes lymphatic 
spread.

CxCa is a locally invading disease and initially metas-
tasizes to pelvic TDLN. The presence of LN metastases 
in patients with CxCa is a crucial prognostic factor [45]. 
Importantly, survival benefit was observed for CxCa patients 
who underwent complete lymphadenectomy upon low-vol-
ume disease detection in the SLN, or even upon the removal 
of solely tumor-negative LN [3, 5], indicating the presence 
of an unfavorable immune microenvironment in CxCa-
draining pelvic LN. To understand the cellular basis for this 
phenomenon and to find new immunotherapeutic targets that 
would allow immune stimulatory conversion of the TDLN 
microenvironment, we performed several studies in which 
we found various immune escape mechanisms exploited by 
CxCa.

The influence of PD‑L1+ M2‑like macrophages 
on cervical cancer progression

Interestingly, flow cytometric characterization of diverse 
immune cell subsets in TDLN of CxCa patients, showed 
that in contrast to melanoma and BrC, Langerhans cells 
were hardly present in CxCa LN. Although higher levels 
of CD1a+ DCs were present in tumor-positive LN (LN+) 
as compared to tumor-negative LN (LN−) [46], these cells 
might have been derived from recruited and tumor-converted 

Fig. 1   In melanoma and breast cancer draining SLN, tumors can 
effectively suppress the activation state of LN-resident cDC (a). 
Immune modulation of the SLN by local injection of TLR-9 agonist 

CpG-B results in activation of LN-resident cDC subsets (through 
type-1 IFN release by pDC), which ultimately leads to systemic pro-
tection against later tumor recurrences (b)
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monocytes rather than conventional migratory CD1a+ DC. 
Remarkably, we did not find evidence of decreased LNDC 
activation. These results point to the requirement for a differ-
ent immunotherapeutic approach aimed at TDLN condition-
ing in CxCa, than the one tested and proposed for melanoma 
and BrC, respectively.

In addition to higher levels of CD1a+ DCs, elevated lev-
els of activated CD8+ T cells in LN+ suggested immune 
activation [46]. However, this activation was apparently 
overruled by a highly immunosuppressed microenviron-
ment in LN+ compared to LN−, with high expression levels 
of the checkpoint molecules PD-1 and CTLA-4 on T cells 
and the presence of MDSC. Moreover, high rates of Tregs 
were observed in LN+, which correlated with the rates of 
M2-like CD14+PD-L1+ APC. A cytokine release profile 
consistent with an immune suppressive microenvironment 
was observed as well, with high IL-10, IL-6, TNFα, and low 
IFNγ expression. In a comparative study of all dissected 
cervical TDLN from five patients with CxCa, we found that 
immune suppression (identified as low CD8+ T cell/FoxP3+ 
Treg ratios) preceded actual metastasis, creating metastatic 
niches in the tumor-draining lymphatic catchment area [21]. 
We hypothesize that primary tumors are able to recruit (pos-
sibly via the secretion of CCL2) [47] and polarize CD14+ 
monocytes into suppressive PD-L1+ M2-like macrophages 
[(co)-expressing CD14 and/or CD163] [48]. These M2-mac-
rophage-like cells, induced by tumor-derived factors, are 
incapable of stimulating proper CD8+ T-cell responses, 
favor Treg expansion, and facilitate tumor progression by 
the production of pro-angiogenic and pro-tumor-invasive 
factors [14, 49].

In aggregate, our findings support the clinical explora-
tion of immunotherapies in CxCa aimed at converting the 
prevailing immunosuppressive conditions in the primary 
tumor and TDLN into an immune-activated tumor-targeting 
environment.

Modulating TDLN in cervical cancer

Recently, an immune checkpoint inhibitor of PD-1, pem-
brolizumab, was approved by the FDA for patients with 
recurrent or advanced CxCa based on an overall response 
rate of 14.3% and a complete response rate of (only) 2.6% 
[50]. Based on these results, and the fact that CxCa is 
mainly a locally invasive disease, we believe that intratu-
morally administered immunotherapies in earlier stages 
of CxCa may accomplish tumor control, as TDLN and the 
PD-L1+ macrophages residing therein are most efficiently 
targeted in this manner. We hypothesize that interference 
in the functionality of M2-like macrophages in the TDLN 
may hamper Treg expansion and break the vicious cycle of 
metastatic niche formation and tumor spread through the 
lymphatic catchment area, and subsequently to more distant 

sites (see Fig. 2). Currently, a phase-I clinical trial is ongo-
ing, testing the safety and feasibility of a single low dose of 
intratumorally injected durvalumab (anti-PD-L1) in CxCa 
patients 2 weeks before radical hysterectomy with pelvic LN 
dissection (Netherlands Trial Registry no. NTR6119). With 
this strategy, we aim to achieve modulation of the micro-
environment in the primary tumor and the TDLN and so 
break immune suppression. This will hopefully result in the 
generation of both local and systemic tumor-specific T-cell 
reactivity [51], like we previously observed when investi-
gating locally administered CpG-B in melanoma patients, 
with an even shorter time window of 1 week between drug 
administration and surgery.

Conclusion

Immune profiling of TDLN in patients with various types of 
solid tumors enabled us to ascertain the suppressive effects 
of the tumor on loco-regional cellular immunity and pro-
vided a clear rationale for the local application of immune 
modulating therapies targeting TDLN (see Table 2). It is 
essential to perform immune profiling for each tumor type 
and subsequently select the appropriate immune modulat-
ing agent, as various possible mechanisms of immune sup-
pression were found per tumor type. Importantly, we found 
evidence of systemic anti-tumor immune activation which 
seemed capable of preventing (distant) recurrences, as shown 
by a profoundly increased 10-year recurrence-free survival 
rate in melanoma patients treated locally with CpG-B prior 
to the standard-of-care SLN procedure. With the use of less 
invasive locally applied therapies, surgical complications 
resulting from LN dissection (e.g., lymphedema) may be 
avoided. Moreover, this localized therapeutic approach may 
stop cancer spread in its tracks at an early stage and trigger 
a protective systemic anti-tumor T-cell response without the 
unwanted, and sometimes severe, side effects associated with 
systemic treatment with immune checkpoint blockade [52, 
53]. This may have a major impact on patient survival and 
quality of life. Moreover, by administering a single low dose, 
the high costs associated with systemic immunotherapeutic 
treatments in more advanced stages of cancer could be con-
ceivably reduced [54].

In conclusion, we believe that TDLN are of major impor-
tance in initiating a robust anti-tumor response upon immune 
modulating therapies and should be targeted by local deliv-
ery of immune modulatory agents. Evidence for this was 
provided by i.t. delivery of CTLA-4 blocking antibodies in a 
mouse model, showing equivalent tumor control to systemic 
administration with reduced side effects [55]. Interestingly, 
Chamoto and colleagues observed absent anti-tumor effi-
cacy of PD-1 blockade in a mouse model with TDLN abla-
tion, and so demonstrated TDLN to be indispensable, even 
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for an immune modulatory agent assumed to be primarily 
active in the tumor microenvironment [56]. Fransen et al. 
recently confirmed these results and, importantly, showed 
equal in vivo anti-tumor efficacy of low dose locally injected 
anti-PD-1 and of systemically administered high-dose anti-
PD-1 [57].

The rational design of future clinical trials targeting 
TDLN should encompass combinatorial use of immuno-
therapeutic agents, such as oncolytic viruses and/or immune 
checkpoint blocking antibodies. Moreover, it will likely not 
be limited to the cancer types discussed in this focused 
review, but may also be applied to other solid tumors proven 
amenable to immunotherapy, such as, e.g., lung cancer and 
head-and-neck cancer.

Fig. 2   Model of tumor-related immune suppression in CxCa TDLN. 
In the primary tumor expansion and activation of Tregs takes place 
through their interaction with CD14+PD-L1+ M2-like macrophages 
(differentiated from monocytes recruited to the TME from periph-
eral blood). This leads to effector T-cell suppression and, upon their 
migration, to a pre-metastatic niche formation by Tregs in the first-
line CxCa TDLN. Upon subsequent metastatic spread, monocytes are 

again recruited to the TME and converted into immunosuppressive 
M2-macrophages. These in turn expand and activate a new wave of 
Tregs that migrate to more distant TDLN and promote further met-
astatic spread through the LN catchment area. This vicious cycle of 
immune suppression may be interrupted by blocking the negative 
impact of PD-L1+ M2-like macrophages with intratumorally applied 
PD-L1 checkpoint blockade

Table 2   Theoretical advantages of low-dose, local immune potentia-
tion in early stage cancer

1. Low(er) tumor load
2. Low(er) levels of immune suppression
3. Limited tumor heterogeneity: clonal neoantigens [58]
4. Systemic protection against distant recurrence [36, 37]
5. Single administration provides long-lasting protection [37]
6. Limited to no side effects [34, 35]
7. Pre-empts the need for expensive systemic therapies
8. Off-the-shelf generally applicable
9. Leveraging a (sub-optimally) primed T-cell repertoire in the TDLN 

[36]
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