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Abstract
At present, significant experimental and clinical data confirm the active involvement of the peripheral nervous system (PNS) 
in different phases of cancer development and progression. Most of the research effort focuses on the impact of distinct neu-
ronal types, e.g., adrenergic, cholinergic, dopaminergic, etc. in carcinogenesis, generally ignoring neuroglia. The very fact 
that these cells far outnumber the other cellular types may also play an important role worthy of study in this context. The 
most prevalent neuroglia within the PNS consists of Schwann cells (SCs). These cells play a substantial role in maintaining 
homeostasis within the nervous system. They possess distinct immunomodulatory, inflammatory and regenerative capaci-
ties—also, one should consider their broad distribution throughout the body; this makes them a perfect target for malignant 
cells during the initial stages of cancer development and the very formation of the tumor microenvironment itself. We show 
that SCs in the tumor milieu attract different subsets of immune regulators and augment their ability to suppress effector 
T cells. SCs may also up-regulate invasiveness of tumor cells and support metastatic disease. We outline the interactive 
potential of SCs juxtaposed with cancerous cells, referring to data from various external sources alongside data of our own.
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Introduction

The major public health issue of cancer currently stands 
as the second leading cause of death in the United States. 
Its generalized national approximation of 1,735,350 new 
cases (not including skin cancers) corresponds to an equiv-
alent of over 4700 new cancer diagnoses daily [1]. By 
2020, it is expected that the number of new cancer cases 
in the United States to go up to almost 2 million cases 
per year. Therefore, it is really important to improve our 
understanding of the biology of cancer, including its initia-
tion, development and progression, as well as the interplay 
among the individual factors, cells, tissues, organs and 
internal and external environmental systems influenc-
ing cancer biology at different levels. Although over the 
past decades significant progress has been made in our 
ability to precisely and effectively prevent and treat the 
complex group of more than 200 diseases we call cancer 
[2], our current knowledge of cancer-causing and control-
ling intrinsic systems and their dysregulation by extrinsic 
multi-environmental factors is unconditionally incomplete. 
New scientific concepts are needed to reveal crucial cellu-
lar and molecular changes that lead to cancer development, 
survival and spreading.

Solid tumors act as ectopic ‘rogue organs’ that depend 
upon the surrounding host tissue for development and dis-
semination—the formation of the tumor microenvironment 
(TµE) occurs between the mutationally disrupted cancerous 
cells, non-transformed normal tissue, bone marrow-derived 
cells and other stromal elements in the local environs. The 
TµE demonstrates that tumor cells do not manifest the dis-
ease by themselves, but rather conscript the surrounding nor-
mal cells and tissues to serve as members in the rebel cellular 
mass [3]. Communication between native cell types and the 
tumor cells occurs through an intricate system of chemical 
messengers, e.g., cytokines, adipokines, chemokines, growth 
factors, and inflammatory agents, enzymes, hormones, neu-
romediators that occurs alongside significant disruption to 
the normal tissue [4].

Historically, the central nervous system (CNS) has 
revealed a direct involvement in the development and growth 
of cancer [5, 6]. Animal model studies clearly confirmed 
that chronic stressors could promote tumor growth, cancer 
cell dissemination and decreased survival of tumor-bearing 
hosts [7, 8]. Both the “fight-or-flight” stress responses of 
the sympathetic-adrenal-medullary axis and the “defeat/
withdraw” responses of the hypothalamic–pituitary–adrenal 
axis influence multiple aspects of tumorigenesis and cancer 
progression [9, 10]. In fact, the activation of both axes initi-
ates molecular signaling pathways involved in DNA repair, 
angiogenesis, cell survival, inflammation, immunity, inva-
sion, metastasis and resistance to therapy [9, 11, 12].

While studies of the CNS have brought deeper insights 
into cancer-initiating pathways, investigations of the periph-
eral nervous system (PNS), particularly the autonomic nerv-
ous system, have provided robust data on the mechanisms 
underlying stress-related tumorigenesis and invasiveness. 
The PNS consists of the nerves and ganglia outside the CNS 
(brain and spinal cord) connecting the CNS to all parts of 
the body including skin, muscles and organs [13]. The PNS 
is divided into two parts: (i) the somatic nervous system 
responsible for transmitting sensory information via sen-
sory (afferent) neurons to the CNS and motor information 
from the CNS via motor neurons to muscle fibers and (ii) 
the autonomic nervous system, which is further divided 
into the sympathetic and parasympathetic divisions regu-
lating involuntary body functions by transmitting efferent 
signals from the CNS to different tissues. Catecholamines 
from the sympathetic part of the autonomic nervous system 
along with acetylcholine from the parasympathetic part can 
modulate the associated cells and the factors implicated in 
the processes of angiogenesis and metastasis [14–16]. Stud-
ies have also shown that the progression of cancer requires 
autonomic nerve sprouting in solid tumors. Furthermore, 
research has implicated both sympathetic and parasympa-
thetic nerves as active participants throughout all phases of 
cancer development in the mouse models [17], thus confirm-
ing the role of the PNS in tumorigenesis. However, numer-
ous questions have been left behind, including the role of 
sensory neurons, involvement of neuroglial elements, neu-
roimmune axis in the TµE, neurodegenerative pathways, 
centralized and adjunct tumor innervation and others.

Peripheral innervation of solid tumors

Initial studies focusing on the role of the PNS in cancer 
arose from the series of observations which identified nerve 
bundles within various solid tumors. Although histopatho-
logical data indicates the presence and prognostic value of 
intratumoral nerve fibers in various types of cancer [17–20], 
alternative studies report the presence of nerve bundles only 
within the peritumoral area, while tumor lesions contain 
few if any nerve filaments [21–23]. Inconsistancies in those 
research were explained by the use of different cancer mod-
els, tumor staging, methodologies and data analysis. Addi-
tionally, one should note that the widely used nerve-bundle 
staining agents (e.g., anti-PGP 9.5 antibody) may not be the 
best and most discrete markers for the verification of specific 
nerve fibers and nerve filaments within specific tumor sites 
[24]. It appears overall that the ‘traditional’ context of the 
‘PNS in cancer’ studies focuses in general on the autonomic 
nervous system and its role in carcinogenesis. However, 
research consistently ignores an overwhelming presence of 
peripheral nerve bundles in this context—namely the free 
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nerve ends of sensory nerves within the PNS. For instance, 
in spite of the facts that (i) in the skin, cutaneous nerve fibers 
are principally sensory, (ii) sensory nerves innervate the epi-
dermis and dermis and (iii) autonomic nerves never inner-
vate the epidermis in mammals, data assessing the role of 
the PNS nerves in skin cancer development are very limited. 
Functional in vivo models are required to determine the role 
of abundant skin innervation in the appearance, survival, 
proliferation and spreading of different types of skin cancer.

Schwann cells within the peripheral nervous 
system

The supportive tissue of the nervous system includes the 
network of branched cells in the CNS (astrocytes, microglia 
and oligodendrocytes) and the supporting cells of the PNS 
(Schwann cells and satellite glial cells). Glial (neuroglial) 
cells are far more numerous than neurons and, unlike neu-
rons, do not conduct nerve impulses, but, instead, support, 
nourish and protect the neurons. In the PNS, Schwann cells 
(SCs) represent the most prevalent glial cell type [25, 26]. 
Initially, they were recognized for ensheathing the nerve fib-
ers, producing myelin, providing trophic support for neu-
rons, constructing the nerve extracellular matrix, supporting 
nerve survival, perineuronal organization and modulating 
neuromuscular synaptic activity [27]. SCs also play a semi-
nal role in the response to neuronal damage and repair and 
an increasingly recognized active role in pain syndromes. 
Specifically, during peripheral nerve injury SCs facilitate 
endogenous axonal regrowth due to their ability to dediffer-
entiate, proliferate, migrate, produce promoting growth fac-
tors and myelinate regenerating axons. When a nerve fiber 
is cut or crushed, an active process of degeneration called 
Wallerian degeneration is initiated, and SCs after sensing 
of axonal injury take the major role in myelin and neurofila-
ment debris cleaning during the first hours. Then by release 
of cytokines and chemokines, SCs recruit macrophages that 
help improve the clearing rate. Morphological and biochemi-
cal reprogramming of SCs during Wallerian degeneration, 
which results in the establishment of a microenvironment 
supportive of axonal regeneration, includes SC dedifferen-
tiation, proliferation and detachment and moving from an 
axon (denervation) and results in accumulation of so-called 
repair SCs [28–30].

Chronic denervation proves lethal for SCs [31]; yet, stud-
ies note that during Wallerian degeneration the SCs become 
both a cue and a substratum for the growth cone of regen-
erating axons. This means that they lose the capability of 
maintaining myelin and dedifferentiate—along with gaining 
the ability to both survive without axonal interactions and 
promote immune cell infiltration [31]. Jessen et al. reported 
that the dedifferentiation of SCs from the myelinating to 

the non-myelinating/immature state becomes triggered by 
an upregulation of c-JUN protein [32]. After the loss of con-
tact with the axon, these dedifferentiated denervated SCs 
called ‘repair SCs’ [33] upregulate synthesis and secretion of 
tumor necrosis factor α (TNF-α), interleukin-1α (IL-1α) and 
IL-1β [34] that contribute to macrophage recruitment [35] 
and SC proliferation [36]. Interestingly enough, Napoli et al. 
reported that myelinating SCs expressing an inducible Raf-
kinase in themselves sufficiently drive dedifferentiation and 
cause demyelination, breakdown of the blood–nerve barrier 
and influx of immune cells in the absence of injury signals 
derived from axon degeneration [37]. During this stage, 
repair SCs proliferate and migrate to form bands of Büng-
ner, which provide a pathway for regenerating axons; then 
SCs differentiate again for myelinating regenerating axons 
[38]. The SCs in the injured nerves share some features with 
immature SCs in that both cell types possess an autocrine 
function to survive and regain the ability to interact with 
axons [25].

The dynamic interaction between SCs, immune and 
other somatic cells plays a major role in local nerve tissue 
homeostasis. During the first day after the injury, neutrophils 
briefly crowd the site, after which the activated macrophages 
accumulate by day three. Initially, they contribute to the 
inflammatory state by their production of TNF-α and IL-1β. 
However, once the myelin degrades, alternatively-activated 
M2 macrophages become dominant during Wallerian degen-
eration—upregulating the anti-inflammatory cytokine IL-10, 
which then results in down-regulation of pro-inflammatory 
cytokines [39]. Moreover, SC-produced cytokines stimulate 
production of IL-6 and granulocyte–macrophage colony-
stimulating factor (GM-CSF) by fibroblasts within 4 h after 
axotomy [40]. Interestingly, SCs associate rather closely 
with fibroblasts. Human postnatal fibroblasts may evidently 
transdifferentiate into functional SCs via a transient progeni-
tor step and a conversion procedure that is uniquely based on 
chemical treatment and does not involve an overexpression 
of ectopic genes [41]. The resultant induced SCs or iSCs 
can be characterized by expression of SC-specific proteins 
and neuron supportive and myelination properties in vitro.

Additionally, SCs secrete several potent regulators of 
angiogenesis [42, 43] and produce neurotrophic factors—
e.g., nerve growth factor, brain-derived neurotrophic factor 
and ciliary neurotrophic factor [44, 45].

Based on this fact that SCs are the key regulators of 
peripheral nerve degeneration and repair and on recent data 
showing that SCs may also directly affect non-neural wound 
healing [46, 47], we developed and proved a new concept 
stating that functionally-modified repair-like SCs should 
also appear during the destruction of neurons as the tumor 
expands (Shurin et al., submitted). In other words, chronic 
cancer-induced reprogramming of SCs in the tumor milieu is 
characterized by a non-resolving neurodegenerative process, 
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unlike the resolving culmination of normal tissue regenera-
tion in the tumor-free environment. Observed denervation 
of the foremost tumor mass can be explained by a related 
course of dying back or retrograde degeneration known as 
‘Wallerian-like degeneration’ [48] which occurs in various 
neurodegenerative diseases, especially those where axonal 
transport is impaired. Using both in vivo and in vitro models, 
we demonstrated that tumor-induced repair-like SCs could 
markedly alter the local environs by changing attraction 
and function of immune cells and altering the extracellu-
lar matrix, which resulted in tumor growth and progression 
in vivo. Importantly, the local inhibition of nerve injury-
induced ‘classic’ repair SCs or tumor-induced repair-like 
SCs significantly decreased the rate of tumor growth sug-
gesting that SCs may present a novel target for cancer ther-
apy (Shurin et al., submitted).

Thus, SCs may play different roles in the TµE both stimu-
lating and inhibiting tumor growth, which results from either 
(i) direct effect on malignant cell survival, motility and dif-
ferentiation or (ii) indirect modulation of the tumor environs 
via immune cells, fibroblasts and angiogenesis. Furthermore, 
the role of SCs in cancer is not limited to direct and indi-
rect effects on malignant cells—SCs also play an important 
role in cancer pain symptom and probably in paraneoplastic 
pathways.

Malignant Schwann cells

SCs, thus, are unique in their ability to dedifferentiate 
and reprogram the local environmental patterns. SC pre-
cursors act as an ontogenic source for various cell types: 
fibroblasts, melanocytes, neurons, parasympathetic gan-
glia and SCs themselves [49]. Due to their plasticity and 
wide dispersion, SCs are considered as a multipotent cel-
lular pool for PNS regeneration and development [50]. 
Also, one should take into account the fact that a variety 
of tumors arise from SCs, e.g. malignant peripheral nerve 
sheath tumors, schwannomas, neurofibromas and the Devil 
Facial Tumor Disease (DFTD)—the latter comprising one 
of the rarely-seen contagious malignancies [51, 52]. The 
rare and transmissible Devil Facial Tumor Disease affects 
the Tasmanian devil (Sarcophilus harrisii) and suppos-
edly relates to their population collapse [53]. Loh et al. 
describe it as a soft tissue neoplasm consisting of undif-
ferentiated round/spindle-shaped cells with few defining 
ultrastructural features [54]. Surprisingly, this cytologi-
cally undifferentiated tumor expresses markers of highly 
differentiated Schwann cells [55]. Murchison has proposed 
that this peripheral nerve sheath tumor derives from an 
SCs or SC precursors; the miRNA profile of DFTD sup-
ports this claim [56]. Multivariate expression of vimentin, 

S100, neuron-specific enolase, chromogranin A and syn-
aptophysin markers suggests the possibility of neuroendo-
crine origin for DFTD [54].

SC development and maturation involves several factors 
crucially linked to cancer. Autocrine stimulation by neuregu-
lin Nrg1 Type I in lung and ovarian cancer cells that also 
express ErbB2/ErbB3 neuregulin receptors, and similarly 
in the neoplastic growth of SCs has been reported [57, 58]. 
For instance, high-level ErbB2 expression in human lung 
cancers carries prognostic information [58], while blocking 
ErbB2 on human lung tumor cell lines expressing ErbB2 
inhibits cell line proliferation [59]. Moreover, Schwannian 
differentiation is frequently observed in benign intradermal 
nevi (‘neurotization’) and malignant melanocytic tumors 
[60].

Schwann cells and neuroblastoma

Most of the available experimental data demonstrate a pro-
tumor role for SCs in vitro and in vivo: altering the extracel-
lular matrix, chemoattraction of malignant cells, modulating 
the tumor immunoenvironment and supporting perineural 
invasion (PNI) of tumor cells [61]. However, SCs play a 
much different role in neuroblastoma (NB) development and 
growth. This childhood cancer, which mostly affects children 
under 15 years old, has a complex pathogenesis with various 
factors involved in its development [62]. NB tumors exhibit 
a broad spectrum of clinical behavior reflective of their 
biologic heterogeneity [63]. These tumors consist of two 
primary cell populations (neuroblastic/ganglionic cells and 
SCs) and the quantity of Schwannian stroma directly corre-
lates with tumor maturation [64]. NB tumors with abundant 
Schwannian stroma have a differentiated phenotype, reduced 
vascularity and come associated with a favorable prognosis 
[64, 65] since infiltrating SCs reliably promote neuroblast 
differentiation, induce apoptosis, inhibit angiogenesis and 
proliferate in NB xenografts [65].

Thus, SCs get involved in NB tumorigenesis and devel-
opment through several pathways: inhibiting angiogenesis, 
impairing NB growth and promoting NB differentiation [66, 
67]. SCs can affect neuroblastoma phenotype, as SC-condi-
tioned medium or co-cultured SCs increase neuroblast dif-
ferentiation [66, 68]. The inflammatory factor high mobility 
group box 1 (HMGB1) stimulates autophagy in SCs through 
the TLR4-mediated pathway, affecting the local TµE, which 
then contributes to NB cell proliferation [69]. However, due 
to a secretion of specific factors, SC-derived factors may 
lessen angiogenesis in vivo and in vitro which results in anti-
tumor activity against NB [43, 67]. Several compelling fac-
tors have been identified, with Secreted Protein Acidic and 
Rich in Cysteine (SPARC) as among the most potent [42].
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Schwann cells and cancer pain syndrome

Cancer-related pain represents an agonizing problem in 
clinical oncology as the prevalence of pain in patients with 
cancer remains high, which constitutes one major reason 
for a poor quality of life. Approximately one-third of 
patients, including children, who are receiving treatment 
for cancer and 75–90% of those with advanced malignant 
disease experience significant, life-altering cancer-induced 
pain [70]. An estimated 30 to 40% of people who undergo 
chemotherapy develop peripheral neuropathy, which is 
the leading reason why cancer patients stop chemother-
apy early. More than one-third of the suffering patients 
grade their pain as moderate or severe [71]. Despite a 
significant effort put into investigating the neuron-related 
mechanisms underlying this phenomenon [70, 72–74], glia 
only recently gained any attention and became a focus of 
extensive research. Currently, factors responsible for can-
cer-related pain are poorly understood; however, tumor-
induced pathologic sprouting of sensory nerve fibers [75] 
and SC abnormality [76, 77] have been suggested as pos-
sible reasons.

Watkins et al. established the notion that glia act as 
key drivers of pathological pain [78], although the role of 
microglia in cancer-related pain remains highly contro-
versial: a broad variety of data exists reporting different 
levels of spinal microglial activation due to differences in 
sex, species/strains and the origin of tumor cells [79–81]. 
For instance, in the pancreatic cancer model, tumor cells 
demonstrably affect SCs, which downregulated the acti-
vation of peripheral neurons in cancer and suppressed 
cancer-associated pain in cases where a prolonged asymp-
tomatic phase and potentially delayed diagnosis took place 
[82]. However, one should note that a demand emerges for 
further investigations to reveal the mechanisms underly-
ing interactions between cancer cells and SCs. This will 
ensure development of feasible approaches to the efficient 
therapy to overcome the significant clinical problem of 
cancer-associated pain syndrome.

Perineural invasion and mutual cell tropism

A growing body of evidence reveals that cancerous cells 
not only grow near the nerve fibers but also respond to the 
PNS signals by accelerated proliferation, longevity and 
dissemination [83–85]. For instance, we recently reported 
that dorsal root ganglia (DRG) neurons, i.e., isolated and 
cultured sensory neurons, can be stimulated by melanoma 
and, in turn, can significantly enhance tumor growth 
in vivo [86]. Accepting that the in vivo microenvironment 

of peripheral nerves is formed and preserved by nerve 
ensheathing SCs, we presented evidence that SCs could 
aid tumor growth by indorsing tumor-favorable conditions 
[61]. Perineural invasion or perineural spread [87], i.e. 
cancer cell dissemination in and along nerve bundles well 
beyond the extent of any local invasion, is an excellent 
example of the protumor activity of SCs.

PNI is associated with a variety of malignancies, includ-
ing pancreatic, prostate, head and neck, stomach and colon 
cancers [88–90]. The presence of cancer cells in the peri-
neurium is mostly associated with poor prognosis and high 
recurrence in pancreatic, cervical, colon, esophageal, colo-
rectal and gastric cancers, but not in invasive breast car-
cinoma [90–93]. Axonogenesis evidently acts as an initial 
factor that predisposes and ultimately leads to PNI and 
cancer spreading, and therefore strong interactions between 
cancer cells and nerves resulted in greater PNI diameter and 
enhanced tumor growth [94]. Neoplastic sites identifiably 
contain SCs before the onset of cancer invasion; for instance, 
Demir et al. reported a unique attraction of pancreatic can-
cer cells to the neuronal components of peripheral nerves—
albeit primary SCs [95].

The emergence of SCs in the premalignant phase of pan-
creatic and colon cancer implies that SCs may initiate PNI in 
contrast to the established view that malignant cells migrate 
toward the nerves first [95]. This has, in fact, been proven 
through elegant in vitro and in vivo experiments showing 
that SCs directly regulate cancer cells in PNI [96]. Co-cul-
turing of tumor cells with DRG neurons revealed that SCs 
direct malignant cells to migrate toward nerves by protrud-
ing and intercalating between the tumor cells and promoting 
PNI [96]. Interestingly enough, SC death as induced by radi-
otherapy reportedly acts as a key factor in the impairment 
of PNI. This preclinical data may suggest that the therapy 
itself targets nerves and their supporting cells in the case of 
proven or expected PNI, since these cells directly facilitate 
PNI through paracrine signaling [97].

Schwann cells augment metastasis 
formation

Although the main function of SCs is to maintain the 
integrity of the axons, SCs have been shown to increase 
the integrin-dependent tumor invasion on laminin in the 
pancreatic and prostate cancer microenvironment [98]. 
SCs may also direct pancreatic cancer cell migration 
toward the nerves, promote PNI and contribute to the 
malignant cell colonization of the nerves by activating the 
mesenchymal-epithelial transition (MET) and reducing 
cell motility [96, 99]. They may also enhance the inva-
siveness of the salivary adenoid cystic carcinoma cells, as 
has been shown using rat SCs and human tumor cell line 
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co-cultures [100]. However, the molecular mechanisms 
and factors utilized by SCs to promote distant metastases 
are generally unknown.

We have recently reported that adult SCs may directly 
stimulate lung cancer cell motility and invasiveness 
by secreting chemokines and inducing signaling from 
chemokine-specific receptors expressed on tumor cells 
[101]. SC-dependent activation of the tumor cells was 
associated with the promotion of the epithelial-mesen-
chymal transition (EMT). The effect was mediated by 
increased expression of the EMT transcription factors 
Snail and Twist since their block eliminated SC-induced 
motility of malignant cells. Both recombinant and SC-
derived chemokine CXCL5 amplified tumor cell motility 
and transmigration by inducing EMT via CXCR2-medi-
ated PI3K/AKT/GSK-3β/Snail/Twist signaling. Lastly, SC 
conditioning of lung cancer cells prior to their inoculation 
into syngeneic mice significantly augmented the estab-
lishment of the metastases in the regional lymph nodes 
[101]. These results thus reveal a new role of the PNS 
and SCs in the organization and functioning of the TµE.

Schwann cells attract myeloid regulators 
to the tumor environs

The ability to increase invasiveness of malignant cells 
and stimulate formation of distant metastases does not 
cover all of the protumor activities of SCs during car-
cinogenesis. In fact, we observed an increased expression 
of various factors like IL-1Ra, TNF-α, CCL3 (MIP-1 α), 
CCL4 (MIP-1β), CXCL2 (MIP-2), CXCL12 (SDF-1) and 
CXCL13 (BCA-1) in SCs treated with different tumor 
cell lines in vitro or obtained from tumor-bearing ani-
mals (manuscript in preparation). This suggests that SCs 
may participate in chemoattraction of immune cells in 
the tumor milieu, in particular, myeloid regulatory cells, 
and thus control the immunosuppressive and tolerogenic 
potential of the tumor immunoenvironment. For exam-
ple, Fig. 1 shows that both control and tumor-activated 
SCs are strong chemoattractants of bone marrow-derived 
MDSC in  vitro. Importantly, tumor-conditioned SCs 
attract MDSC significantly stronger than control cells 
suggesting that SC-induced attraction of myeloid regula-
tors may be markedly stronger in the TµE than in normal 
tissues.

Together with our data demonstrating the ability of 
SCs to up-regulate tumor growth in vivo, these results 
may favor a new concept stating that SCs can act as one of 
key systemic regulators of cancerogenesis—particularly 
during the onset or early stages of tumor development 
and growth.

Schwann cells augment 
the immunosuppressive activity of myeloid 
regulators

Interestingly, SCs are not only active chemoattractants of 
myeloid regulatory cells in the TµE as shown above, but they 
are also potent modulators of immune cell activity. Actu-
ally, melanoma-treated SCs, but not control SCs, signifi-
cantly enhance MDSC ability to suppress T cell proliferation 
in vitro. In the search of the mechanism responsible for this 
phenomenon, we discovered that tumor-treated SCs increase 
the expression of myelin-associated glycoprotein (MAG) on 
both the mRNA and protein levels (Fig. 2). MAG, a major 
inhibitor of axonal growth, is a type I transmembrane glyco-
protein that is selectively localized in SCs and oligodendro-
glial cells functioning in glia-axon interactions [102, 103].

We have also revealed that MAG increases the immu-
nosuppressive activity of MDSC in T cell inhibitory assay 
(Fig. 3, right bars) in a way similar to that one of tumor-
treated SCs (Fig. 3, right bars). In other words, both mela-
noma-activated SCs, which overexpress MAG, and recom-
binant MAG up-regulate the ability of MDSC to suppress 
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Fig. 1   Melanoma-activated Schwann cells chemoattract MDSC 
in  vitro. Adult Schwann cells were isolated from sciatic nerve of 
C57BL/6 mice, purified and cultured as described [101]. Cells were 
then co-cultured with cell culture medium (see [101]) (Schwann/cntr) 
and B16 melanoma cells (Schwann/B16) in inserts (2:1 cell ratio) for 
48  h and washed. Then, control and B16-pretreated Schwann cells 
were co-cultured with membrane-separated (5  µm pore size) bone 
marrow-derived MDSC (upper chamber) for 6 h, and the number of 
transmigrated CD11b + Gr-1 + MDSC in the bottom chamber was 
determined by flow cytometry for 60  s (n = 3; *p < 0.05 versus con-
trol Schwann cells, ANOVA). Results are shown as the mean ± SEM. 
SDF-1α (5  ng/ml) was used as a positive control. MDSC, myeloid-
derived suppressor cells; SDF-1α, Stromal cell-derived factor 1 
(CXCL12)
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proliferation of T cells in a similar way. Altogether, these 
results allowed hypothesizing that melanoma-derived fac-
tors increase SC expression of MAG, which, in turn, is 
responsible for the activation of chemoattracted MDSC in 
the TµE. Identification of tumor-derived factors respon-
sible for alteration of SC activity is in progress in our 
laboratories.

Conclusions

Data from various sources indicate a potential significance 
of the PNS in the regulation of tumor development, growth 
and spreading. While the scientific community still requires 
a better mechanistical understanding of this complex phe-
nomenon, a new field of research emerges where nerves gain 
an important ‘more than a spectator’ role in carcinogenesis. 
Both the high plasticity and the sheer abundance of neuro-
glial Schwann cells make them an appropriate candidate for 
further laboratory and clinical investigation. Their phenom-
enal ability to attract various immune and malignant cells, 
control the microenvironment and regenerate—along with 
their extensive dissemination among the different types of 
tissues and organs makes them a perfect target for exploita-
tion by cancerous cells to form and maintain unique tumor 
microinteractions. However, the common neuroectodermal 
ontogenic background may result in a distinct role of SCs 
in tumors that arise from the neural crest, which makes the 
understanding of their role in solid tumors even more inter-
esting and excitng. Another critically important outcome of 
research involving SCs in cancer may include the develop-
ment of efficient approaches towards managing cancer pain 
syndrome, which involves SC activity in the TµE.

From the perspective of therapy, although targeting nerve 
fibers in prostate and gastric cancer has been reported to 
suppress tumor growth and metastasis [17, 104], inhibiting 
intratumoral nerve infiltration without inducing neuronal and 
non-neuronal toxicity is a very difficult task [84]. Schwann 
cell-targeting approaches may represent an interesting alter-
native. For instance, radiation-induce elimination of SCs 
can block perineural invasion of human pancreatic cancer 
cells in experimental models [105]. Recent successes in the 
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development of new treatment strategies aimed at improving 
the protective and regenerative properties of SCs in periph-
eral nerve disorders support our plan to target SCs in the 
TµE. For instance, advances in identifying the factors and 
signaling molecules that are expressed by SCs have paved 
the way for new clinical trials which test neurohormones, 
and transplantation paradigms that have been moved into 
late stage preclinical models [106]. Furthermore, in the 
recent years, several pharmacological agents that target SC-
dependent nerve regeneration have been proposed [107].

Finally, identifying signaling targets in SCs that regulate 
their cross-talk with neurons and immune cells will offer 
novel therapeutic approaches to a number of demyelinat-
ing disorders in which SCs are implicated, such as Charcot-
Marie-Tooth disease and Guillain–Barré syndrome, as well 
as genetic disorders such as neurofibromatosis 1 and 2 and 
infections such as leprosy.
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