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CSF1R	� Colony stimulating factor 1 receptor
IDO	� Indolamine 2,3-dioxygenase
irAE	� Immune related adverse event
MDSC	� Myeloid derived suppressor cell
MIP-1α	� Macrophage inflammatory protein-1α
NSCLC	� Non-small cell lung cancer
PAMP	� Pathogen associated molecular pattern
PDAC	� Pancreatic ductal adenocarcinoma
PIGF	� Phosphatidylinositol-glycan biosynthesis class 

F protein
TAM	� Tumour associated macrophage
TLR	� Toll-like receptor
TME	� Tumour microenvironment
uNTX	� Urinary N-telopeptide
VCAM-1	� Vascular cell adhesion protein 1

Introduction

The potential of utilizing the host immune system to eradi-
cate cancers has been hotly debated over the course of the 
last century. Many doubted the ability to prime the host 
immune system to a tumour which has already successfully 
evaded detection and generated a profoundly immunosup-
pressive tumour microenvironment (TME). Over the last two 
decades a range of immunotherapies have made it to the 
clinic, clearly proving the point of principle, but the ability 
of immunotherapy to target more aggressive and less immu-
nogenic tumours is still in doubt [1].

To comprehend the limitations of current T cell immu-
notherapeutics, namely T cell checkpoint inhibitors (CPIs), 
which skew the balance of stimulatory and inhibitory sig-
nals, it can be useful to imagine the tumours as exerting an 
immunosuppressive force, and the immune system as having 
a finite immune potential (Fig. 1). Immunosuppression will 
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rise with cancer progression and possibly plateau, but at a 
level both beyond the limit of the normal immune potential 
and even further from the immune potential of an immuno-
compromised cancer patient, thus even with a plentiful sup-
ply of neoantigens the immune system is rendered ineffec-
tive. CPIs function to boost the immune potential of the host 
to a point at which it can feasibly compete and overcome 
the immunosuppression generated by the tumour. While this 
is desirable in an anti-cancer context, the effect of such an 
untethered immune response in the host can have serious 
deleterious effects beyond the tumour [2, 3].

The major successes in immunotherapies for cancer 
patients have relied upon the direct modulation of T cell 
activation, either by targeting T cell costimulatory proteins 
such as CTLA-4 and PD-1, or by adoptive T cell transfer 
using ex vivo T cell activation. However, the side effects 
associated with these drugs appear to be dose-dependant, 
cumulative with previous cycles of therapy and additive with 
other similar regimes. This apparent limit has led to a shift 
in research to identify suitable complimentary therapies that 
kill tumour cells in a way which primes the TME for T cell 
activation by inducing immunogenic forms of cell death [4, 
5].

Developments in the field of immunology, and the eluci-
dation of the myriad of components interacting in the TME, 
are leading to the development of a new range of immuno-
therapeutics that focus on an expanding set of targets with 
therapeutic and diagnostic potential.

In contrast to many approved immunotherapeutics that 
boost the immune potential, one interest has been in try-
ing to actively reverse the immunosuppression generated by 
the tumour by disrupting immunosuppressive factors in the 
TME or by disrupting cells normally co-opted by tumours.

One specific vein of research has focused on a subset 
of the myeloid cell compartment comprising the mono-
cyte–macrophage lineage which can be subverted and 
recruited to the tumour as tumour associated macrophages 

(TAMs). While TAMs can comprise up to 50% of the 
tumour mass, they have been less intensively studied than 
other immune subsets [6]. There is a growing body of litera-
ture showing their prognostic value, and they are emerging 
as promising therapeutic targets in oncology.

Synopsis of macrophage origin and classification

TAMs are predominantly derived from circulating popula-
tions of monocytes. As a simplified paradigm, macrophages 
have been categorized as classically activated M1 (inflam-
matory) which are anti-tumour, or alternatively activated 
M2 (wound repair) which are pro-tumour. The M1 M2 
dichotomy was developed by in vitro observations but recent 
advances have led to a more complex spectrum of activa-
tion states. Both monocyte and macrophage populations fre-
quently display hybrid M1/M2 phenotypes, or phenotypes 
that cannot be adequately defined using the M1:M2 system 
[7]. It has been identified that the M1/M2 system is lead-
ing to confusion and inconsistency between researchers and 
ultimately impeding progress [8].

Others advocate the use of in vivo function to classify 
M1 M2 macrophages, focusing on the iNOS (M1): arginase 
(M2) ratio. With cells being defined as inhibitors of cell 
growth and killers or as promoters of cell proliferation and 
wound repair (Fig. 2) [9]. Flow cytometry has, however, led 
to the distinction of a range of macrophage and monocyte 
types based on their relative expression of various cell sur-
face markers.

From a clinical perspective, the study of macrophages 
faces a unique challenge, in that we find it more amenable 
to study discretely defined subsets of cells, but it is becom-
ing increasingly evident that this is not possible with such 
a heterogeneous set of cells. While many continue to report 
based on two distinct subtypes, it is important to remember 
that the activation states of macrophages incorporate discrete 
populations and spectrums or continuums where cells can 
adopt hybrid states [10].

Contribution to tumourigenicity

Macrophages have been implicated in all aspects of tumour 
growth and spread, but they are also known to be critical 
mobilizers of the adaptive immune system (Fig. 3). As such 
they play an enigmatic role in tumour development and the 
generation of anti-tumour responses.

In line with their roles in immune stimulation and antigen 
presentation, there is evidence high macrophage infiltration 
in the early stages of tumour growth can result in tumour 
destruction while low levels of infiltration support tumour 
growth [11, 12]. Macrophages can promote anti-tumour 
responses but advanced tumours have been shown to polar-
ize TAMs into an M2-like phenotype [13].

Fig. 1   Magnitude of immune potential versus tumour generated 
immunosuppression. Diagrammatic hypothesis representing immu-
nosuppression over time during cancer progression graphed with 
immune potential. Immune potential is the ability of the immune sys-
tem to mount an effective adaptive immune response
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Tumours can secrete a range of chemoattractants that pro-
mote recruitment of monocyte and macrophage populations 
[14]. TAMs become co-opted to promote tumour cell prolif-
eration and survival, tumour vascularization and immuno-
suppression along with supporting extravasation and growth 
of tumour cells at distal sites [15].

The importance of TAMs is evident across the literature, 
they can affect patient prognosis and determine sensitivity 
to a range of therapies. Preclinical studies and early stage 
clinical trials have implicated them as prime therapeutic tar-
gets [16, 17].

Effect of macrophage infiltration and polarization 
on patient prognosis

Prognostic significance of circulating and infiltrating 
macrophages

A high density of macrophage infiltration into the tumour 
has been cited as a negative prognostic indicator in a range 
of solid and haematological malignancies (Tables 1, 2). 
Colorectal cancer displays a contrasting trend whereby 
high macrophage infiltration can result in increased patient 
survival. 

Arguably the most robust prognostic evidence is avail-
able for breast cancer and Hodgkin’s Lymphoma. A distinct 
gene signature in breast cancer has shown high macrophage 
density is prognostic if combined with a high CD4+ helper 
T cells to cytotoxic T cell ratio. The signature closely cor-
related to the development of secondary tumours that could 

Fig. 2   Synopsis of M1:M2 macrophage dichotomy. CD11b mono-
cytes (MO) can mature with a heterogeneity of phenotypes which 
together represent a spectrum with M1 and M2 macrophages repre-
senting the two extremes of that spectrum. In vitro, IFNγ, LPS and 
TNFα drive M1 polarization whereas IL-4, IL-10 and IL-13 drive 
M2 polarization. M1 macrophages express CD68, CD11b, CD38. 
CD16/32, MHC II and CD80/86, their primary function is depend-
ent on the expression and function of inducible nitric oxide synthase 

(iNOS) which results in the extracellular accumulation of nitric oxide 
(NO) and citrulline which, along with other cytokines, can drive cyto-
toxic anti-tumour Th1 responses. M2 macrophages express CD68, 
CD11b, CD163, CD206, Galectin 3 and Egr2, their primary function 
is dependent on the expression and function of arginase which results 
in the extracellular depletion of arginine and the accumulation of 
ornithine and urea which are key to wound repair mechanisms but can 
also promote immune suppression and tumour progression
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accurately predict survival in women after complete resec-
tion [18]. A macrophage gene signature has been developed 
for Hodgkin’s Lymphoma that can accurately predict sur-
vival and response to therapy, indicating that the pro-tumour 
effect of macrophages is not restricted to solid tumours [19].

Prognostic significance of histologic localization

Histologic examination of colorectal cancer, for which TAM 
infiltration is a positive prognostic indicator, revealed infil-
tration at the tumour front in colon cancer leads to enhanced 
survival and reduced liver metastasis, irrespective of CD8 
T cell infiltration [20–23]. The proximity of the TME to the 
intestinal microbiome has been hypothesized as a potential 
explanation for the differential behaviour of macrophages in 
colorectal cancer. It is possible that the continuous supply of 
pathogen-associated molecular patterns (PAMPs) available 
to macrophages may outweigh the ability of the tumour to 
polarize the cells to an M2-like phenotype. This hypoth-
esis may also explain why similar results have been seen in 
gastric cancer, in which tumours may have varying access 
to the intestinal microbiome depending on the localization 
of the tumour. Thus, high infiltration of macrophages in the 
tumour nests in gastric cancer is associated with enhanced 
antigen presentation and T cell activation, and a positive 
prognosis [24].

The histological localization of macrophages in breast 
cancer has shown no correlation with prognosis, while in 

endometrial cancer high TAM infiltration into the tumour 
hotspot (tumour core of necrotic cells) is associated with 
advanced clinical staging, myometrial invasion and histo-
logical differentiation [25–27]. Characterization in other 
tumour types is warranted.

Prognostic significance of polarized macrophages

It is possible the results of many studies were adversely 
affected by failure to distinguish pro- and anti-tumour pop-
ulations. When differentiated in non-small cell lung can-
cer (NSCLC), it was found that high M1-like macrophage 
infiltration was associated with prolonged survival, while 
the level of M2-like infiltration had no impact on survival 
[28, 29]. This is in contrast to an earlier meta-study examin-
ing the prognostic relevance of overall CD68+ infiltration in 
NSCLC that found no link with OS [30].

Similarly, in patients with hepatocellular carcinoma after 
curative resection, high numbers of CD11c+ dendritic cells 
and low numbers of CD206+ macrophages correlated with 
extended OS, whereas CD68+ TAM infiltration displayed 
no prognostic significance [31]. In ovarian cancer there is 
inconsistent evidence on the prognostic effect of CD68+ 
cell infiltration, however, differentiation of the populations 
revealed that a high M1-like:M2-like ratio is prognostically 
favourable [32–35]. Together these data indicate whole 
macrophage counts used to explore the prognostic effects 
in other cancers may not accurately reflect the true trend or 

Fig. 3   Synopsis of pro- and 
anti- tumoural effects exerted by 
macrophages. Key enzymes and 
cytokines produced by M1 and 
M2 macrophages that have the 
effect of driving or inhibiting 
cancer progression. M1 cells 
can drive inflammation and 
cytotoxic Th1 responses while 
M2 cells can produce factors 
such as vascular endothelial 
growth factor (VEGF) and 
Prostaglandin E2 (PGE2), and 
are involved in the depletion of 
activated T cells, recruitment of 
regulatory T cells, tissue remod-
elling, angiogenesis and tumour 
progression
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scale of the effect imposed by pro-tumourigenic macrophage 
populations. The ability to draw robust prognostic indica-
tions from TAM frequency emphasizes their central role in 
disease progression.

Role of macrophages in therapeutic response

Effect of chemotherapy on macrophages

Conventional chemotherapies are considered immunosup-
pressive due to toxic systemic effects on rapidly proliferating 

Table 1   The effect of macrophage infiltration and macrophage related biomarkers on prognosis in solid tumours

Tumour Indicator Prognostic 
Significance

Reference

Breast High CSF1 gene 
expression

High TAM 
infiltration

High TAM density

High CD68+ TAM 
density

High CD204+ TAM 
infiltration

High grade, low 
estrogen receptor
and progesterone 

receptor expression 
and high TP53 

mutations

Shorter DFS

Late clinical staging

Shorter DFS

Shorter relapse-free 
survival

[155]

[27, 156]

[157] (M)

[27]

[158]

Myxoid 
Liposarcoma

High  CD68+ TAM 
infiltration

Shorter OS [159]

Cervical High CD68+ TAM 
infiltration

High CCL2 
expression and 
CD68+ TAM 
infiltration

Disease progression 
and high grade 

lesions

Lower relapse-free 
survival, lower OS, 
increased local and 
distant recurrence, 
vascular invasion, 
and larger tumour 

size.

[160]

[161]

Uveal Melanoma Both High CD68+

and CD68+CD163+

TAM infiltration

Shorter OS [162]

Bladder High CD68+ TAM 
infiltration

Late clinical staging [157] (M)

Oral High CD68+ TAM 
infiltration

Shorter OS [157] (M)

Thyroid High CD68+ TAM 
infiltration

Shorter OS [157] (M)
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Table 1   (continued)

Ovarian High CD68+

infiltration

High CD68+ density

High CD68+CD163+

TAM infiltration

High M1:M2 ratio
in TME

Serum soluble 
CD163

Shorter 5YS

Early clinical staging

Shorter PFS and OS

Increased OS

Shorter DFS and OS

[20]

[157] (M)

[33]

[32]

[163]

Gastric High CD68+ TAM 
infiltration

High nest CD68+

TAM

Shorter OS

Higher 5YS

[157] (M)

[24]

Prostate High CD68+ TAM 
density

Shorter median OS 
and poor clinical 

outcome

[164]

Glioma High CD163+

CD204+ TAM 
infiltration

Correlates to 
histologic grade

[165]

Lung M1:M2 gene 
signature

Increased OS [28]

NSCLC High CD68+ HLA-
DR+ (M1) TAM 

infiltration to stroma 
and islets

High CD68+ TAM 
infiltration

Increased OS

Increased OS

[29]

[166]

Colorectal High CD68+ TAM 
infiltration

High CD16+ TAM 
infiltration

Increased OS

Increased OS

Increased OS,

[157] (M)

[167]

[22, 23]
Reduced liver 

metastasis

Tumour Indicator Prognostic 
Significance

Reference

High CD68+ TAM 
density at the tumour 

front

CD68 is a marker used to identify all macrophages, CD163, CCL2, CD163 is a strong M2 marker while CCL2, CD204 and CD206 are weaker 
markers also preferentially expressed by M2-like macrophages. Shaded in grey are indications where high M2-like macrophage numbers corre-
spond to a positive prognosis. M denotes meta-study
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leukocytes and bone marrow progenitors resulting in leu-
kocyte depletion. Chemotherapy has also been shown to 
stimulate the secretion of colony stimulating factor 1 (CSF1) 
by tumour cells, which is a potent chemoattractant for mac-
rophages, and results in an accumulation of TAMs in the 
TME which contribute to chemoresistance [36].

Prognostic significance of macrophages in response 
to chemotherapy

High levels of infiltrating CD68+ and CD163+ cells are a 
negative prognostic marker for patients with esophageal can-
cer undergoing pre-operative neoadjuvant chemotherapy and 
indicates patients are less likely to respond to chemotherapy 
[37]. The CD8:CD68 cell ratio is a predictive biomarker 
for response to neoadjuvant chemotherapy in breast cancer 
patients [18, 38]. These effects were found to be at least 
in part due to the upregulation of CSF1 by tumour cells 
in response to CT. A high density of CD163+ cells at the 
invasive front in oral squamous cell carcinoma was found to 
correlate to a poorer outcome after surgery following 5-FU 
based chemoradiotherapy [39].

On examination of the histologic localization of mac-
rophages, CD68+ in the parenchyma negatively correlated 
to lymphatic metastasis after neoadjuvant chemotherapy, in 
contrast to the number in the dense fibrous stroma which 
directly correlated to the number of positive lymph nodes, 
indicating the role of macrophages depends on intratumoural 
localization in breast cancer [38].

The role of macrophages in chemoresistance

Macrophages are central coordinators of immune responses 
during chemotherapy [40]. Blockade of macrophage recruit-
ment increased the efficacy of paclitaxel in breast cancer, 
resulting in diminished growth of both primary and meta-
static tumours [18]. Suppression of CD8+ effector T cells 
by the production of IL-10 has been shown to reduce anti-
cancer cytotoxicity [41]. IL-10 production by macrophages 
also limits the efficacy of chemotherapy in breast cancer 
and was subsequently shown to indirectly enhance tumour 

growth by down regulating IL-12 production by DCs which 
is required for cytotoxic CD8+ T cell responses.

Macrophages are critical mediators of wound and tissue 
repair and it is possible that these functions can be naturally 
adapted by the tumour to generate chemotherapeutic resist-
ance. M2-like macrophages derived from THP-1 cells, were 
shown to reduce apoptosis in addition to enhancing tissue 
repair and angiogenesis in response to etoposide, a topoi-
somerase inhibitor [42, 43].

Both macrophage depletion and re-education to an M1 
state have been shown to increase the efficacy of chemo-
therapy [44–46]. The induction of M1 polarization using 
host-produced histidine-rich glycoprotein to reduce signal-
ling by the M2 driver PIGF has been shown to restore sen-
sitivity to chemotherapy, reduce tumour growth and reduce 
metastasis, indicating that M1 polarization can combat all 
major aspects of disease [44].

Macrophage modulating therapies have an advantage 
over many other immunotherapeutics because they can be 
used to synergistically improve outcome with chemotherapy, 
whereas the results of combining CPIs with chemotherapy 
have shown very little or no effect on OS or quality of life 
[18].

Effect of radiotherapy on macrophages

Conventional fractionated radiotherapy is considered immu-
nosuppressive, as radiation primarily leads to apoptotic cell 
death, but it can also lead to necrotic cell death and mitotic 
catastrophe [47, 48].

The accumulation of macrophages in the TME after 
radiotherapy is due to the ability of MOs to survive clini-
cally relevant doses of radiotherapy coupled with an influx 
of monocytes after radiotherapy [49, 50]. While this may 
seem attractive in the generation of an abscopal effect, there 
is much research showing that the influx of monocytes and 
macrophages is responsible for therapy failure due to their 
role in vasculogenesis and angiogenesis [51, 52].

Table 2   The effect of macrophage infiltration and macrophage related biomarkers on prognosis in haematological malignancies

CD68 is a marker used to identify all macrophages, CD163 is used to identify M2-like macrophages

Cancer Indicator Prognostic significance Reference

Angioimmunoblastic T-cell 
lymphoma

High CD163: CD68 ratio in the TME Shorter OS [168]

Hodgkin’s lymphoma TAM gene signature, High CD68+ cells in 
lymph nodes

Shorter PFS, increased risk of relapse after haemat-
opoietic stem cell transplant

[169]

High CD68+ CD163+ infiltration Shorter OS and reduced event-free survival [170]
Follicular lymphoma High CD68+ infiltration Shorter OS [171]
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Role of macrophages in radioresistance

Murine models of oral and brain cancer have shown mac-
rophages infiltrating the tumour after radiotherapy were pri-
marily M2-like and supported vasculogenesis and tumour 
growth [52–55].

Curiously, ionizing radiation skews macrophages from an 
M2-like to an M1-like phenotype, suggesting an enigmatic 
role of macrophages in radiotherapy [56]. Characteriza-
tion of the TME post irradiation reveals decreased levels 
of the anti-inflammatory markers CD163, IL-10, VCAM-
1, and MRC1 while significantly increasing the inflam-
matory markers iNOS, CD80, CD86 and HLA-DR [57]. 
However, irradiated macrophages were still able to enhance 
tumour cell invasion and supported the angiogenic process 
of tumour cells indicating the retention of M2-like traits. 
Blocking macrophage influx into the TME after RT has been 
shown to enhance response in murine models [49].

Prognostic significance of macrophages in response 
to radiotherapy

Prognostically, there is limited evidence on the effect of 
macrophages in patients undergoing radiotherapy. Mac-
rophages have been shown to predict response to short 
course pre-operative radiotherapy for colon cancer, with 
data suggesting a high infiltration of M1-like macrophages 
is likely to result in a reduced response, no effect was seen 
by M2-like macrophages [58].

Role of macrophages in response to checkpoint 
inhibitors

CPIs have been the most notable achievement in the devel-
opment of immunotherapy for cancer patients, but there has 
been limited interest in the role of myeloid cells in their 
clinical application to date.

Macrophages are key coordinators of adaptive immune 
responses, and express a range of T cell costimulatory and 
co-inhibitory molecules, known as the B7 family [59]. 
Crosstalk between tumour cells and macrophages can regu-
late the expression of B7 family molecules on both tumour 
cells and macrophages [60]. The TME is abundant in IL-10 
and TNF-α, which can both upregulate PD-L1 expression on 
macrophages, via STAT3 signalling, which is responsible for 
the inactivation and depletion of activated T cells [61–63]. 
PD-L1 has been implicated as a major signalling molecule 
associated with immune escape by tumours [64].

In addition to their role in facilitating T cell responses, 
macrophages are critical mediators of many therapeutics 
that employ antibodies with fully humanized Fc domains. 
While the primary function of antibodies is the activation 

or neutralization of their targets, the choice of antibody Fc 
domains are known to influence their efficacy. CD16, the 
receptor for IgG1 is expressed primarily by macrophages 
and NK cells and is responsible for the neutralization of 
antibody targets via antibody-dependent cellular cytotoxicity 
(ADCC) or phagocytosis [65, 66]. The capacity to generate 
ADCC responses is dependent on two variables. Firstly, the 
ability of the Ab used to bind FC receptors, and secondly on 
the activation state of the FcR expressing cell.

Anti‑CTLA4

Ipilimumab is a fully human IgG1 mAb that interacts with 
FcγRIIIA (CD16) expressing cells. Ipilimumab efficacy 
relies on two mechanisms. Firstly, interference with CTLA4 
binding on effector T cells, and secondly, FcγR mediated 
depletion of Tregs by ADCC [67, 68].

In a small study of 29 patients receiving Ipilimumab for 
the treatment of melanoma, responders had a higher number 
of CD68+CD163+ macrophages in the TME before treatment 
and decreased Treg infiltration after therapy. Responders had 
the highest level of circulating non-classical CD16+CD14low 
macrophages at baseline [69]. In a study of 209 mela-
noma patients receiving Ipilimumab, low absolute mono-
cyte counts and low circulating Lin−CD14+HLA-DR−/low 
MDSCs were significantly associated with improved sur-
vival [70]. These studies indicate macrophages play an 
active role in response.

Anti‑PD‑1/PD‑L1

Both PD-1 and PD-L1 are expressed by macrophages, and 
as such the effect of these neutralizing antibodies may have a 
depletory effect on macrophage numbers. PD-1 is expressed 
on infiltrating macrophages and lymphocytes of melanoma 
patients responding to anti-PD-1 therapy [71]. Response was 
primarily correlated to the proliferation of intratumoural 
CD8+ T cells and the role of PD-1+ macrophages was not 
examined. A reduction of the proinflammatory cytokine 
CCL3 is associated with prolonged survival in metastatic 
renal cell carcinoma patients receiving Atezolizumab [71, 
72].

Evaluation of immunologic correlates during CPI admin-
istration is required to improve our understanding of the 
biology of response and development of resistance. Due 
to the very limited number of patients receiving CPIs, our 
understanding of the global effect of CPIs on non-T cell 
immune subsets is still in its infancy.
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Macrophage modulation in cancer

A wide range of efforts have been made to enhance anti-
tumour responses by modulating the behaviour of mac-
rophages. These can be distinguished into three groups:

(1)	 Skewing of monocyte/macrophage polarization.
(2)	 Inhibition of macrophage migration to the TME.
(3)	 Depletion of monocyte/macrophage populations.

Interest has been shown in a wide range of modulatory 
mechanisms with varying degrees of success. The most 
promising include granulocyte–macrophage colony-stim-
ulating factor (GM-CSF), the CCL2/CCR2 axis and the 
CSF1/CSF1 receptor (CSF1R) axis.

Treatment with GM‑CSF

GM-CSF promotes the expansion of granulocytes and 
monocytes, polarizes macrophages to an M1-like anti-
tumour phenotype and can skew cells towards a type one 
phenotype capable of driving anti-tumour Th1 responses 
[73–77]. GM-CSF has been approved for the second line 
treatment of paediatric high-risk neuroblastoma in combina-
tion with IL-2 and 13-cis-retinoic acid, and has been recom-
mended for the amelioration of febrile neutropenia in solid 
and haematological malignancies by The American Society 
of Clinical Oncology [78].

There is currently a phase 2/3 trial in the recruitment 
phase examining the administration of recombinant GM-
CSF, BCG and 4 lethally irradiated melanoma cell lines for 
the treatment of pre-malignant melanoma (NCT01729663).

Sipuleucel-T is a therapeutic vaccine approved for cas-
tration-resistant prostate cancer, composed of autologous 
PBMCs cultured ex  vivo with PAP-GM-CSF. Despite 
gaining approval, it only modestly enhanced OS (25.8 vs. 
21.7 months) with no improvement in time to progression 
[79]. GVAX is a vaccine comprised of a patient’s own cancer 
cells stimulated to secrete GM-CSF and then irradiated to 
prevent further proliferation. GVAX has recently been given 
breakthrough designation for pancreatic cancer in combi-
nation with CRS-207, a listeria-based therapeutic vaccine, 
after positive phase 2 results. Interestingly, GVAX has been 
shown to induce PD-L1 positive ‘post-immunotherapy lym-
phoid aggregates’ in murine models of pancreatic adeno-
carcinoma that may prime the tumour into an immunogenic 
state [80, 81]. Building on that work the authors performed 
an early stage clinical trial with GVAX and Ipilimumab 
which showed clinical benefit [82]. These studies were per-
formed before the approval of anti-PD-1 antibodies, and it 
is likely this combination will offer enhanced outcomes. A 
clinical trial is now recruiting (NCT02648282).

There have been fears surrounding the administration 
of GM-CSF due to observations of constitutive GM-CSF 
expression by advanced cancers [83]. GM-CSF can induce 
pleiotropic effects depending on its concentration and recep-
tor, including differing effects on survival and proliferation. 
Tumour cells can utilize GM-CSF in an autocrine or parac-
rine mechanism to stimulate growth and proliferation [84, 
85].

Rationale for the modulation of the CCL2/CCR2 axis

CCR2 is a chemokine receptor present on inflammatory 
monocytes that it is required for mobilization from the bone 
marrow and recruitment to the TME. Tumours can upregu-
late CCL2 expression, its cognate ligand, from both tumour 
cells and stromal cells resulting in an upregulation of CCR2+ 
inflammatory monocytes and matrix metallopeptidase 9+ 
(MMP-9) neutrophil infiltration [86–93].

CCL2 has been shown to increase the survival of PBMCs 
and clearance of apoptotic cells which may be beneficial 
in an anti-tumour context,; however, CCL2 also drives M2 
polarization suggesting it is more likely to play a negative 
role in cancer patients [94, 95]. Inhibition of the CCL2/
CCR2 pathway has been shown to potently inhibit the 
development of metastasis in murine models of hepatocel-
lular carcinoma, breast and prostate cancer [96–99]. Murine 
models of pancreatic ductal adenocarcinoma (PDAC) have 
shown that CCR2 inhibitors can induce a 3-fold reduction 
in tumour burden [100].

Both chemotherapies and radiotherapy have been shown 
to upregulate CCL2 production by tumour cells and stro-
mal cells [101, 102]. Addition of anti-CCL2 antibodies is 
additive with chemotherapy in models of ovarian and pros-
tate cancer, and with radiotherapy in models of PDAC [98, 
103–105].

Prognostic significance of CCL2 and CCR2

CCL2 expression has been linked to cancer progression in 
hepatocellular carcinoma, prostate cancer, colorectal cancer, 
breast cancer and gastric cancer and has been shown to pro-
mote the induction of tumour growth, tumour cell migration, 
neovascularization and metastasis [88, 92, 97, 106–117]. 
Prognostically, high CCL2 in combination with VEGF in 
tumour conditioned media has been shown to increase the 
chance of early relapse in breast cancer [118]. High intratu-
moural CCL2 expression is related to a lower 5-year survival 
(5YS) in gastric cancer [119]. Intratumoural expression of 
both CCL2 and CCR2 are associated with a lower OS and 
increased risk of recurrence in non-metastatic clear-cell 
renal cell carcinoma [120].
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Clinical modulation of the CCL2/CCR2 axis

Clinical inhibition of CCL2 initially failed to generate sig-
nificant effects. Carlumab—a mAb against CCL2—was 
found to be safe and tolerable in patients but reduction in 
free CCL2 was short lived and failed to achieve an objec-
tive response in solid tumours (NCT01204996) [121, 122]. 
MLN1202, a similar antibody, was trialled in patients with 
bone metastasis from solid tumours, and resulted in reduced 
urinary N-telopeptide (uNTX) levels but with minimal 
therapeutic success [123]. Further to the poor therapeutic 
responses; in murine models a bounce back effect in CCL2 
levels was observed in which levels quickly returned to base-
line or higher than pre-treatment levels resulting in acceler-
ated death [124].

An orally active CCR2 antagonist PF-04136309, has 
been shown to reduce growth of PDAC and enhance sur-
vival. Phase 1b trials with FOLFIRINOX have shown that 
it is safe, tolerable, and enhances survival [125]. Levels of 
peripheral circulating monocytes are inversely related to sur-
vival in pancreatic cancer [100]. Systemic CCR2 inhibition 
inhibits the mobilization of inflammatory monocytes from 
the bone marrow, consequently lowering monocyte infil-
tration to the TME. Preclinical models suggest the results 
in PDAC may translate into other tumour types, however, 
the unique TME of PDAC, with high innate immune cell 
infiltration and T cell immune privilege, must be considered 
unique so recapitulation of the results in other tumour types 
is uncertain [126, 127].

CCR2+ macrophages suppress the infiltration of MMP-
9+ neutrophils to the TME. In murine models of cervical 
cancer, when macrophages are depleted in the TME, pro-
tumourigenic neutrophils are recruited. Consequently, no 
major difference in tumour incidence or tumour burden is 
seen between CCR2 null and wild type mice, with only a 
small delay from dysplasia to carcinoma being noted [128]. 
It is possible that this compensatory influx of neutrophils 
may be inhibited by the dense desmoplastic in pancreatic 
cancer, indicating the therapeutic benefit of PF-04136309 
may be restricted to pancreatic cancer.

Rationale for modulation of the CSF1/CSF1R axis

CSF1 is a secreted cytokine that binds CSF1R on cells and 
which can control the production, migration, function and 
differentiation of macrophages. CSF1R is predominantly 
expressed on myeloid cells of the monocyte–macrophage 
lineage and its inhibition has been used in various preclinical 
models for local macrophage/monocyte depletion. CSF1R 
mediated depletion has been shown to increase the efficacy 
of chemotherapy, radiotherapy, angiogenic inhibitors, and 
CPIs [36, 55, 129–131]. In addition to enhancing monocyte 

migration, CSF1 binding has been shown to promote the 
development of M2-like macrophages [132, 133].

Targeting CSF1R has the added advantage of being highly 
expressed on potently immunosuppressive MDSCs and 
can inhibit the migration of both macrophages and mono-
cytic MDSCs to the TME [119, 120]. Along with M2-like 
macrophages, MDSCs secrete high levels of indolamine 
2,3-dioxygenase (IDO) and have been implicated in resist-
ance to CPIs and rapid outgrowth of B16 cell line tumours 
[119].

Unlike GM-CSF which results in upregulation of PD-L1 
expression on immune infiltrates, inhibition of CSF1 sig-
nalling appears to upregulate CTLA-4 on tumour infiltrat-
ing CD8+ CTLs in addition to enhancing PD-L1 expression 
on macrophages and tumour cells, but with a concomitant 
decrease in PD-1 expression by monocytes and macrophages 
[131]. Inhibition of signalling by CSF1R on macrophages 
has been shown to enhance antigen presentation and T cell 
effector functions. Combination with CPIs was shown to 
induce tumour regression in murine models of PDAC [131].

While CCL2:CCR2 inhibitors can inhibit the mobiliza-
tion of monocytes from the bone marrow and may result in 
a build-up of potentially pro-tumour cells elsewhere, anti-
CSF1R antibodies deplete macrophages. There has been evi-
dence that CSF1/CSF1R inhibition can increase metastasis 
in breast cancer via a compensatory increase in expression 
of G-CSF, however, this has not been seen in other tumour 
models [134].

Prognostic significance of CSF1 and CSF1R

CSF1R overexpression is associated with a negative progno-
sis in breast cancer patients [135]. In murine models, CSF1R 
overexpression is associated with reduced survival in endo-
metrial, hepatocellular and colorectal cancer and targeting of 
both CSF1 and CSF1R have been shown to increase survival 
[136].

Clinical modulation of the CSF1/CSF1R axis

There are a range of anti-CSF1R antibodies currently in 
clinical trials designed to generate ADCC of tumour cells 
over expressing CSF1R and TAM depletion (Table 3).

CSF1R is a member of the KIT family of tyrosine kinases. 
Imatinib Mesylate can act as a tyrosine kinase inhibitor to 
these kinases. A trial using Imatinib in KIT+ patients showed 
clear clinical efficacy with 20/27 achieving stable disease, 1 
complete response and 4 partial responses. Because of the 
promiscuity of Imatinib, toxicities due to off target effects 
were significant with 1 in 4 discontinuing treatment due to 
intolerable AEs [137–140].

There have been efforts to design tyrosine kinase inhibi-
tors that target CSF1R, but they have lacked specificity 
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to CSF1R and induced intolerable side effects unrelated 
to macrophage behavior. A novel compound, DCC-3014, 
displays remarkable specificity and was due to be used 
in a First-In-Human trial by the end of 2016 but is yet to 
commence [141].

While the efficacy of CSF1R inhibitors has not yet led 
to their clinical approval, effective depletion of TAM num-
bers has been a positive development which may effec-
tively compliment other therapies.

Table 3   Clinical trials involving CSF1R inhibitors (as of September 2017)

Name Type Cancer Combination Result References

IMC-CS4 (Eli Lilly) Fully human IgG1 mAb 
CSF1R

Breast, prostate Monotherapy Phase 1 ongoing NCT02265536
Advanced solid tumours Monotherapy Phase 1 ongoing NCT01346358

Anti-PD-L1 or 
Anti-CTLA-4 
Ab

Phase 1 ongoing NCT02718911

AMG 820 (Amgen) Fully human IgG1 mAb 
CSF1R

Advanced solid tumours Monotherapy Phase 1 completed (toler-
able, 38% stable disease

NCT01444404

Pancreatic, colorectal, 
NSCLC

Anti-PD-1 Ab Phase 1b/2 recruiting NCT02713529

RG7155 (Roche) Humanized IgG1 mAb 
CSF1R

Advanced solid tumours Monotherapy Phase 1 ongoing NCT01494688
Anti-CD40 Ab Phase 1 ongoing NCT02760797
Anti-PD-L1 Ab Phase 1 ongoing NCT02323191

Diffuse-type giant cell Monotherapy Phase 1 complete (74% 
objective tumour 
response)

[172]

PLX3397 (Plexxikon) Orally active small mol-
ecule inhibitor of CSF1R 
and other KIT kinases

Glioblastoma Monotherapy No efficacy [173]
Breast Monotherapy No efficacy I-SPY-2 trial

NCT01042379
Advanced solid tumours Monotherapy Phase 1/2 ongoing NCT02584647

NCT02071940
NCT02975700
NCT01499043
NCT01004861

Advanced haematological 
malignancies

Monotherapy Phase 1/2 ongoing NCT01349049
NCT02390752

Tenosynovial giant cell 
tumours

Monotherapy Phase 3 ongoing NCT02371369

Hodgkin Lymphoma Monotherapy Tolerable, limited efficacy [174]
Advanced solid tumours Anti-PD-1 Ab Phase1/2a ongoing NCT02452424
Pancreatic or colorectal 

cancers
Anti-PD-L1 Ab Phase 1 ongoing NCT02777710

GIST c-Kit inhibitor Phase 1b ongoing NCT02401815
Malignant peripheral nerve 

sheath tumours
mTOR inhibitor Phase 1 ongoing NCT02584647

V600E-mutated melanoma BRAF inhibitor Phase 1b ongoing NCT01826448
Glioblastoma and prostate 

cancer
Radiotherapy Phase 1b/2 ongoing NCT01790503

NCT02472275
Breast cancer and 

advanced solid tumours
Chemotherapy Phase 1b ongoing NCT01596751

NCT01525602
PLX7486 (Plexxikon) Tyrosine kinase inhibitor of 

CSF1R and TrkA, TrkB, 
and TrkC,

Advanced solid tumours Monotherapy Phase 1 ongoing NCT01804530

FPA008 (FivePrime) Humanized mAb CSF1R Tenosynovial giant cell 
tumours

Monotherapy Phase ½ ongoing NCT02471716

Selected advanced solid 
tumours

Nivolumab Phase 1a/b NCT02526017
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Combination of macrophage modulation and T cell 
checkpoint inhibitors

Progress has not been aided by a relative under characteri-
zation of macrophage behaviour during the administration 
of current immunotherapeutics and analysis of how they 
may impact response. This is more striking when consid-
ering the central role monocytes and macrophages play 
in shaping the immune response. There has been limited 
publication of the relationship between response to CPIs 
and myeloid cells, but the level of immunological interro-
gation of patients focusing on myeloid subsets is not clear.

Ipilimumab (10 mg/kg) has been successfully trialled 
with subcutaneous recombinant GM-SCF in metastatic 
melanoma with an enhanced OS of 17.5 vs 12.7 months, 
and was better tolerated than Ipilimumab alone [142]. The 
mechanism resulting in reduced toxicities is not known; 
however, there was no difference in the objective response 
rate and no significant change in PFS. There is currently 
a phase 2/3 clinical trial examining the combination of 
Nivolumab and Ipilimumab with or without GM-CSF in 
unresectable melanoma (NCT02339571).

Positive results of clinical trials examining macrophage 
modulation will intuitively result in future trials com-
bining them with CPIs. Some of these combinational 
approaches are entering early stage clinical trials, but there 
have also been a number of trials which have indirectly 
combined CPIs with macrophage modulation and seen 
positive results.

Trabectedin is a drug approved for soft tissue sarcoma 
that binds the minor groove on DNA resulting in a poorly 
characterized DNA damage in all cells, but critical to its 
anti-tumour efficacy is its ability to selectively induce apop-
tosis in monocytes and macrophages, reduce recruitment 
of CD68+ monocytes to the TME and reduce CCL2 and 
CXCL8 levels [143–145]. Trabectedin has been shown to be 
synergistic with anti-PD-1 antibodies in murine models of 
ovarian cancer with the generation of systemic anti-tumour 
immunity [146]. It has been approved for the treatment of 
soft tissue sarcoma under the trade name Yondelis, and is 
currently in clinical trials for use in breast, prostate and pae-
diatric sarcomas. The prolonged period of treatment required 
to see an effect on macrophage populations makes it unlikely 
to exert an observable effect in fast growing or late stage 
tumours.

MGN1703, a DNA-based TLR agonist is being tri-
alled in advanced solid malignancies with Ipilimumab 
(NCT02668770). Similarly, IMO-2125, a synthetic TLR-9 
agonist which is expressed by plasmacytoid dendritic cells 
but also to a lesser extent by monocytes and macrophages, 
is being trialled in combination with ipilimumab in patients 
with metastatic melanoma (NCT02644967). If successful 
data emerges from these trials it will increasingly turn focus 

towards the role of innate immune cells in response to CPIs 
[147].

Data emerging from the phase 3 clinical trial KEY-
NOTE-252/ECHO-301 suggests that Epacadostat—an 
IDO inhibitor—in combination with Pembrolizumab can 
improve outcome for stage III/IV unresectable or metastatic 
melanoma patients. IDO is primarily secreted by M2 mac-
rophages but can also be produced directly by tumour cells 
in cancer patients. A phase 3 trial is currently recruiting 600 
patients to further test this combination (NCT02752074).

Discussion

Side effects associated with CPIs are dose dependant 
(Table 4), it appears they are also cumulative to the cycles 
received and additive with other CPIs [148]. The most recent 
evidence to emerge from CheckMate 067 examining Ipili-
mumab and Nivolumab in advanced melanoma, has sug-
gested the side effects are not cumulative but remain high 
with 58% of patients experiencing grade 3 or 4 adverse 
events (AEs). Intuitively this has led to a shift in thera-
peutic design, which has been predominantly focused on 
engineering or stimulating T cells ex vivo. However, it is 
uncertain if these cells will be able to overcome the immu-
nosuppressive environment that acts to ‘turn off’ these cells 
after readministration.

The most notable and promising examples of successful 
macrophage modulation have been found in murine mod-
els on PDAC and these are now beginning to show effi-
cacy in the clinical setting, but the unique composition of 
the pancreatic cancer TME may not accurately reflect the 
potential of macrophage modulation in other tumour types. 
It is hypothesized that the success seen may be due to the 
restricted flow of cells into and out of the microenvironment 
resulting in a reduced ability to compensate for a loss of 
macrophage function and consequent tumour inhibition. It 
however appears likely that macrophage modulating thera-
pies will compliment CPIs, and it will be of keen interest to 
see if the reduced AEs seen with GM-CSF and Ipilimumab 
will be seen with other therapies designed to reduce immu-
nosuppressive factors in the TME.

Table 4   Incidence of immune related AEs (irAE) seen in patients 
receiving ipilimumab

Figures taken from [148]

0.3 mg/kg (%) 3 mg/kg (%) 10 mg/kg (%)

Incidence irAEs 26 56 70
Incidence grade ¾ 

irAEs
0 7 25

Incidence of drug dis-
continuation due AEs

13 10 27
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While some have been quick to suggest that the ability to 
understand and direct MO behaviour represents an immuno-
therapy breakthrough it is clear from recent clinical evalu-
ation that manipulation of macrophages as a stand-alone 
therapy in its current state is insufficient for therapeutic suc-
cess [149]. However, it appears macrophage depletion may 
be a more effective strategy than macrophage re-education 
due to the profound immunosuppressive force exerted by 
advanced tumours [150].

In addition to the combination of macrophage modulation 
and immunotherapies, there is significant scope and prom-
ise for their combination with other therapies. For example, 
the anti-tumour effect of BRAF inhibitors was noted to be 
reliant on host tumour-directed immune responses [151]. 
50% of advanced melanomas are BRAF positive and ini-
tially respond to therapy, but tumours develop mechanisms 
of acquired resistance and become refractory [152]. In pre-
liminary studies, inhibiting monocyte and MDSC influx to 
the TME synergistically enhanced the effect of BRAF inhi-
bition [153, 154]. There is mounting preclinical evidence 
to justify the use of macrophage modulating therapies with 
BRAF inhibitors in advanced melanoma.

Preclinical data in murine models has shown that the 
effect of immunotherapy in mouse models is more effective 
in the early stages of disease progression, which is gener-
ally defined by a low concentration of immunosuppressive 
elements in the TME. While the reversal of this immunosup-
pression may restore sensitivity, delineation of the primary 
immunosuppressive factors responsible for the reduction in 
efficacy is difficult due to the plethora of interacting factors 
and systems in the TME. Significant literature is available 
on many factors, but their relative importance in determin-
ing sensitivity to therapy has not been fully elucidated. The 
clinical prognostic evidence on immunosuppressive factors 
in patients undergoing treatment is limited, but do suggest 
that they are the key to the development of systemic and 
durable anti-cancer responses.

Targeting of macrophages has been shown to profoundly 
shape the immune response and we now have a range of 
sophisticated therapeutics that are beginning to make 
impacts in the clinic. Rational design of immunothera-
peutics that will increase their efficacy, response rates and 
generate systemic and durable response rates will require a 
holistic mind-set towards understanding the immune system. 
Given the central role that macrophages play in shaping the 
immune response they will play an integral role in immuno-
therapeutic design.
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