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tumor-permissive microenvironment. Based on observa-
tions from the literature and our own studies, our laboratory 
is focusing on how LILRs modulate immune homeostasis 
of human myeloid cells and how these pathways may be 
targeted in disease states. Integrity of this pathway in tumor 
microenvironments, for example, permits a myeloid phe-
notype that suppresses antitumor adaptive immunity. This 
review presents the evidence supporting a role of LILRs as 
myeloid cell regulators and ongoing efforts to understand 
the functional immunology surrounding this family.
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HLA  Human leukocyte antigen
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LAT  Linker for activation of T cells
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Abstract The leukocyte immunoglobulin-like receptor 
(LILR) family comprises a set of paired immunomodula-
tory receptors expressed among human myeloid and lym-
phocyte cell populations. While six members of LILR 
subfamily A (LILRA) associate with membrane adap-
tors to signal via immunoreceptor tyrosine-based activat-
ing motifs (ITAM), LILR subfamily B (LILRB) members 
signal via multiple cytoplasmic immunoreceptor tyrosine-
based inhibitory motifs (ITIM). Ligand specificity of some 
LILR family members has been studied in detail, but new 
perspective into the immunoregulatory aspects of this 
receptor family in human myeloid cells has been limited. 
LILRB receptors and the murine ortholog, paired immu-
noglobulin-like receptor B (PIRB), have been shown to 
negatively regulate maturation pathways in myeloid cells 
including mast cells, neutrophils, dendritic cells, as well 
as B cells. Our laboratory further demonstrated in mouse 
models that PIRB regulated functional development of 
myeloid-derived suppressor cell and the formation of a 
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LILRB  Leukocyte immunoglobulin-like receptor sub-
family B

MAG  Myelin-associated glycoprotein
MAPK  Mitogen-activated protein kinase
MDSC  Myeloid-derived suppressor cell
MHC-I  Major histocompatibility complex I
NF-κB  Nuclear factor-κB
NFAT  Nuclear factor of activated T cells
NK  Natural killer
OMgp  Oligodendrocyte–myelin glycoprotein
PI3K  PI3-kinase
Syk  Spleen tyrosine kinase
TCR  T cell receptor

Introduction

The leukocyte immunoglobulin-like receptor (LILR, LIR, 
ILT, CD85) family can be divided into two classes: the 
inhibitory LILR subfamily B (LILRB1–5) and the activat-
ing LILR subfamily A (LILRA1–6), as shown in Table 1. 
Inhibitory LILRB receptors were first identified in 1997 
[1]. Expression is enriched in myeloid cell populations and 
is primate specific, reflecting rapid gene duplication and 

evolution within the leukocyte receptor complex of chro-
mosome 19 [2]. LILRs are in close linkage with the human 
killer cell inhibitory receptor (KIR) family, and both LILRs 
and KIRs share similar Ig-like structure and cytoplasmic 
signaling domains. Whereas KIR expression is restricted 
to natural killer (NK) cells, LILRs are expressed on vari-
ous immune cells including NK, T, and B lymphocytes and 
myelomonocytic cells (monocytes, macrophages, DCs, 
and granulocytes) [3]. LILRB expression has also been 
reported in other cell types including osteoclasts [4], leu-
kemia [2, 5], stromal and endothelial cells [6, 7], and vari-
ous cancers. LILRB expression in cancer has been associ-
ated with enhanced tumor growth and correlates with poor 
patient outcomes. As the role of LILRB in tumor biology 
has been well reviewed in the literature [5, 8], we focus on 
the implications of LILRB immunomodulation on immune 
cell subsets. LILRB1 is broadly expressed on myeloid 
cells, as well as B cells and subsets of NK cells and T cells. 
LILRB2–5 is more restricted to cells of myeloid origin 
and DCs. LILRA receptors have a transmembrane domain 
containing a charged arginine or lysine residue that asso-
ciated with the (YxxI/Lx6–12YxxI/L) ITAM-containing 
FcRγ [9]. ITAM activation recruits Syk/ZAP70 family 
kinases to drive downstream activation pathways important 

Table 1  LILR family of receptors, signaling, reported ligands, and immune cell distribution

Receptor Signaling Ligand Cell distribution Citation

LILRB1
(ILT2, LIR-1, CD85j)

ITIM (×4) β2m+ HLA-A/HLA-B/HLA-C/
HLA-G

UL18
S100A8/S100A9

B cells, NK, and T cell subsets
Monocytes, macrophages, DCs, 

osteoclasts, granulocytes, placen-
tal stromal cells

[4, 7, 13, 14, 21, 83–85]

LILRB2
(ILT4, LIR-2, CD85d)

ITIM (×3) HLA-A/HLA-B/HLA-C/HLA-G 
FHC

ANGPTL
β-amyloid
Myelin (Nogo, MAG, OMgp)

Monocytes, macrophages, DCs, 
osteoclasts, granulocytes, placen-
tal smooth muscle

[4, 7, 13, 14, 84, 85]

LILRB3
(ILT5, LIR-3, CD85a)

ITIM (×4) ? Monocytes, macrophages, DCs, 
osteoclasts, granulocytes

[4, 84, 85]

LILRB4
(ILT3, LIR-5, CD85 k)

ITIM (×3) ? Monocytes, macrophages, DCs, 
osteoclasts, endothelial cells

[4, 6]

LILRB5
(LIR-8, CD85c)

ITIM (×2) HLA-B27 FHC Macrophages, granulocytes [4, 22, 23]

LILRA1
(LIR-6, CD85i)

Fcγ HLA-C FHC
HLA-A/HLA-B/HLA-G FHC

Monocytes, macrophages [4, 13, 83]

LILRA2
(ILT1, LIR-7, CD85 h)

Fcγ ? Monocytes, macrophages, DCs, 
osteoclasts, granulocytes

[4, 85]

LILRA3
(ILT6, LIR-4, CD85e)

None (secreted) HLA-C FHC
HLA-A/HLA-B/HLA-G FHC

Activated monocytes [13]

LILRA4
(ILT7, CD85 g)

Fcγ BST2 Plasmacytoid DCs [25]

LILRA5
(ILT11, LIR-9, CD85f)

Fcγ ? Monocytes, macrophages [4]

LILRA6
(ILT8, CD85b)

Fcγ and none
(secreted)

? Monocytes, macrophages, osteo-
clasts

[4]
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for immunity [10]. Conversely, LILRB receptors contain 
cytoplasmic (S/I/V/LxYxxI/V/L) ITIM domains to recruit 
Src homology 2 domain-containing phosphatases, SHP1/
SHP2/SHIP, leading to inhibited immune signaling cas-
cades. SHP/SHIP phosphatase activity is critical in main-
taining immune homeostasis [11]. The present review 
focuses on ITIM-bearing inhibitory LILRB receptors that 
negatively regulate the activation of various immune cells, 
especially in myeloid cells, and summarizes current views 
on the mechanism of LILRB-mediated inhibition.

Natural ligands for LILR receptors

Despite initial reports for major histocompatibility com-
plex I (MHC-I) binding, the LILR family of receptors has 
emerged to bind multiple ligands. LILRB1 and LILRB2 
were originally shown to broadly bind MHC-I molecules, 
also known as human leukocyte antigen (HLA) class I 
molecules (HLA-A, HLA-B, HLA-C) and non-classical 
HLA-class I (HLA-E, HLA-F, HLA-G, and HLA-H) [12, 
13]. LILRB1 binds to β2m-associated HLA-I, whereas 
LILRB2 binds both β2m-associated and β2m-free heavy 
chain (FHC) forms of HLA-I [14]. Subsequent studies 
demonstrate LILRB binding to other ligands including the 
non-HLA angiopoietin-like (ANGPTL) protein family [15] 
and S100A8/S100A9 [16]. Structural analysis shows that 
two N-terminal Ig-like domains of LILRB1 and LILRB2 
distinctly bind HLA as compared to the KIR–HLA inter-
action [17]. Binding of ANGPTL ligands is distinct from 
the LILRB2-HLA receptor–ligand interaction and appears 
to be of higher affinity binding various residues from all 
four Ig-like extracellular domains [18]. LILRB2/PIRB has 
also been shown to bind oligomeric β-amyloid and myelin 

component proteins Nogo, myelin-associated glycopro-
tein (MAG), and oligodendrocyte–myelin glycoprotein 
(OMgp) to affect neurite regeneration [19, 20]. The remain-
ing LILRB receptors comprising LILRB3, LILRB4, and 
LILRB5 do not bind MHC-I or MHC-II and remain orphan 
receptors [12, 13, 21], although LILRA1 and LILRB5 were 
recently reported to bind HLA-B27 FHC [22, 23]. Like 
LILRB1 and LILRB2, LILRA1 and LILRA3 bind MHC-I 
but with reduced affinity and show preferential binding to 
HLA-C [13, 24]. LILRA4 has been shown to bind bone 
marrow stromal cell Ag 2 (BST2), an interaction important 
for plasmacytoid DC (pDC) maturation and function [25]. 
In all these instances, ligands for the LILR family have 
demonstrated acute effects on cell activation or maturation 
pathways.

ITIM‑dependent inhibition of signaling cascades

ITIM-bearing inhibitory LILRB receptors attenuate the 
crosslink-dependent activation of ITAM-bearing activat-
ing receptors, a process dependent on ITIM motif phos-
phorylation and the recruitment of SHP phosphatases 
[11], as shown in Fig. 1. The signal cascades mediated 
by ITAM-bearing receptor complexes, such as B cell 
receptor (BCR) activation, Fc-receptor aggregation, or 
T cell receptor (TCR) activation, activating KIR in NK 
cells or FcεRI-triggered mast cells activation, are shared 
activating pathways. Crosslink-dependent activation of 
the BCR, for example, triggers autophosphorylation of 
the Src-family protein, Lyn and activation of the cyto-
plasmic non-receptor tyrosine kinases, Bruton’s tyrosine 
kinase (Btk), and spleen tyrosine kinase (Syk) [26]. TCR 
activation triggers the Src-family kinases Lck and Fyn, 

Fig. 1  Model of LILRB 
cis-activation and regulation 
of LILRA-/ITAM-dependent 
pathways. Autophosphorylation 
of ITIM domains in response 
to LILRB activation recruits 
SHP1/SHP2 phosphatases. 
Activated SHP1/SHP2 directly 
suppresses Syk and PI3K 
activation downstream of 
ITAM motif activation, which 
normally drives the downstream 
activation of NFAT, Ras/ERK, 
NF-κB, JNK, and MAPK 
pathways to promote effec-
tor function, maturation, and 
cytokine release. SHP1/SHP2 
has been shown to inhibit JAK/
STAT pathways, but not in the 
context of LILRB
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leading to the recruitment of ZAP70 in T cells, an equiv-
alent molecule to Syk in B cells [27]. These pathways 
converge on phospholipase C-mediated signaling to con-
vert phosphatidyl bisphosphate to diacylglycerol (DAG) 
and inositol triphosphate (IP3). DAG induces the mem-
brane translocation and activation of the serine/threonine 
kinase protein kinase C, while IP3 activates the release of 
intracellular  Ca2+ stores leading to  Ca2+ influx from the 
extracellular space. This signaling pathway subsequently 
activates mitogen-activated protein kinases (MAPKs), 
extracellular signal-regulated kinase (ERK), and c-JUN 
 NH2-terminal kinase pathways and transcription fac-
tors including nuclear factor-κB (NF-κB) and nuclear 
factor of activated T cells (NFAT) [28]. The PI3-kinase 
(PI3K) pathway is the second major downstream process 
involved in signaling mechanisms leading to immune cell 
proliferation, survival, and motility [26]. PI3K binds Ras 
to activate Ras/Raf signaling as well as binds pleckstrin 
homology domains to activate Btk and Akt at the cell 
membrane.

The ITIM-dependent recruitment of SHP1/SHP2 to 
LILRB has broad implications for suppressing Syk/Src 
signal cascades associated with immune activation. Con-
sistent with the biology of other receptors that signal 
via ITIMs, T cell lines transduced with LILRB1 recruit 
SHP1 to inhibit activation of the T cell receptor by atten-
uating CD3ζ and linker for activation of T cells (LAT) 
phosphorylation [29]. Antibody-based functional assays 
support the inhibitory role of LILRB1 on CD4 and CD8 
T cell effector function and proliferation [30]. In B cells, 
LILRB1 activation suppresses maturation and prolifera-
tion associated with attenuated Akt signaling [31]. Simi-
larly, another study showed LILRB1–HLA-G interactions 
cause G0/G1 cell cycle arrest resulting from dephospho-
rylation of Akt, GSK-3β, c-Raf, and Foxo proteins [31]. 
HLA-G functionally inhibited B cell proliferation and 
differentiation. Murine PIRB inhibits Syk and Btk down-
stream of B cell receptor signaling via SHP1 recruitment 
[32]. Similar signaling patterns hold true among myeloid 
cells. PIRB negatively regulates chemokine-induced acti-
vation in murine DCs and is dependent on the Src-family 
kinases Hck and Fgr [33]. In the THP-1 monocytic cell 
line, LILRB4 activation attenuates CD64-dependent 
activation of Lck, Syk, LAT, ERK, and c-Cbl [34]. Co-
ligation of LILRB4 also appeared to disrupt FcγRI-
dependent endocytosis/phagocytosis via SHP-dependent 
dephosphorylation of signaling components including 
Syk, clathrin, and E3 ubiquitin protein ligase Cbl, among 
others [35]. SHP1/SHP2 has also been reported to mod-
ulate the activation of JAK/STAT pathways [36] and is 
implicated to have roles in fate maturation and immune 
function.

LILRBs negatively regulate myeloid cell activation

Early experiments in DCs demonstrated that LILRB2 
agonism inhibits  Ca2+-flux in response to Fc-receptor 
engagement [12]. LILRB1 activation on DCs is associ-
ated with maintenance in an immature state with limited 
antigen-presenting cell function [37, 38]. In allogeneic 
settings, both LILRB2 and LILRB4 are up-regulated on 
monocyte and DC populations and correlate with trans-
plantation tolerance [39]. Studies analyzing human 
immunodeficiency virus (HIV) mutational escape demon-
strate that viral expression of an HLA-B variant directly 
activates LILRB2 to promote myeloid cell tolerance and 
downregulation of DC maturation and costimulatory 
molecules [40]. The result is viral clone escape from 
cytotoxic T cell lymphocytes. LILRs are also directly 
involved in myeloid cytokine release. In DCs, IL-10 
directly up-regulates LILRB2 expression while it simul-
taneously down-regulates soluble LILR secretion [41]. 
Similarly, elevated IL-10 in HIV patients is associated 
with the compromised antigen-presenting ability among 
myeloid cells overexpressing LILRB2 [42]. In addition 
to modulating DC maturation and function, LILRB1 and 
LILRB2 compete with CD8 for ligand binding to HLA 
[14]. LILRBs can thus modulate antigen-presenting cell 
activation pathways directly in addition to indirectly by 
suppressing effector CD8 T cells. LILRB1 and LILRB2 
competition for CD8 demonstrated how Langerhan cells 
and  CD14+ dermal DCs differ in T cell priming.  CD14+ 
dermal DCs, which express LILRB1 and LILRB2, stimu-
late type-2 CD8 T cell maturation while Langerhan cells, 
which lack LILRB1 and LILRB2, efficiently prime cytol-
ytic CD8 T effector cells [43]. Soluble LILRB2 inhibited 
Langerhan cell priming of cytotoxic CD8 T cells while 
antibodies disrupting LILRB2 enhance cytotoxic CD8 T 
cell priming in dermal DCs.

Limited data are available regarding how LILRB 
on monocytes can alter macrophage maturation. Like 
LILRB2 on DCs, LILRB4 activation on monocytes 
and macrophages attenuates  Ca2+-flux resulting from 
CD11b, HLA-DR, or FcγRIII acute activation [44]. 
Salmonella infection or LPS treatment is sufficient to 
enhance LILRB2 and LILRB4 expression on DCs and 
macrophages [45]. Under these conditions, activation of 
LILRB4 increases IL-10 while reducing IL-8, supporting 
a role of LILRBs in regulating innate immune inflam-
matory responses. In both macrophages and neutrophils, 
PIRB negatively regulates integrin signaling. PIRB defi-
ciency in these cells results in excessive adhesion due 
to enhanced integrin signaling, increased activation, and 
effector function [46]. PIRB antibody blockade or PIRB 
deficiency further enhances macrophage IL-6 and TNFα 
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inflammatory responses, while reducing IL-10 [47]. 
Unexpectedly, PIRB-deficient mice are more susceptible 
to Salmonella infection [48]. Although PIRB-deficient 
macrophages produce higher levels of TNFα and nitric 
oxide, defects in phagosomal oxidation prevent efficient 
Salmonella clearance. These findings highlight the mul-
tiple roles paired receptors appear to have in regulation 
and in microbial infection.

Using a different disease model, PIRB-deficient mac-
rophages similarly demonstrate exacerbated proinflam-
matory cytokine release and autoimmune colitis [49]. 
Consistent with the hypothesis that LILRB and PIRB 
expression on myeloid cells suppresses type-1 inflamma-
tory responses, our laboratory demonstrated that PIRB is 
necessary to maintain the regulatory phenotype of tumor-
infiltrating MDSCs [50]. MDSCs deficient in PIRB have 
inhibited maturation of an M2-like phenotype and favor 
activation of STAT1 and NF-κB pathways. PIRB loss in 
MDSCs was also associated with reduced tumor burden 
and fewer intra-tumoral regulatory T cells. RNAseq experi-
ments from human macrophages demonstrated enhanced 
expression of LILRA family members under M1 inflamma-
tory conditions and enhanced expression of LILRB family 
members under M2 inflammatory conditions [51]. These 
observations suggest that PIRB/LILRBs play important 
roles in maintaining regulatory macrophage phenotypes.

cis versus trans signaling of LILRs

Unique to a subset of MHC-I binding receptors, PIRB, 
LILRB1, and LILRB2 are sterically capable of recogniz-
ing ligand both in cis and in trans [52]. Because of ubiqui-
tous HLA expression, the implication for LILRBs as tonic 
negative regulators of immune maturation and homeostasis 
in cis is significant. Constitutive phosphorylation of LILRB 
and PIRB receptors has been reported in the literature [4], 
and loss of HLA/β2m ligand in cis contributes to dimin-
ished tonic activation of PIRB [53]. Fluorescence reso-
nance energy transfer experiments further demonstrate cis-
interactions between LILRB1, LILRB2, and HLA as well 
between PIRB and H-2 [4, 54]. Osteoclasts, multinucle-
ated cells derived from myeloid–macrophage precursors, 
broadly express LILRs similar to macrophages. Co-immu-
noprecipitation experiments showed constitutive activa-
tion of LILRB1–4 on monocyte-derived macrophages and 
osteoclast populations [4]. This suggests tonic signaling as 
a regulator for inflammation and/or maturation. PIRB loss 
up-regulates osteoclast differentiation and bone resorption 
activity. Similar findings have been observed in human and 
murine mast cells where LILRB2 and PIRB are constitu-
tively expressed and activated. Loss of PIRB or MHC-I 
enhances mast cell cytokine response following IgE or LPS 

stimulation [54]. Surprisingly, trans availability of MHC-I 
does not appear to rescue PIRB-mediated regulation in the 
absence of cis signaling. Collectively, these studies suggest 
that cis-interactions of LILRB and PIRB with MHC-I may 
be the dominant mechanism for immunomodulation versus 
trans. In addition to acting as negative regulators of acute 
activation, tonic cis-activation is hypothesized to be respon-
sible for maintaining immune homeostasis, preventing acti-
vation-induced cell stress/apoptosis, or enabling maturation 
of regulatory cell phenotypes as suggested by PIRB knock-
out mouse studies.

The role of LILRB‑expressing myeloid cells in the 
tumor microenvironment

The crosstalk between malignant cells and myeloid cells, 
such as TAM, MDSC, and tolerogenic dendritic cells in 
the tumor microenvironment, is an emerging scientific 
theme critical for exploring novel cancer immunothera-
pies. LILRB4 is expressed on monocytic MDSC, poly-
morphonuclear MDSC, and classical monocyte subpopu-
lations. NSCLC patients with an increased  LILRB4high 
population had a shorter median survival than patients 
with a decreased  LILRB4high subset [55]. LILRB4 expres-
sion on conventional DC and pDCs was increased in 
colorectal cancer patients when compared to healthy 
controls [56]. While LILRB4 is down-regulated follow-
ing DC activation [57], its expression is up-regulated on 
tolerogenic DCs, leading to the induction of Treg cells 
[58].  CD68+ tumor-associated macrophages express high 
levels of LILRB4 in colorectal carcinomas, pancreatic 
carcinomas, and melanoma, found to reconstitute tumor-
infiltrated lymph nodes at much higher frequencies ver-
sus non-invaded lymph nodes [59]. Furthermore, LILRB4 
in either membrane-bound or secreted form could induce 
T cell anergy and promote the differentiation of  CD8+ T 
suppressor cells within the tumor microenvironment or 
in sentinel lymph nodes [59, 60]. These findings support 
a pro-tumorigenic role of LILRB4 by altering immune 
activation.

The interaction between LILRB ligands and myeloid 
cells involved in antigen processing and presentation has 
been shown to exert regulatory functions and to be uti-
lized by tumor cells to evade immune surveillance. Sev-
eral studies have identified non-classical HLA (HLA-G, 
HLA-E, HLA-F) in various types of tumor cells/malig-
nant tissues, e.g., lung cancer [61], colorectal [62], laryn-
geal [63], breast [64], and glioma [65]. HLA-F can bind 
to LILRB1 and LILRB2 and has been shown as a prog-
nostic factor in lung cancer patients [61, 66] while the 
presence of serum soluble HLA-E has positive associa-
tion with melanoma [67]. HLA-G/LILRB1 engagement 
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results in expansion of  CD11b+Gr-1+ MDSC populations 
in LILRB1 transgenic mice [68]. Consistent with regula-
tory function, HLA-G tetramer administration decreased 
IL-12, CD86, and MHC class II, but increased IL-10 
and IL-6 in lymph node DC in LILRB2 transgenic mice. 
HLA-G tetramer further arrested the maturation/activa-
tion of  LILRB2+ dendritic cells in a STAT3-dependent 
manner [69]. IL-4 and IL-13 expression downstream of 
HLA-G–LILRB1/LILRB2 engagement has been shown 
in several studies to not only suppress proinflammatory 
cytokine release, but promote secretion of IL-10 and 
TGFβ regulatory cytokines [70]. Other natural ligands 
for LILRB receptors include the ANGPTL family, which 
can stimulate ex vivo expansion of human cord blood 
hematopoietic stem cells [71, 72]. ANGPTL2–PIRB 
engagement can support leukemia development and 
the maintenance of stemness in the mouse [15]. The 
ANGPTL2–LILRB2 signaling axis in humans is impor-
tant for the survival and migration of A549 lung cancer 
cells line [73]. ANGPTL2–LILRB2 engagement also 
plays a key role in sustaining epithelial mesenchymal 
transition during pancreatic ductal carcinogenesis [74]. 
Co-expression of ANGPTL2/ANGPTL5 and LILRB2 
in human lung cancer tissue indicated a great level of 
lymph node metastasis and shorter overall survival rate 
in human lung cancer patients [75]. In other studies, the 
presence of LILRB ligands and ANGPTLs is reported to 
associate with tumor metastasis/progression in multiple 
cancer types [76, 77].

Our previous study suggested that monocytic MDSC 
from tumor-bearing PIRB knockout mice exhibited a 
diminished suppressive activity and an impaired Treg 
induction activity [50]. Tumor-infiltrating PIRB knockout 
macrophages have an M1-like phenotype that have lower 
levels of IL-10 and arginase activity, but higher levels of 
NO, IL-12, IL-1β, and TNFα following stimulation. PIRB 
knockout tumor-bearing mice have an attenuated tumor 
progression and prolonged survival period when com-
pared to WT mice. Our study suggested that PIRB plays 
a pivotal role in regulation of myeloid differentiation and 
blockade of PIRB signaling could polarize MDSC to favor 
an environment conducive to antitumor immunity. In our 
research addressing LILRB2, we found LILRB2 antago-
nism can inhibit SHP1 phosphorylation and activate down-
stream ERK/NF-κB/STAT1 signaling, which can inhibit 
IL-10, enhance TNFα, and favor effector T cell activa-
tion (van der Touw et al., manuscript submitted). Further-
more, LILRB2 blockade can reprogram tumor-associated 
macrophages isolated from primary human lung cancer 
tissue into a proinflammatory phenotype, suggesting that 
blockade of LILRB2 as an immune checkpoint ther-
apy may subvert the immune tolerance within the tumor 
microenvironments.

We hypothesized that in the tumor microenvironment, 
natural ligands expressed on or secreted by tumor cells/
malignant tissues can engage members of the LILRB fam-
ily, resulting in MDSC expansion, polarization favoring 
immunosuppressive activities in tumor tissues, and ulti-
mately tumor progression and metastasis. Activation of 
LILRBs can restrict antigen presentation ability leading to 
antigen-specific unresponsiveness and immune tolerance. 
Tumor-associated macrophages and tumor-resident den-
dritic cells can express ligands and interact with LILRB1-
expressing T lymphocytes or NK cells, resulting in the 
induction of regulatory T cells, suppression of T cell acti-
vation, and impairment of cytolytic CD8 T lymphocyte 
function.

Perspective and future studies

We hypothesize that the regulatory functions of LILRB 
and PIRB receptors are further fine-tuned by LILRA and 
PIRA-dependent signals, as has been suggested [78]. Like 
PIRB/LILRB, PIRA/LILRA is expressed on myeloid cells, 
but associates with ITAM-containing FcRγ chain [4, 9, 79]. 
LILRA family members share high homology with LILRB 
receptors and can compete for the same HLA ligands. 
LILRA1 and LILRA3 bind HLA but with reduced affin-
ity compared to LILRB1 and LILRB2 and show preferen-
tial binding to HLA-C [13, 24]. Tonic levels of activation/
inhibition by LILRA and LILRB depend on relative HLA 
ligand affinity, steady-state expression of LILRA/B, and 
potential regulation at the level of membrane co-localiza-
tion to facilitate crosslink-dependent activation. These rela-
tive balances of LILRA/LILRB-mediated activation/inhibi-
tion in particular immune cells may play an important role 
in determining its cell fate and driving immune responses 
to counterbalance the microenvironment. In mice, we 
observed that monocytes expressed balanced levels of both 
PIRB and PIRA, but splenic macrophages and DC popula-
tions preferentially express PIRB over PIRA in tumor-bear-
ing mice. These observations are consistent with reported 
findings of PIRB/PIRA expression [80].

Increased myeloid cell maturation capable of elicit-
ing inflammatory responses is potentially accompanied by 
increased tonic regulation by PIRB/LILRB. This hypoth-
esis resembles NK cell expression of NKG2A and KIR in 
response to HLA education/licensing: a maturation pro-
cess associated with enhanced effector function potential 
[81, 82]. Like NK cells, similar dynamics may be occur-
ring during monocyte differentiation into macrophage or 
DC subsets. Enhanced LILRB signaling during this process 
may educate differentiation toward regulatory phenotypes 
that favor tumor escape as we have demonstrated in PIRB-
deficient tumor models. The important immunomodulatory 
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characteristics of LILRA/B receptors represent unique tar-
gets on myeloid cells that can be manipulated through the 
use of agonistic or antagonistic antibodies for the treatment 
of various diseases, including cancers and autoimmune 
diseases. Development of therapeutics that modulate these 
pathways may tailor innate immune function to promote 
desired immunotherapy-driven outcomes.
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