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MCP-1	� Monocyte chemoattractant protein 1
MDSC	� Myeloid-derived suppressor cell
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gene enhancer in B-cells
NGF	� Nerve growth factor
NRG1	� Neuregulin 1
NTRK1	� Neurotrophic receptor tyrosine kinase type 1
P75NTR	� p75 neurotrophin receptor
PNS	� Peripheral nervous system
SNS	� Sympathetic nervous system
STAT1	� Signal transducer and activator  

of transcription 1
TLR	� Toll-like receptor
TNF-α	� Tumor necrosis factor alpha

Abstract  Cancerous cells must cooperate with the sur-
rounding stroma and non-malignant cells within the 
microenvironment to support the growth and invasion of 
the tumor. The nervous system is a component of every 
organ system of the body, and therefore, is invariably at 
the front line of the tumor invasion. Due to the complex-
ity of the nervous system physiology, this review separately 
discusses the contributions of the central and peripheral 
nervous systems to the tumorigenesis and tumor progres-
sion. We further focus the discussion on the evidence that 
Schwann cells aid in tumor growth and invasion. Schwann 
cells, a largely unexplored element of the tumor microenvi-
ronment, may participate in the creation of tumor-favora-
ble conditions through both bi-directional interaction with 
cancer cells and the facilitation of the immune-suppressive 
microenvironment through the mechanism of neural repair 
and immunomodulation.

This paper is a Focussed Research Review based on a 
presentation given at the conference Regulatory Myeloid 
Suppressor Cells: From Basic Discovery to Therapeutic 
Application which was hosted by the Wistar Institute in 
Philadelphia, PA, USA, 16th–19th June, 2016. It is part of 
a Cancer Immunology, Immunotherapy series of Focussed 
Research Reviews.
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Introduction

It is now well established that cancer cells rely on the 
recruitment and interaction with various non-malignant 
cells to support tumor growth, creating what is referred to 
as the tumor microenvironment [1, 2]. Endothelial cells, 
fibroblasts and other stromal cells, as well as various 
immune cells play an important role in enabling or enhanc-
ing tumor capabilities [2]. Similar to the vasculature, 
neurons are found in virtually every organ system of the 
body and therefore serve as an early witness of the emerg-
ing tumor. The nervous system is not a simple bystander, 
however, and has also been extensively implicated in pro-
moting tumor growth and progression. For simplicity, the 
discussion in this article is divided into two parts: the cen-
tral nervous system (CNS), which includes the brain and 
the spinal cord, and the peripheral nervous system (PNS). 
PNS can be further subdivided into afferent neurons which 
sense various ques and send signals from the periphery to 
the CNS, and efferent neurons which control the motor and 
autonomic functions via the signaling from the CNS to the 
peripheral organs. Sympathetic and parasympathetic neu-
rons comprise the visceral efferent system, controlling the 
involuntary activity of the body such as heart rate, respira-
tion and perspiration.

In the last two decades, preclinical and clinical stud-
ies have established examples of the interaction between 
CNS as well as peripheral neurons and some tumors. We 
will review here several of these examples which implicate 
nervous system in playing either a direct role or indirectly 
influencing the tumor microenvironment.

Neuroglial cells (glia or neuroglia) are non-neuronal 
cells that provide support and protection for neurons 
through myelin formation and maintenance of homeosta-
sis. In the CNS, glial cells include astrocytes, oligoden-
drocytes, ependymal cells and microglia. Schwann cells 
and satellite cells comprise the glia of the PNS. The glia 
of the CNS is known to contribute to the establishment of 
the microenvironment niche for brain metastasis through 
the production of pro-inflammatory mediators. The role of 
the peripheral glia in tumorigenesis and tumor progression 
is less defined. Schwann cells, which are best known for 
myelinating peripheral nerves, play an important role in 
neural regeneration, in part though the modulation of the 
immune system. In doing so, Schwann cells may be inad-
vertently aiding in the maintenance of microenvironment 
favorable to the tumor progression. We will review what 
is known currently about the interactions of tumors with 
Schwann cells, and provide additional perspective on the 
possible role Schwann cells play in modulating the tumor 
microenvironment.

Central nervous system

The potential bidirectional link between the brain and the 
peripheral malignant tumor has been the subject of multi-
ple studies [3, 4]. Clinical imaging studies detect altered 
brain metabolism in patients with malignant disease [5–7]. 
Epidemiological studies indicate that psychosocial factors 
such as stress, depression and social isolation likely play 
a role in cancer progression [8–11]. These results indicate 
that CNS may sense and affect tumor progression, but 
while psychosocial interventions that teach stress manage-
ment often provide positive effects on the quality of life 
[12], it remains controversial whether such interventions 
ultimately affect cancer progression and survival [13–16]. 
Nevertheless, accumulating evidence from clinical, in vitro 
and in vivo studies highlights specific stress response path-
ways which may influence cancer progression [17]. These 
stress response pathways directly affect well known “hall-
marks of cancer” [1], including tumor proliferation and 
invasion, angiogenesis and evasion of the immune surveil-
lance. The main signal transduction during the activation of 
the stress response occurs through the hypothalamic–pitui-
tary–adrenal axis or the autonomic nervous system. The 
hypothalamic–pituitary–adrenal stress response results in 
downstream release of glucocorticoid hormones such as 
cortisol from the adrenal cortex [18]. Stress also modulates 
the levels of other neuroendocrine factors such as substance 
P, nerve growth factor, dopamine, oxytocin and prolactin 
[17, 19]. Patients with cancer exhibit alterations in diurnal 
serum cortisol rhythms [20], and flattening of such rhythms 
in patients with breast and lung cancer predicts early mor-
tality [21, 22]. Several cancer cell types downregulate the 
expression of glucocorticoid receptor to escape glucocor-
ticoid-induced apoptosis [23, 24]. Additional direct pro-
tumorigenic effects of glucocorticoids may be through 
the compromise of DNA repair mechanism [25], or the 
suppression of cell-mediated immunity [26]. The stress 
response may, therefore, contribute to tumor progression, 
but it is still unknown whether the CNS receives signaling 
from the periphery about the presence of the tumor, and if 
so, how is that information processed and what responses 
are generated as a result?

Autonomic nervous system

The peripheral autonomic nervous system regulates gene 
expression of the cancer cells directly and elicits a wide 
influence on the tumor microenvironment [27]. The sym-
pathetic nervous system (SNS) in particular plays a major 
role in tumorigenesis [27]. Practically, all organ systems 
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in humans are regulated by the SNS via the catecholamine 
neurotransmitters either through the release of norepineph-
rine by the tissue localized nerve terminals or through the 
vascular distribution of epinephrine secreted by the adre-
nal gland. The influence of the SNS on tumor progres-
sion likely occurs not via an acute “fight-or-flight” stress 
response, but through sustained changes in basal levels and 
circadian cycles of SNS activity leading to durable altera-
tion of the gene expression profile of cancer and support-
ing stroma elements [28–31]. Catecholamines released by 
the SNS bind adrenergic receptors which are expressed 
by most tissues and organ systems, including tumor cells 
and tumor stroma [32, 33]. The density of autonomic nerv-
ous fibers in prostate cancer and surrounding tissue is 
associated with poor clinical outcomes [34], and the link 
between SNS signaling and cancer is further supported 
by pharmaco-epidemiologic studies which suggest that 
β-adrenergic antagonists may reduce the progression of 
certain tumors [33, 35–38]. Chronic and circadian varia-
tions in the SNS activity alter hematopoietic environment, 
leading to a shift toward a pro-inflammatory pool of circu-
lating leukocytes [39]. In addition, β-adrenergic signaling 
within tumor microenvironment may lead to the release of 
pro-inflammatory cytokines, chemotactic and pro-angio-
genic factors, and matrix metalloproteinases, further aiding 
in tumor survival and progression [40–46]. Catecholamines 
may also lead to chromosomal instability and tumor initia-
tion via direct effects of β-adrenergic signaling on tumor 
cells such as activation of Src and HER2 oncogenes [47, 
48], inhibition of DNA damage repair and apoptosis [49, 
50].

It is evident through the multitude of the epidemiologic 
and experimental body of work that stress response induced 
through the CNS driven hypothalamus–pituitary–adrenal 
axis and the sympathetic nervous system plays a signifi-
cant part in the early stages of tumor progression via direct 
effects on the malignant cells and indirectly via aiding in 
the creation of tumor-favorable microenvironment.

Afferent nervous system

Compared with the SNS, much less is known about the 
role of the afferent (sensory) division of the PNS in tumor 
progression. Ablation of the sensory neurons in the mouse 
models of basal cell carcinoma and pancreatic ductal ade-
nocarcinoma attenuates the initiation and progression of 
tumors [51, 52]. Thus, while this area of research is still in 
the early phase, sensory neurons likely make an important 
contribution to the tumor microenvironment. Most organs 
are innervated by the sensory neuron fibers through either 
the nodose (via the vagal nerve) or the spinal ganglia (via 
splanchnic nerves). The bulk of the cell soma of primary 

afferent neurons is located in the dorsal root ganglia (DRG) 
of the vertebral column. Pain, temperature, pressure, pro-
prioception and other sensory information is carried by 
afferent neurons to the CNS. In response to tissue dam-
age, injury or infection, DRG neurons are able to modu-
late the inflammatory response through the production 
of chemokines, cytokines and their associated receptors, 
including IL-1, IL-6, TNF-α, MCP-1, IP-10, CCR1 and 
CXCR4 to name a few [53–56]. Sensory neurons also pro-
duce neurotrophic factors, Toll-like receptors [53, 56, 57], 
and secrete histamine and glutamate as well as neuropep-
tides such as substance P, vasoactive intestinal polypeptide 
and calcitonin [58, 59]. Neurogenic inflammation has been 
primarily studied in the context of neurodegeneration, neu-
ropathic pain and chronic pain syndrome [53, 56].

Most of the work on the relationship between afferent 
neurons and cancer focused on cancer-related pain syn-
drome and perineural invasion [60–62], two processes 
which are directly related to the pro-inflammatory activity 
of the sensory neurons and the upregulation of neurotrophic 
factors. The link between neurogenic inflammation and the 
development of cancer is well illustrated by the studies of 
the mouse models of pancreatitis and pancreatic cancer. 
Chronic pancreatic inflammation is a significant risk factor 
for the development of adenocarcinoma in humans. DRG-
driven neurogenic inflammation in the spinal cord occurs 
early in the development of pancreatic ductal adenocarci-
noma, promotes cancer associated pain and perineural inva-
sion and is significantly reduced upon ablation of sensory 
neurons, slowing tumorigenesis and leading to the increase 
in overall survival [52, 63]. Direct effects of tumor on the 
sensory neurons and specific mechanisms by which DRG 
neurons may support pro-tumorigenic microenvironment 
remain largely undetermined. We have recently demon-
strated that mouse B16 melanoma directly stimulates the 
growth of DRG neurons in vitro, altering their chemokine 
expression and leading to chemoattraction of MDSCs [64]. 
The presence of DRG neurons in the melanoma in  vivo 
was associated with the enrichment of intra-tumoral gran-
ulocytic subset of MDSCs and the acceleration of tumor 
growth [64]. Therefore, the creation of immunosuppressive 
pro-tumorigenic microenvironment through the chemoat-
traction of MDSCs may be one way DRG neurons are uti-
lized by cancer cells to support tumor progression.

Co-culture experiments of tumor cells and neurons 
demonstrate that human prostate cancer, pancreatic can-
cer and colon adenocarcinoma cells are able to induce 
neurite extensions by the neurons [65–68]. Reciprocal 
effect of neurons on cancer cells increases their migratory 
potential in  vitro [69–71]. Based on the in  vitro data, it 
is, therefore, reasonable to expect an enhanced density of 
nerve fibers within the tumor. However, while some stud-
ies do provide evidence of neurogenesis within the tumor 
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[34, 66, 68, 72–74], others report normal or even reduced 
neuronal density within the tumor foci, and the presence 
of nerve fibers exclusively around the vasculature or in the 
peripheral stroma of the tumor [75–78]. The challenge in 
quantifying neuronal fibers by immunohistochemistry and 
the difficulty of differentiating between autonomic and sen-
sory fibers in tissue may contribute to the discrepancy of 
reported tumor innervation. However, it is now clear that 
peripheral neurons, both afferent and efferent fibers, con-
tribute to tumor progression through the modulation of the 
tumor microenvironment.

Neuroglia

Similar to the neuronal fibers, the glia of the CNS and the 
PNS are the source and target of chemokines, cytokines, 
neuropeptides and neurotrophic factors and participate 
in signaling with neurons, immune cells and other stro-
mal components [53]. Glial cells such as astrocytes and 
Schwann cells express TLRs and Nod-like receptors which 
enables them to respond to neuronal injury, tissue dam-
age or infection [79–81]. Neuroglia of the brain has been 
implicated in the pathogenesis of neurodegenerative dis-
eases, traumatic brain injury and epilepsy [82–84], while 
peripheral glia has been extensively studied in the context 
of demyelinating diseases and peripheral neuropathy [85, 
86]. Significantly, less is known about the role of glia in the 
tumor microenvironment.

The glia of the CNS has been largely investigated in 
the context of brain metastasis of breast or lung carci-
noma. It is now well established that astrocytes are able to 
form gap junctions with the metastatic cancer cells, lead-
ing to the exchange of signaling molecules and the release 
of pro-inflammatory cytokines such as IFN-α and TNF-α 
[87]. The inflammatory microenvironment created by the 
astrocytes in this way further supports tumor growth and 
chemoresistance by activating NF-κB and STAT1 pathways 
and upregulating survival genes in breast and lung carci-
noma cells [87–89]. The glia of the PNS has not been as 
rigorously studied. Specifically, how peripheral glia may 
contribute to tumorigenesis or tumor progression remains 
poorly understood.

Schwann cells

Schwann cells, the body’s most widely distributed neu-
ral crest-derived cells, form the major component of the 
PNS glia, functioning in myelination, axonal maintenance 
and repair [90–92]. As is the case with afferent neurons, 
Schwann cells also participate in neuropathic pain and may 
promote cancer-related analgesia [93–95]. Perhaps the best 

example of the direct interaction between Schwann cells 
and the tumor is illustrated in neuroblastoma—malignancy 
which originates from primitive sympathetic nervous sys-
tem, where the presence of Schwann cell-rich stroma cor-
relates with differentiated tumor cells and a more favorable 
prognosis [96, 97]. Low vascularity in Schwann cell-abun-
dant stroma is another favorable prognostic factor in neu-
roblastoma, and part of the explanation may be attributed 
to an observation that Schwann cells can inhibit angio-
genesis in vitro [98]. Another study described direct cross 
talk between neuroblastoma cells and Schwann cells via 
NRG1-mediated stimulation of Schwann cells by NTRK1-
expressing tumor, leading to the expression of NGF by 
the activated Schwann cells, which in turn promoted the 
maturation of neuroblastoma [99]. The expression of neu-
rotrophic factors by Schwann cells such as NRG1 and NGF 
and their tyrosine-kinase receptors of ErbB, p75 and Trk 
families is essential for Schwann cell development, pro-
liferation, migration, as well as myelination and neuronal 
regeneration [90–92, 100]. Tumor types which share neu-
ral crest origin with Schwann cells, such as neuroblastoma 
and melanoma, also strongly rely on these signaling path-
ways. It is, therefore, reasonable to expect bidirectional 
communication between Schwann cells and tumor cells 
through neurotrophic and, likely, other factors. However, 
it is yet unclear whether these signaling pathways promote 
or inhibit tumor progression. For example, elevated expres-
sion of ErbB2 and ErbB3 carries an unfavorable prognosis 
in melanoma, breast and lung carcinoma, while the oppo-
site appears to be true for neuroblastoma [101, 102]. Inter-
estingly, recent study demonstrated a significant reduction 
of sympathetic nerve fibers, Schwann cells and nestin+ 
mesenchymal stem cells in the bone marrow of patients 
with myeloproliferative neoplasms and mouse model of the 
disease [103]. Nestin+ mesenchymal stem cells also origi-
nate from the neural crest, and together with their sym-
pathetic innervation and supporting Schwann cells form 
hematopoietic stem cell niche, abrogation of which leads to 
myeloproliferative neoplasms [103, 104].

The presence of Schwann cells in the tumor stroma is a 
subject of some debate. Data supporting the migration of 
Schwann cells to the tumor parenchyma are contradicted 
by several examples of possible dedifferentiation of tumor 
cells to glial phenotype [105–109]. However, numerous 
examples in vitro and in vivo demonstrate mutual affinity 
of cancer cells and Schwann cells, supporting the hypoth-
esis that Schwann cell presence in tumor microenvironment 
results from their migration. Schwann cells were found 
to migrate to the pancreatic intraepithelial neoplasm and 
intestinal adenoma in humans and mice before the onset 
of perineural invasion and advanced malignancy [110]. 
The strongest evidence for tumor cell-glial tropism comes 
from the models of perineural invasion [111]. Schwann 
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cells may be able to promote perineural invasion of neu-
rotropic tumor by direct contact with cancer cells in an 
integrin, NCAM-1, or MAG dependent manner [112–114]. 
We observe Schwann cells and neuronal fibers within the 
stroma of the invasive human melanoma (Fig. 1).

The abundance of Schwann cells in most organs and 
their virtually assured presence adjacent to early malig-
nancy and within tumor microenvironment suggests that 
they may play a role in tumor progression or suppression. 
The question of how Schwann cells modulate tumor micro-
environment remains largely unanswered. Schwann cells 
may interact with neuronal fibers and cancer cells directly, 
as well as with other stromal cells and immune cells. Fur-
thermore, they are responsible for the remarkable robust 
regeneration response of the PNS after nerve injury [115, 
116]. Axonal injury is followed by the loss of the neural 
fiber distal to the injured site (termed Wallerian degenera-
tion), and the elimination of the contact between the axon 
and the supporting Schwann cells [117]. Those Schwann 
cells without contact with the axon undergo a series of 
signaling cascades leading to their dedifferentiation, pro-
liferation and repair of the damaged nerve [116]. Within 
hours of nerve injury, supporting Schwann cells undergo 
an increase in the activity of multiple pathways, including 

Notch, JNK/c-Jun and ERK/MAPK [118, 119], and an 
increase in the expression of neurotrophic factors and their 
receptors, such as BDNF, GDNF, p75NTR and NRG1, as 
well as elevated secretion of cytokines and chemokines 
[116, 120]. Neuronal injury is followed by a local inflam-
matory response, and chemoattraction of macrophages in 
particular by the Schwann cells to the injured site aids in 
the clearance of myelin debris [117, 121, 122]. Interest-
ingly, one study demonstrated that the process of Schwann 
cell dedifferentiation and immune cell recruitment in vivo 
may be triggered by the activation of only RAF/MEK/ERK 
pathway within the Schwann cells, even in the absence 
of nerve damage [123]. While the dedifferentiation of 
Schwann cells is critical to nerve injury response, these 
results suggest a possibility that activation of similar pro-
cess may occur in other pathological states such as tumor 
invasion, and lead to Schwann cell modulation of the tumor 
microenvironment. Dysregulated tissue regeneration and 
chronic inflammation are the hallmarks of cancer [1, 124] 
in which Schwann cells could play a central role.

Schwann cells may be a link between cancer cells and 
a tumor-favorable immune response of the microenviron-
ment. In vitro data suggest that Schwann cells may induce 
M2-phenotype in macrophages, which supports efficient 

Fig. 1   Co-localization of 
neuronal fibers, Schwann cells 
and malignant melanoma cells 
in human skin. Schwann cells 
and neuronal fibers in nor-
mal human skin and human 
melanoma were determined by 
immunohistochemistry. Rep-
resentative fluorescent images 
of normal human skin (a) and 
human primary melanoma (b, 
c) are shown. H&E staining of 
human primary melanoma is 
also shown (d). Staining: red 
MITF, for melanocytes; green 
p75NGFR, for Schwann cells 
(a, b). Red PGP9.5, for neuronal 
fibers (c). Magnification: ×20
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repair of the peripheral nerves [125, 126]. The same phe-
notype of tumor-associated macrophages is correlated with 
worse clinical prognosis in malignancies [127]. Whether 
through a direct tumor activation or tumor-induced axonal 
and tissue injury, Schwann cells likely modulate the 
immune system and the tumor microenvironment.

Conclusions

Tumor microenvironment has attracted much attention, 
and numerous examples of non-malignant cell contribu-
tion to tumor progression are emerging. Nervous system 
may directly or indirectly influence the cancer cells and 
the tumor microenvironment. The best examples of such 
modulation are from the work on the sympathetic nervous 
system. Sensory fibers and neuroglia are less well stud-
ied, but the emerging evidence illustrates that their func-
tion in the tumor microenvironment is important. Schwann 
cells, in particular, add an exciting new dimensionality to 
the tumor–stroma interaction research. Schwann cells are 
extraordinarily plastic cells with rich profusion in most 
organs and a multitude of functions, and additional stud-
ies are warranted to further uncover their role in creating 
specific tumor microenvironment and supporting tumor 
progression.
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