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CLL  Chronic lymphocytic leukemia
CTA  Cancer–testis antigen
FBP  Folate-binding protein
HSV-tk  Herpes simplex virus thymidine kinase
iC9  Inducible caspase 9
iCAR  Inhibitory chimeric antigen receptor
NHL  Non-Hodgkin lymphoma
pMHC  Peptide–major histocompatibility complex
RCC  Renal cell carcinoma
siRNA  Small interfering ribonucleic acid

Introduction

T cells play a central role in mediating cellular immunity. 
These multi-functional adaptive immune cells protect us 
from disease throughout our entire lives with their ability 
to recognize bacterial, viral, and cancer-associated anti-
gens. T cells harbor a T cell receptor (TCR), which dictates 
their antigen specificity and exists as a membrane heter-
odimer, associated with the CD3 signaling complex. The 
TCR binds a ligand consisting of a peptide processed from 
pathogens, malignant, and normal cells presented to the T 
cell by the major histocompatibility complex (MHC). In 
this way, T cells can recognize the presence of pathogens or 
transformed cells, leading to target cell killing, or the secre-
tion of pro-inflammatory cytokines that recruit and support 
other immune effectors.

Unfortunately, most viruses and tumors have developed 
various mechanisms to evade the host immune system, 
leading to weak or ineffective immune responses, result-
ing in chronic infections or malignancies. To address the 
issue of immune responses ineffective at eliminating can-
cer, many therapeutic approaches are aimed at harness-
ing and optimizing the anti-tumor potential of T cells. 
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One such strategy known as adoptive cell transfer (ACT) 
involves the transfer of ex vivo activated and expanded 
antigen-reactive T cells or genetic modification to redirect 
their specificity prior to transfer. ACT gained its first suc-
cess using lymphokine-activated killer (LAK) cells [1] and 
later tumor-infiltrating lymphocytes (TILs) [2, 3] or anti-
gen-stimulated autologous peripheral blood lymphocytes 
(PBL) [4–7].

The most promising of these early approaches utilized 
TIL following harvest from tumor, and short-term ex vivo 
expansion was pioneered by the Rosenberg group at the 
Surgery Branch of the National Cancer Institute. Animal 
models and studies in patients with melanoma demon-
strated that lymphocytes isolated from TIL maintained 
tumor reactivity in vitro, having the capability to lyse tumor 
cells and secrete cytokines, such as IL-2, IFNγ, and TNFα 
[8, 9]. These cells were also able to mediate objective clini-
cal responses when grown ex vivo and infused back into 
patients [10].

Despite these promising but preliminary clinical 
results, for a variety of reasons TIL has not been a univer-
sal approach for ACT. Aside from TIL production being a 
logistically and technically demanding method, oftentimes 
primary tumors harboring TIL are previously resected as 
part of cancer treatment or inaccessible depending on the 
tumor type and location. Additionally, the time it takes or 
the inability to expand available TIL to therapeutic num-
bers calls for an alternative cell-based approach for treating 
cancer or chronic viral infections.

Recent technological advances have facilitated efficient 
expression of transgenes in T cells allowing for normal cir-
culating peripheral lymphocytes to be redirected targeting 
antigens of choice. Genetic engineering of T cells with chi-
meric antigen receptors (CARs), TCRs, and other receptors 
has been shown to successfully redirect the specificity of T 
cells. Such strategies are the focus of this review.

However, the ability to redirect a T cell to recognize a 
specific antigen is not enough to ensure an effective immu-
notherapy. Antigen recognition needs to be coupled with 
efforts to ensure a T cell’s functionality specific to the tar-
get while limiting off-target or off-tumor recognition. T 
cells should also be able to functionally persist long term 
and be able to traffic to and accumulate at the target site. 
Additionally, optimal modified T cells should exhibit 
robust, multi-functional immune responses, resist mecha-
nisms of anergy, exhaustion and immunosuppression, and 
be amenable to deletion on demand to diminish potential 
toxicity issues. While these strategies show promise at 
the bench and have had some clinical success at the bed-
side, many aspects of this type of therapy must be resolved 
before these effectors are good enough to become a stand-
ard treatment for patients.

Chimeric antigen receptors

CAR design

One class of antigen receptors that have been widely exam-
ined for the use of redirecting T cell specificity is CARs 
(Fig. 1a). A CAR is simply described as combining the 
antigen-binding capability of an antibody with the intra-
cellular signaling-associated component of a TCR. This 
unique juxtaposition allows for high affinity, three-dimen-
sional epitope recognition by an immunoglobulin to be 
linked to the helper or effector responses of a T cell. Spe-
cifically, the extracellular antigen-recognizing domain is 
derived from the antigen-binding fragment (Fab) of mouse 
monoclonal antibodies (mAbs) that have high affinity for 
specific antigens. Unlike the normal structure of the Fab 
fragment of a mAb, the Fab fragment in a CAR exists as 
a single-chain variable fragment (scFv). The scFv is linked 
via hinge and transmembrane domains to an intracellular 
signaling domain. This allows for antigen recognition to be 
coupled to immune cell signal transduction by phosphoryl-
ation of immunoreceptor tyrosine-based activation motifs 
(ITAMs). While the first CAR, described by Eshhar and 
colleagues, linked the scFv to the signaling components of 
the FcR γ chain [11], subsequent CARs used that of the ζ 
chain of the TCR/CD3 complex [12] as the CD3ζ signaling 
domain contains three ITAMs as opposed to FcRγ’s single 
ITAM. This structural configuration allows for essentially 
any mAb to be engineered to make a CAR. But for targets 
where generating conventional antibodies in mice or other 
species is difficult, other techniques, including phage dis-
play, have been useful in generating the antigen-binding 
portion of the CAR [13, 14].

The use of a mAb or ligand receptor facilitates recog-
nition of intact proteins, carbohydrates, and lipids and 
can alleviate the need for target antigens to be processed 
and presented by MHC molecules. However, CARs and 
TCR-like mAbs have also been designed to recognize 
conformational epitopes of pMHC [15–18]. Yet, avoiding 
MHC restriction would allow for CAR-mediated target 
recognition in spite of HLA downregulation or aberrant 
proteasomal antigen-processing mechanisms. This non-
MHC-restricted antigen recognition also allows CAR use 
in patients of all HLA types, which is a distinct advantage 
from the use of engineered TCRs, as will be discussed. 
CARs are also independent of many of the signaling mole-
cules or coreceptors required for TCR signaling and do not 
require association with the CD3 complex for T cell activa-
tion and function. As such, CARs contain all the minimal 
elements necessary to bind antigen and activate the T cell. 
Additionally, as a single-chain construct, CAR constructs 
are compact with relatively small vectors, allowing it to 
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Fig. 1  CAR-mediated target 
cell recognition. a Structure of 
a second-generation CAR inter-
acting with tumor cell. A CAR 
consists of a single-chain vari-
able fragment (scFv) composed 
of variable light (VL) and heavy 
(VH) chains linked via hinge, 
transmembrane domains, and 
intracellular signaling domains 
containing at least the γ chain 
of the FcR or the ζ chain of the 
TCR/CD3 complex. Identity of 
the scFv region dictates MHC-
independent recognition of a 
surface antigen. ITAMs of CD3ζ 
are denoted in blue octagons; 
b comparison of costimula-
tory domains included in first, 
second, or third generation of 
CARs. ITAMs are denoted as 
colored octagons
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easily make high titer virus for transduction. Furthermore, 
single-chain CARs are not subject to chain pairing compe-
tition or mispairing, unlike when introducing exogenous 
TCRs as discussed in a later section.

However, there are some limitations to the use of CAR-
engineered T cells [19]. CAR recognition only targets anti-
gens expressed on the cell surface. Thus, they would not 
be effective against non-surface viral proteins that exist 
intracellularly and are processed and presented by MHC. 
Although CARs’ lack of MHC restriction avoids immune 
escape mechanisms including HLA downregulation, anti-
gen loss can still limit the effectiveness of antigen-specific 
CARs [20, 21]. Additionally, myeloid-derived suppressor 
cells (MDSCs) have been shown to inhibit the efficacy of 
CAR-engineered T cells through engagement of PD-1 in a 
murine model for metastatic colorectal cancer [22]. Also, 
the mAb–antigen interaction is much stronger than a TCR–
antigen interaction, which may impact T cell function [23], 
and the identity of the scFv region is thought to impact the 
stability and activity of CAR T cells [24]. Moreover, use 
of murine-derived scFv causes concern for potential immu-
nogenicity of these chimeric receptors [25, 26], although 
efforts to reduce immunogenicity have been used by 
humanizing murine-derived scFv or generating scFv from 
human scFv phage display libraries [27].

Generations of CARs

Over time, the design of CARs has been refined to pro-
vide better antigen recognition and a more efficient trans-
fer of cellular signaling for T cell function and persistence 
[28]. As mentioned previously, the signaling domain of 
FcRγ was swapped with that of CD3ζ because it included 
a greater number of ITAMs (Fig. 1b). Additionally, the 
single-chain antibody can be substituted by other receptors 
or a ligand of a receptor expressed on tumor cells. Such 
approaches include substituting the scFv region of a CAR 
for heregulin (a ligand for Her3 or Her4 receptors) [29], 
VEGF (anti-VEGFR2) [30], NKp30 (targeting B7-H6) 
[31], or the NKG2D receptor [32–34]. Moreover, multiple 
signaling domains have been added to the CD3ζ or FcRγ 
domains to augment activation and costimulation mimick-
ing immunologic signal 2 during physiologic T cell activa-
tion [35].

“Second-generation” CARs (Fig. 1b) utilize an addi-
tional cytoplasmic domain of a costimulatory receptor, 
such as CD28, 4-1BB, DAP10, OX40, or ICOS, providing 
greater strength of signaling and persistence to the T cells 
[36–42].

A third generation of CARs (Fig. 1b) was also devel-
oped using two costimulatory domains with an activating 
domain, conferring an even greater potency to redirected 
T cells [36, 43–48]. But these more complex structures 

warrant further investigation as it is unclear whether the 
strong costimulation would always be advantageous [49]. 
Optimization of how many and which type of signaling 
domains included is necessary to determine which combi-
nation is best for augmenting activation, sustained function, 
and survival while minimizing anergy, premature death, 
and rapid exhaustion. Additionally, further efforts to exam-
ine how antigen location and density, and CAR binding 
moiety, affinity, and sensitivity affect its function may also 
help influence development of optimally designed CARs.

CAR targets

The first clinical trials using CAR targeted folate-binding 
protein (FBP) for patients with ovarian cancer [50] and 
carbonic anhydrase IX (CAIX) for patients with renal cell 
carcinoma (RCC) [51]. Both CARs were first generation 
containing the FcRγ signaling domain. In both of these tri-
als, no objective clinical responses were seen, nor were the 
genetically altered T cells able to persist long term, but the 
potential for adverse events using CAR therapy was first 
evident. In the trial targeting CAIX+ RCC, the phenom-
enon described as “on-target, off-tumor” was clearly evi-
dent. Patients treated with the CAIX CAR gene-modified 
T cells experienced grade 2–4 liver toxicity because the 
transduced cells recognized CAIX antigen expressed on the 
epithelial cells of the bile duct [51].

As subsequent generations of CARs were developed 
and more efficient CAR targets were identified, we began 
to see greater clinical success with CARs. The efforts tar-
geting pan-B cell antigen CD19 are the best examples of 
the proof of concept for CAR therapy of this. Initial tri-
als targeting CD19 associated with relapsed indolent non-
Hodgkin’s lymphomas (NHL) and chronic lymphocytic 
leukemia (CLL) [52–58] demonstrated the safety of CAR T 
cells and modest clinical benefit. Later, patients with B cell 
acute lymphoblastic leukemia (B-ALL) receiving CD19-
targeted CAR T cell treatment resulted in positive clinical 
outcomes with robust anti-tumor efficacy in two independ-
ent trials [21, 59]. One trial utilized a second-generation 
CD28/CD3ζ anti-CD19 CAR and achieved rapid tumor 
eradication and minimal residual disease-negative complete 
remissions in all five patients treated [59]. Therapy was 
well tolerated, and steroid therapy ameliorated cytokine-
mediated toxicities. The other trial used second-generation 
anti-CD19 CAR T cells including costimulatory cassette 
4-1BB (in contrast to CD28 in the clinical study described 
above) to treat two children with B-ALL, achieving expan-
sion of anti-CD19 CAR T cells and complete remission in 
both patients [21]. Cytokine-release syndrome developed in 
both patients, but was effectively reversed with etanercept 
and tocilizumab treatment without reducing antileukemic 
efficacy. However, one patient relapsed with CD19− blast 
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cells 2 months after treatment, indicating a need to target 
other molecules in some patients with ALL.

The success of anti-CD19 CARs is facilitated by the 
near-universal expression of CD19 on B cell malignancies 
but limited and absent expression on B cells and bone mar-
row stem cells, respectively. These properties also limit the 
off-target potential of anti-CD19 CARs. Outcomes from 
this CD19 model also allowed for the observation of prac-
tical limitations of initial CAR designs and allowed for 
development of subsequent generations of CARs. Most 
recently, a clinical trial used a second-generation CD19-
reactive CAR to treat both children and young adults with 
chemotherapy-resistant B-precursor acute lymphoblastic 
leukemia inducing a complete response in 70 % of patients 
with B-ALL and an minimal residual disease-negative 
complete in response in 60 % [60]. Additionally, all toxici-
ties associated with the therapy were reversible.

Although less serious than the aforementioned “on-tar-
get, off-tumor” events, a potential drawback of the highly 
effective CD19 CAR campaign targeting B cell malignan-
cies is the prolonged elimination of normal B lymphocytes 
and, thus, impairment of humoral immunity [52, 55, 57]. 
However, B cell aplasia and hypogammaglobulinemia 
can be easily mitigated by intravenous administration of 
gammaglobulin.

While CD19-targeted B cell malignancies have been the 
poster child advocating for CAR therapy, it is important to 
acknowledge another CAR target that has exhibited mixed 
clinical results. In 2010, it was reported that the use of a 
third-generation CAR was based on the widely used mAb 
trastuzumab targeting Her-2 induced respiratory distress 
resulting in death in one treated patient with metastatic 
colon cancer [49]. It was discovered that low-level Her-2 
expression on normal lung epithelium caused this fatal 
side effect, characterized as a much more serious “on-tar-
get, off-tumor” adverse event. Additionally, the very high 
dose of CAR T cells (1010 T cells) may have precluded any 

potential therapeutic window. With this in mind, a modi-
fied CAR-based approach targeting Her-2 led to a more 
successful recent trial [61]. In this report, a dose-escalation 
study using a second-generation Her-2-specific CAR with 
a different scFv was used in patients with recurrent/refrac-
tory Her-2+ sarcomas. This study also differed in that it 
administered lower doses of T cells (1 × 104–1 × 108/m2), 
and it did not use coadministration of high-dose IL-2 or 
lymphodepleting chemotherapy prior to transfusion. Trans-
duced cells persisted for 6 weeks and trafficked to tumor 
sites without any evident toxicities. Some patients even 
exhibited stable disease or partial response. The stark con-
trast between these two trials highlights the importance of 
mAb selection, generation of CAR, target distribution, and 
host preconditioning can have on the positive and negative 
outcomes in CAR clinical trials.

A wide variety of other CARs have been designed to tar-
get an array of antigens showing promise as potential thera-
pies for cancer. Other targets evaluated in vitro and in vivo 
include but are not limited to EGFRvIII [62] for glioblas-
toma, GD2 [63, 64] for neuroblastoma, GD3 [65, 66], 
MAGE-1 [18], and HMW-MAA [67] for melanoma, CD20 
[43, 45, 68–71], CD23 [72], CD30 [73–75] and others for 
hematologic malignancies, PSMA [39, 76] for prostate 
cancer, MUC-1 [46], Her-2 [77, 78], and CEA [79–81] for 
breast cancer, EGP-40 [82] for colorectal cancer, VEGF-
R2 [30, 83] and KDR [84] for tumor neovasculature, and 
MUC16 [85] for ovarian cancer. Table 1 lists a sampling 
of active clinical trials using CARs and their respective 
targets.

CAR summary

Overall, CARs provide MHC-independent recognition of 
a variety of extracellular target types with a compact, sin-
gle-chain construct containing all the minimal elements 
necessary for T cell activation. For better or for worse, the 

Table 1  Active clinical trials using CAR-engineered T cells

Target antigen Associated malignancy CAR generation Clinical trial ID#

CD19 Acute lymphoblastic leukemia 3rd (CD28:4-1BB) NCT02186860

CD133 Various malignancies 1st NCT02541370

CD171 Neuroblastoma 2nd (4-1BB) and 3rd (CD28:4-1BB); transgene  
includes truncated EGFR

NCT02311621

CEA CEA+ adenocarcinomas 2nd (CD28) NCT01723306

EGFR EGFR+ solid tumors 1st and 2nd (4-1BB) NCT01869166

GD2 Neuroblastoma 3rd (CD28:OX40); transgene includes iC9 NCT02439788

GD2 GD2+ sarcomas 3rd (CD28-OX40); transgene includes iC9 NCT01953900

Her-2 Breast cancer 2nd (CD28) NCT02547961

Her-2 Glioblastoma multiforme 2nd (CD28) NCT01109095

Mesothelin Pancreatic, ovarian, and mesothelioma 2nd (4-1BB) NCT02159716
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design of CARs prevents any chance of receptor mispair-
ing but circumvents the natural process of T cell activa-
tion. While documentation of “on-target, off-tumor” is well 
noted, “off-target” effects are not as readily seen because 
the antigen-binding region of CARs is derived from mono-
clonal antibodies that have been well characterized. How-
ever, several groups conducting clinical trials with CARs 
have seen other serious adverse events including tumor 
lysis syndrome [57] and cytokine storm [55, 86, 87]. Addi-
tionally, anti-transgene immunogenicity has been described 
as a potential cause of low persistence of CAR T cells post-
transfer [53] and has even caused severe anaphylactic reac-
tions in patients treated with CAR T cells [26]. Overall, 
the majority of CAR studies have shown much promise for 
their clinical use, and continuing efforts are further eluci-
dating how to limit improve clinical outcomes while mini-
mizing adverse events.

T cell receptors

TCR design

TCRs compose an additional class of antigen receptors 
used to engineer T cells. Natively, CD8+ and CD4+ T 
cells express a TCR as a membrane-bound αβ heterodimer, 
which recognizes antigenic peptide fragments bound to 
MHC class I or II, respectively. To date, TCRs investigated 
for ACT have been limited to mostly MHC-I-restricted can-
didates. These TCRs can recognize any intracellular anti-
gen as it is processed and presented by MHC molecules 
and associate with the CD3 complex that initiates ITAM-
mediated signal transduction in the T cell (Fig. 2).

Because TCRs recognize processed peptides presented 
on MHC, targeted antigens can be derived from the entire 
protein composition of the tumor cells, including intracel-
lular proteins, whereas CARs can only be designed to rec-
ognize molecules expressed on the surface of target cells. 
This quality also allows TCRs to target a large number of 
non-surface antigens of virally infected cells and tumors 
associated with viral infection, such as hepatitis-associated 
hepatocellular carcinoma, papilloma virus-associated cervi-
cal cancer, and Epstein–Barr virus-related malignancies.

An important factor influencing the effectiveness 
of immunotherapeutic use of TCRs is the relationship 
between receptor affinity and cell function. Because anti-
gen recognition depends on the interaction between the 
TCR and the peptide MHC (pMHC) complex, it might be 
predicted that T cells engineered with high-affinity TCRs 
are better effectors than T cells engineered with low-affin-
ity TCRs. We and others have suggested that CD8 expres-
sion is only required for T cells with low-affinity TCRs 
[88–90]. The reliance on coreceptors, such as CD8, is one 

of the hallmarks contrasting TCRs with CARs. Various 
CD8-independent TCRs have been characterized that can 
transfer antigen recognition to CD4+ cells in an MHC-I-
restricted manner [89–93]. Together, these studies suggest 
high-affinity TCRs allow for lower TCR transgene expres-
sion to achieve functionality, create novel populations of 
MHC-I-restricted CD4+ cells, and offer enhanced tumor 
regression. Naturally occurring high-affinity, CD8-inde-
pendent TCRs are relatively rare, however, and thus dif-
ficult to find. Rather than screening for such high-affinity 
TCRs, various methods have been developed to affinity-
enhanced already characterized TCRs, which are discussed 
in a later section. It is important to recognize, however, 
that higher-affinity TCRs hold much greater potential to 
undergo activation induced cell death (AICD) upon antigen 
encounter [94, 95], or induce “off-tumor, on-target” and 
“off-tumor, off-target” reactivity [96–98], counterproduc-
tive to their therapeutic intention.

It is also important to acknowledge that MHC restriction 
of TCRs limits the number of patients that can be treated 
using a single TCR, and engineered T cells would need to 
be HLA matched to patients. Because HLA class I expres-
sion has a tendency to be downregulated on tumor cells [99, 
100], this may also serve as a barrier to effective therapy. 
Additionally, because TCRs require interaction with the 
CD3 complex, its expression and functionality are limited 
by available CD3 complex components. Competition for 
the CD3 complex with endogenous TCR limits functional 
transgene expression, although strategies discussed below 
may allow for improved surface competition for CD3 by 
the transgene receptor.

TCR pairing

As a heterodimer, TCRs also differ from CARs in that two 
chains need to be expressed rather than just one to redi-
rect specificity, resulting in larger construct formation and 
potentially non-uniform chain expression. The addition 
of viral 2A self-cleavage peptide sequences between the 
α and β chains within the construct [101–103] and codon 
optimization of the construct [104, 105] are two examples 
that allow increased and more uniform TCR expression 
without altering the TCR sequence itself. The presence of 
endogenous TCR also allows for the opportunity of chain 
mispairing between endogenous and introduced α and β 
chains. These interactions reduce the level of expression of 
the introduced TCR [89, 106] and could lead to novel and 
unpredictable self-reactive TCRs with potential for serious 
adverse events.

Such “off-target, off-tumor” adverse events have been 
reported as a result of high-affinity TCR recognizing 
unanticipated epitopes or as a result of the phenomenon 
of TCR chain mispairing, generating novel self-reactive 
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TCRs. Two recent studies demonstrate undesirable reactiv-
ity propagated from TCR mispairing between endogenous 
and introduced TCR α and β chains. One study observed 
graft-versus-host disease (GVHD) in a mouse model in five 
different TCR systems [107], and the other demonstrated 
the ability of engineered human T cells to develop MHC 
class I- and II-restricted allo- and auto-reactivity through 
mispairing [108]. However, to date, no evidence of GVHD 
has been seen in over 100 patients treated with this gene 
therapy approach [109].

The issue of TCR mispairing has been addressed in a 
variety of ways. One main strategic effort involves a host of 
modifications to the TCR construct summarized in Fig. 3. 
As mentioned before, codon optimization of the TCR α and 
β genes can help promote efficient translation and surface 
assembly of the introduced receptor without altering the 

TCR sequence itself [104, 105]. Introduction of cysteine 
residues in the α and β constant regions has been shown to 
promote inter-chain disulfide bridge formation to limit mis-
pairing [110]. Other approaches to help improve pairing, 
expression, and function of the introduced TCRs include 
the addition of leucine zippers at the end of the intracel-
lular tails [111] and altering the glycosylation of the TCR 
[112]. Substituting human constant regions with portions of 
or the entire mouse constant regions in the transgene also 
promotes proper pairing and enhanced surface expression 
[113–118]. It was observed that elements of the murine 
constant regions do not efficiently interact with the human 
constant regions [115]. Additionally, the murine constant 
region has a higher affinity for human CD3, which can 
favor the murinized receptor in competing for limited sur-
face CD3 [113]. Receptors with murine constant regions 

Fig. 2  TCR-mediated target 
cell recognition. Depicted is 
the structure of an MHC class 
I-restricted TCR interacting 
with tumor or virus-infected 
cell. TCR α and β chains are 
specific to both MHC and 
presented antigenic peptide. The 
TCR complexes with various 
CD3 components on the cell 
surface, and the CD8 corecep-
tor stabilizes the TCR–pMHC 
interaction while recruiting 
lck to facilitate TCR signaling. 
ITAMs are denoted as colored 
octagons. Lck = lymphocyte-
specific protein tyrosine kinase; 
Zap70 = zeta-chain-associated 
protein kinase 70
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were also found to mediate higher levels of cytokine secre-
tion in vitro [113, 114], but this technique poses additional 
problems including evoking an immune response and pos-
sible clearance of the engineered T cells as they express 
potentially antigenic domains in the transgene [114].

Another novel approach to alleviate mispairing was 
demonstrated by recent reports using single-chain TCRs. 
One group engineered a recombinant TCR consisting of a 
single-chain Vα–Vβ–Cβ and a Cα chain, which only paired 
with each other and not the endogenous TCR [115]. Other 
groups have used a stabilized Vα–Vβ single-chain TCR 
linked to intracellular signaling domains to elicit functional 
activation of T cells in the absence of coreceptors and to 
circumvent mispairing with endogenous TCRs [119, 120]. 
Efforts to limit mispairing also focus on altering the endog-
enous TCR by downregulation via small interfering RNA 
(siRNA) [121] or using designer zinc-finger nucleases 
[122]. All these alternate strategies share the same goal to 
reduce competition for the CD3 complex and allow for sta-
ble pairing of the introduced TCR.

TCR targets

More than 20 years after TCR gene-modified T cells were 
first used to redirect T cell specificity in mice [123], this 
technology was first evaluated in humans. TCR-engi-
neered T cells’ first use in the clinic targeted HLA-A2+/
MART-1+ melanoma [124, 125]. These initial clinical 
studies demonstrated that TCR gene-modified T cells 
were generally safe, well tolerated, and have the poten-
tial to be effective therapeutically in cancer patients. 
A later study targeting melanoma antigens MART-1 
and gp100 demonstrated further clinical benefit using 

TCR-transduced T cells, while highlighting potential for 
adverse events [96]. Of note, the gp100-reactive TCR 
in this study was high affinity and of mouse origin, and 
many patients treated with this TCR exhibited toxici-
ties in the eye and inner ear and displayed destruction 
of normal melanocytes. This well-characterized example 
of “on-target, off-tumor” effects first cautioned the use 
of high-affinity TCRs. Fortunately in this case such tox-
icities resolved naturally or with administration of topical 
steroids in almost all patients.

Since these early studies, identification of TCR genes 
encoded to recognize epitopes expressed by human tumors 
and improvements in TCR gene transfer technology has 
allowed for normal T cell antigen specificity redirection 
and targeting of a variety of antigens and malignancies, 
including carcinoembryonic antigen (CEA), cancer–testis 
antigen (CTA) family members, and viral protein family 
members.

CEA is overexpressed in many epithelial cancers, par-
ticularly in colorectal cancer. A recent clinical trial noted 
objective clinical response in a patient treated with high-
affinity CEA-reactive T cells [98]. However, “on-target, 
off-tumor” adverse events, including inflammatory colitis, 
were documented in these patients.

The CTA family includes NY-ESO-1 and MAGE and is 
expressed by the normal testis and a panel of human can-
cers including that of breast, bladder, colon, lung, mela-
noma, head and neck, gastric, ovarian, thyroid, neuroblas-
toma, synovial cell sarcoma, and prostate. Clinical studies 
have shown T cells redirected to recognize NY-ESO-1 pro-
vided objective clinical response in patients with synovial 
cell sarcoma and melanoma without any evidence of previ-
ously reported adverse events [126].

Fig. 3  TCR modifications to limit mispairing and improve cell sur-
face expression and function. Modifications of wild-type TCR struc-
ture (far left) include codon optimization, introduction of a disulfide 

bridge, addition of leucine zipper, modification of glycosylated resi-
dues, substitution with murine constant regions, or use of single-chain 
Vα–Vβ–Cβ with a Cα chain
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A pair of clinical trials targeting widely expressed CTA, 
MAGE-A3, recorded much more mixed results. The first 
clinical trial used a mouse-derived, high-avidity TCR that 
was further modified by site-directed mutagenesis in the 
CDR3 region [127]. While targeting MAGE-A3, it was 
also reactive against MAGE-A9/A12. Although five out of 
nine patients experienced clinical regression of their can-
cers, one-third of the patients experienced neurological 
toxicity, and two patients died because of these adverse 
events. Unknown expression of MAGE-A12 in the brain is 
believed to be the cause of this toxicity.

Another clinical trial using an affinity-enhanced TCR 
targeting MAGE-A3 resulted in cardiogenic shock and 
death of the first two patients treated [128, 129]. While no 
MAGE-A3 expression was detected in cardiac tissue at 
autopsy, it was determined the TCR designed with affinity-
enhancing mutations in the CDR2 regions exhibited an 
unpredicted cross-reactivity to titin, a sarcomeric protein 
expressed in striated muscle. Interestingly, the parental 
TCR from which the engineered TCR was derived from 
was isolated from a patient without cardiac toxicity, attrib-
uting the adverse events in the clinical trial to the intention-
ally induced CDR2 mutations. These mixed clinical results 
yield concern for use of such high-affinity receptors.

Virus-induced tumors can express members of a third 
family of antigens targeted by engineered T cells. Studies 
have engineered T cells to target antigens, such as CMV 
[130, 131], EBV [132–134], HIV [135–137], HCV [91–93, 
138, 139], HPV [140, 141], and others. No clinical reports 
have yet been published testing virus-reactive TCR-trans-
duced T cells in humans. Table 2 lists some of the active 
clinical trials using TCRs and their respective targets.

TCR summary

Overall, TCR-transduced T cells offer the ability to target a 
wide variety of self and non-self-targets through the normal 
biology of a T cell. Although MHC-restricted, dependent 
on coreceptors, and introduction of a second TCR causes 

potential for mispairing, great efforts are being made to 
better engineer high-affinity TCRs hope to enhance thera-
peutic efficacy while minimizing potential adverse events. 
Some success has been seen in clinical trials, and many 
are hopeful and greater objective clinical results will be 
observed in the future.

Other engineering approaches

Other receptor types

While CAR and TCR engineering have been well stud-
ied, ongoing efforts to design other receptor types for T 
cell engineering hold merit and clinical potential as well. 
For example, engineering T cells to express the NKG2D 
receptor allow T cells acquire the reactivity of natural killer 
(NK) cells [32–34]. Another NK cell receptor that has been 
investigated for T cell engineering is NKp30, which recog-
nizes the tumor-prone antigen B7-H6. A recent study com-
bined the specificity of NKp30 and the signaling capability 
of CARs, designing a novel NKp30-based CAR replac-
ing the scFv domain with the ligand-binding domain of 
NKp30 [31]. Adoptive transfer of the NKp30-CAR allowed 
for non-MHC-restricted recognition of B7-H6-expressing 
RMA, a murine lymphoma, in vivo and interestingly pro-
vided protection against subsequent challenge with wild-
type RMA tumor cells. Similar efforts are being made to 
examine potential for CAR-related therapy replacing the 
scFV domain with other ligands or ligand-binding recep-
tors described earlier.

Another unique approach being investigated engineers 
dual-expressing T cells. In this way, T cells can coexpress 
complementary CARs, TCRs or other receptors, each spe-
cific to a distinct target. This approach is thought to opti-
mize T cell homing and tumor specificity while reducing 
toxic potential. In this way, it would promote selective 
enhancement of T cell survival in the tumor microenviron-
ment with synergistic signaling and provide a means to 

Table 2  Active clinical trials 
using TCR-engineered T cells

Target antigen Associated malignancy MHC restriction Clinical trial ID#

gag HIV HLA-A2 NCT00991224

gp100 Melanoma HLA-A2 NCT00509288

HPV E6 HPV-associated cancers HLA-A2 NCT02280811

MAGE-A3 Various malignancies HLA-A1 NCT02153905

MAGE-A3 Various malignancies HLA-DP04 NCT02111850

NY-ESO-1 Various malignancies HLA-A2 NCT02457650

Thyroglobulin Thyroid cancer HLA-A2 NCT02390739

Tyrosinase Melanoma HLA-A2 NCT01586403

WT1 Myelodysplastic syndrome, AML HLA-A2 NCT02550535

WT-1 Non-small cell lung cancer, mesothelioma HLA-A2 NCT02408016
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combat downregulation of antigen in tumor escape mecha-
nisms. One study validated this tactic by generating T cells 
coexpressing CARs reactive to MUC1 and ErbB2 targeting 
breast cancer in vitro [142].

Additionally, recent work has demonstrated the design 
of anti-specific inhibitory chimeric antigen receptors 
(iCARs) linked to a powerful acute inhibitory signaling 
domain that can recognize T cell inhibitory molecules, such 
as CTLA-4 and PD-1, limiting T cell responsiveness even 
in the present of an engaged activating receptor [143]. This 
dual-receptor approach provides a means to curb unwanted 
off-target responses.

Cytokine production

Another approach to modify or enhance potency of recep-
tor-engineered T cells is to further genetically modify 
the cells to secrete pro-inflammatory or pro-proliferative 
cytokines. This approach not only provides autocrine sup-
port to enhance T cell function, proliferation, and/or per-
sistence, but also favorably alters the tumor microenviron-
ment. This would allow for innate and cognate immune 
effector recruitment and limitation of the systemic tox-
icity of exogenously delivered cytokines in therapeutic 
approaches. For example, engineering melanoma-reactive 
T cells to express IL-2 resulted in continued cell growth 
in the absence of exogenous IL-2, which may a viable 
approach to help T cell persistence post-adoptive transfer 
[144]. A similar tactic using T cells modified to express 
IL-12 have exhibited enhanced anti-tumor function and 
were better able to resist immunosuppression by regula-
tory T cells [145, 146]. Similarly, engineering T cells to 
secrete IL-12 allowed transformation of myeloid cell 
within tumors from immunosuppressive to immunosup-
portive [147]. This strategy was even used in a recent phase 
I clinical trial where IL-12 secreting MUC-16(ecto)-target-
ing CAR-transduced T cells were infused into patients with 
recurrent ovarian cancer [148].

Chemokine recognition

In addition to cytokine-engineered T cells, modifying them 
to express chemokine receptors can aid in migration patterns, 
increasing the efficiency of trafficking to and infiltration of 
tumors. Transferring of genes encoding CCR4, CCR2B, or 
CXCR2 enables T cells to home toward CCL17, CXCL1, 
and macrophage chemoattractant proteins [73, 149, 150]. 
Also, VEGFR-2-engineered T cells allowed T cells to find 
tumor-associated neovasculature in one study [151]. Addi-
tional efforts to improve T cell homing may include engi-
neering T cells with certain integrins or their ligands [152] 
or by blocking inhibitors of migration like endothelin [153].

Ways to improve

Although in vivo studies and clinical trials have shown 
great promise for engineered T cells as an effective immu-
notherapy for cancer, many efficacy and safety issues still 
prevent this treatment from becoming a standard of care. 
Efforts to pass these hurdles aim to allow the host to be 
most receptive to this kind of therapy, gain a better under-
standing of engineered receptors’ impact on the biology of 
the T cell, and optimize transgene engineering and expres-
sion. Some of these strategies are discussed here.

Host conditioning

Host conditioning prior to ACT has been a point of interest 
to better allow long-term persistence of function of trans-
ferred cells. This evidence came from preliminary mouse 
studies that were followed up in the clinic by the Rosen-
berg group. They first noted that persistence and anti-tumor 
activity of transferred T cells in vivo was greatly increased 
with non-myeloablative lymphodepleting treatment using 
cyclophosphamide and fludarabine before adoptive transfer 
[154]. Other conditioning regimens, including fludarabine 
only [155], or dacarbazine [156], have also been used in 
studies with improved clinical responses. Lymphodepletion 
is thought to create space for the transferred T cells and 
eliminate competition for cytokines [157], remove compe-
tition at the surfaces of antigen-presenting cells [158, 159], 
and remove immunosuppressive regulatory T cells [160]. It 
is believed these changes in the host may lead to induction 
of a memory phenotype and enhance effector function. Sys-
temic administration of cytokines, such as IL-2 and IFNα, 
post-ACT has also enhanced transferred T cell function and 
persistence [7, 156, 161, 162]. Post-conditioning with other 
cytokines including IL-15 or immunomodulatory therapies 
such as PD-1 and CTLA-4 blockade should also be consid-
ered. However, the type of and need for host conditioning 
remain controversial as numerous studies have observed 
clinical responses even when no host conditioning was 
administered [163, 164].

Suicide switch

Given the capability for “on- or off-target” toxicities and 
well-documented tumor lysis syndrome and cytokine storm 
seen with the use of engineered T cells, it would be ben-
eficial to preserve the ability to eradicate the transferred T 
cells, if needed. Such strategies aim at turning off antigen 
receptor expression or eliminating engineered cells after 
transfer by incorporating certain “suicide genes” into the 
transgene. A long-studied approach in cell therapy investi-
gations utilizes the herpes simplex virus thymidine kinase 
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(HSV-tk) gene. Its incorporation into the transgene vec-
tor makes engineered T cells susceptible to ganciclovir 
treatment [165, 166]. However, because HSV-tk is poten-
tially immunogenic, its expression may create unwanted 
immune-mediated destruction of transferred T cells 
and decreased persistence [167, 168]. Another common 
approach and non-immunogenic technique incorporate cas-
pase 9 under an inducible promoter (iC9) to initiate apop-
tosis of transduced cells [169–172]. Additionally, studies 
incorporating CD20 [173] or EGFR [174] in transgene vec-
tors generated transduced cell susceptible to rituximab and 
cetuximab treatments, respectively.

Affinity modulation

As discussed earlier, TCR affinity is known to play a sig-
nificant role in determining sensitivity of a T cell to antigen 
recognition. Thus, it is logical to think that higher-affinity 
TCRs may provide a better therapeutic candidate. Altering 
the affinity of the TCR may better equip engineered T cells 
to combat immune suppression mechanisms that alter T cell 
function including MDSC-mediated nitration of TCR tyros-
ine residues which can weaken TCR-pMHC binding [175]. 
Additionally, high-affinity TCRs oftentimes exhibit CD8 
independence, meaning T cells equipped these receptors can 
recognize their tumor target without CD8’s stabilization of 
the TCR–pMHC complex. This would allow for the genera-
tion of tumor-reactive MHC class I-restricted CD4+ T cells, 
allowing for production of helper cytokines upon antigen 
stimulation and a novel population of T cell help at the tumor 
site [90, 176, 177]. Moreover, a population of reactive CD4+ 
T cells may facilitate cross-priming or epitope spreading 
allowing for a broad systemic anti-tumor response.

One challenge in identifying tumor-reactive high-affin-
ity TCRs is their inherent low frequency in patients. During 
T cell maturation and thymic selection, TCRs whose affin-
ity for the host antigen/MHC is too low (death by neglect) 
or too high (negative selection) are eliminated from the 
pool of mature T cells [178]. This selection process often 
restricts the amount of high-affinity, self-reactive TCRs 
from existing in the periphery, thus limiting the discovery 
for high-affinity TCRs in tumor-bearing patients.

One way to identify and clone high-affinity TCRs is 
screening for CD8 independence against human MHC-
restricted antigens in mice. It is documented that mouse 
CD8 does not bind to the α3 domain of human MHC class I 
molecules [113, 179]. Thus, in a vaccinated HLA-A2 trans-
genic mouse model, isolated T cell clones reactive against 
human tumors in vitro would likely express high-affinity 
TCRs. This approach has been used successfully to iden-
tify high-affinity TCRs targeting CEA [180] and p53 [181]. 
Additionally, TCRs have also been genetically modified to 
improve their biophysical properties using yeast and phage 

display [182–184], a technique also used in CAR design 
[13, 14]. Interestingly, these modified receptors can have 
amino acid alterations in any of three CDR regions that can 
contribute to enhanced TCR-pMHC affinities, not only in 
the CDR3 region which is responsible for the majority of 
TCR diversity and specificity [185].

These methods in selecting for or enhancing receptor 
affinity, however, may not necessarily lead to a better thera-
peutic. As already pointed out, it is well documented that 
T cells equipped with extremely high-affinity TCRs can 
undergo AICD, which would selectively delete the effector 
cells intended for therapeutic benefit [94, 95]. Additionally, 
two clinical trials [96, 98] and a transgenic mouse model 
[97] have documented autoimmunity with high-affinity 
TCR-engineered cells. Taken together, these observations 
indicate that TCR affinity can make a difference in target 
recognition by TCR-transduced T cells, but the question of 
the need to use a high-affinity TCR for effective anti-tumor 
immunity remains unresolved.

Conclusions

The potential for engineering T cells for immunotherapy 
seems limitless. Specifically targeting tumor antigens with 
autologous T cells is a powerful and attractive strategy for 
cancer therapy. While clinical trials have had initial suc-
cess, there still remain many issues in optimizing efficacy 
and safety of this type of immunotherapy. Additionally, the 
design and implementation of genetically engineered T cells 
are often constrained by regulatory authorities in both the 
USA and Europe, largely influencing the feasibility of gener-
ating effective and safe CAR T cells [186–188]. Ultimately, 
more extensive studies are needed to determine whether this 
type of therapy can deliver improvements in progression-free 
and overall survival when compared to the standard of care.
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