
1 3

Cancer Immunol Immunother (2015) 64:911–921
DOI 10.1007/s00262-015-1727-z

FOCUSSED RESEARCH REVIEW 

Intratumoral immunotherapy for melanoma

Manisha Singh1 · Willem W. Overwijk1,2 

Received: 3 October 2014 / Accepted: 29 May 2015 / Published online: 7 June 2015 
© Springer-Verlag Berlin Heidelberg 2015

IFN  Interferon
IT  Intratumoral
MDSC  Myeloid-derived suppressor cells
NDV  Newcastle disease virus
ODNs  Oligodeoxynucleotides
PD-1  Programmed death-1
PD-L1  Programmed death-ligand
pDCs  Plasmacytoid dendritic cells
poly-ICLC  Polyinosinic-polycytidylicacid-polylysine-

carboxymethylcellulose
TAAs  Tumor-associated antigens
TLR  Toll-like receptor

Introduction

Cancer immunotherapy is based on the recognition of 
tumor-associated mutant or non-mutant antigens (pep-
tides) on cancer cells by the patient’s T cells. Cancer vac-
cines have successfully increased the number and activity 
of T cells that recognize tumor-associated antigens (TAAs) 
in many cases, but robust clinical responses remain anec-
dotal [1]. In contrast, US Food and Drug Administration-
approved immunotherapies such as high-dose interleukin 
(IL)-2, interferon (IFN)-α, anti-CTLA-4 (cytotoxic T lym-
phocyte antigen-4) monoclonal antibodies and anti-PD-L1 
(programmed death-ligand) therapies all appear to activate 
and/or expand tumor-specific T cells of largely unknown 
antigen specificity. This process allows the immune sys-
tem to “decide” which antigen to target and may prove 
particularly fruitful as an approach to cancer immuno-
therapy. However, this approach requires the delivery of 
appropriate signals that convert immune responses from 
being ineffective to capable of rejecting established tumors. 
Using the tumor itself as a vaccine by introducing an 
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immunomodulator or adjuvant can activate innate immu-
nity and lead toward immunizing patients against shared 
(usually “self”) or patient-specific, mutated antigens. 
Besides generating tumor-specific immunity through T cell 
priming, intratumoral (i.t.) immunotherapy can also target 
the tumor by affecting innate immune cells like myeloid-
derived suppressor cells (MDSC) and M2 macrophages, for 
example by polarizing them into tumor-suppressive phe-
notypes such as M1 macrophages [2, 3]. This modification 
of the tumor microenvironment and generation of systemic 
tumor-specific immunity by i.t. immunotherapy is not only 
useful to destroy the injected tumor but also suppresses 
distant metastasis. Intratumoral immunotherapy has been 
attempted for many years to treat solid tumors, especially 
melanoma due to its easily accessible cutaneous nature and 
high immunogenicity compared to most other malignan-
cies. The majority of data on i.t. immunotherapy therefore 
involve melanoma. Here, we review various i.t. immuno-
therapy strategies to treat metastatic melanoma.

I.t. immunotherapy with bacteria

William B. Coley observed that patients with bacterial 
infections sometimes underwent spontaneous remissions of 
their cancers. Based on this observation, in 1891, he began 
treating bone sarcoma by injecting virus or bacteria into 
the tumors, resulting in some remarkable cures [4]. Since 
then, many bacteria and bacterial products have been used 
to activate the immune system to kill cancer cells. Activa-
tion of the toll-like receptor (TLR) pathway of immune 
cells by bacterial cell walls and their nucleic acids makes 
some bacteria useful in cancer treatment. I.t. bacillus Cal-
mette–Guerin (BCG) alone and in combination with chem-
otherapy and other immunotherapies has been used to treat 
melanoma [5–8]. This bacterial therapy provides immu-
nostimulatory DNA and activates the TLR9-MyD88 path-
way [9], which leads to activation of macrophages and den-
dritic cells (DCs) and the production of various cytokines 
[9, 10]. These activated innate immune cells can also prime 
tumor-specific T cells against various TAAs and gener-
ate anti-tumor immunity. Recombinant BCG (rBCG 3A) 
has anti-tumor properties equivalent to those of wild-type 
BCG, but is a safer alternative for patients, because it does 
not contain infectious bacteria [11]. Udagawa et al. [12] 
reported that intratumoral administration of DCs stimulated 
with the BCG cell wall skeleton (BCG-CWS) suppressed 
the growth of not only the cryoablative tumors into which 
they were injected but also tumors at distant sites, which 
suggests that i.t. BCG can be an effective treatment for 
metastasis.

I.t. injection of the Salmonella enterica serovar typhimu-
rium vaccine has also been shown to produce anti-tumor 

activity through transformation of MDSCs into tumor 
necrosis factor (TNF)-alpha-secreting neutrophils, reducing 
the generation of regulatory T (Treg) cells and increasing 
cytotoxic T cell infiltration [13]. This therapy is an example 
of i.t. therapy that not only generates tumor-specific T cells 
but also changes the tumor microenvironment from tumor 
promoting to tumor suppressive.

I.t. administration of attenuated Toxoplasma gondii 
parasites treated B16.F10 melanoma because it stimulated 
systemic anti-tumor immunity and tumor-specific memory 
CD8+ T cells [14, 15]. The results of these studies suggest 
that activation of tumor-associated innate immune cells by 
attenuated bacteria or parasites is a promising, safe and 
inexpensive approach to treat metastatic melanoma. How-
ever, efficacy is largely anecdotal at this point in time.

I.t. immunotherapy with oncolytic viruses

Tumor cell killing by genetically engineered and naturally 
occurring oncolytic viruses is another approach for cancer 
treatment that has been studied for decades [16]. These 
viruses selectively replicate in tumor cells because viral 
receptors are overexpressed on the surface of those cells 
or because specific anti-viral pathways, such as the type I 
IFN pathway, are disrupted in tumor cells or tumor stromal 
cells. Viruses can also be genetically modified for selective 
homing to tumor cells, for example, by genetic alterations 
in viral capsids or envelops, generating viruses that specifi-
cally recognize only tumor-associated surface markers and 
infect tumor cells [17]. Many DNA and RNA viruses have 
been used in melanoma treatment, including Newcastle 
disease virus (NDV) [18], adenovirus [19], herpes simplex 
virus [20], influenza virus [21], coxsackievirus [22], reovi-
rus [23], vesicular stomatitis virus (VSV) [24], parvovirus 
[25], vaccinia virus [26, 27], measles virus [28] and myx-
oma virus [29].

Oncolytic viruses typically infect only a fraction of all 
tumor cells in the injected tumor mass. However, these 
viruses induce anti-tumor immunity through antigen 
release from lysed tumor cells, in combination with virus-
induced local innate immune activation. As a result, much 
of the eventual cancer cell death is mediated by the host’s 
adaptive immune system. It has been reported that most 
oncolytic viruses trigger innate immune responses because 
they produce factors that can specifically bind to toll-like 
receptors (TLR) on host cells resulting in signaling through 
the MyD88 pathway [24, 30, 31]. The resulting activa-
tion of the IRF and NF-kB pathways causes DCs to pro-
duce large amounts of cytokines including type I IFNs [32, 
33], which promotes the activation and tumor infiltration 
of tumor-specific T cells [34, 35]. Wild-type coxsackievi-
rus A21 is a common cold virus that selectively infects and 
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kills melanoma cells through its interaction with intercel-
lular adhesion molecule (ICAM-1) and decay accelerating 
factor (DAF). These molecules are overexpressed on the 
surface of malignant melanoma cells compared to the sur-
rounding benign tissue [36]. ICAM-1 is also recognized as 
a viral attachment receptor for many enteroviruses includ-
ing CVA13, CVA15 and CVA18 [22]. Phase I/II trials using 
oncolytic A21 coxsackievirus (Cavatak) have been con-
ducted and found effective and safe [37].

To further enhance the activation of innate, and subse-
quently adaptive immunity, many oncolytic viruses are 
modified to express immunostimulatory molecules. A 
recent study used i.t. therapy with a genetically modified 
adenovirus, encoding CD40 ligand (Ad-CD40L) in murine 
melanoma, resulting in tumor regression that was associ-
ated with specific T cell responses against TAAs, includ-
ing the melanocyte differentiation antigen, TRP-2 and 
the model antigen, chicken Ovalbumin [38]. In another 
study, the novel oncolytic adenovirus Ad5/3-hTERT-
E1A-hCD40L, which includes chimeric Ad5/3 capsid for 
enhanced tumor transduction, a human telomerase reverse 
transcriptase (hTERT) promoter for tumor selectivity, 
and human CD40L for increased efficacy, caused tumor 
destruction and generated a significantly stronger tumor-
specific CD8 T cell response than wild-type adenovirus 
[39]. Similar to Ad-CD40L, i.t. immunotherapy with an 
adenovirus vector expressing OX40L (AdOX40L) gener-
ated anti-tumor immunity mediated by cytotoxic CD8 T 
lymphocytes (CTLs) [40]. Furthermore, an adenoviral vec-
tor expressing siRNA against the mouse IL-17A gene (Ad-
si-IL-17) significantly inhibited both MC38 and B16 tumor 
growth and induced a Th1-dominant environment, which 

selectively eliminated MDSCs and Tregs at tumor sites but 
not in the spleen [41].

A recent study compared i.t. lipopolysaccharide (LPS) 
plus i.t. VSV to i.t. LPS plus i.v. VSV. Administration of 
both drugs i.t. synergized well and generated a profound 
anti-tumor immune response, whereas the combination of 
i.t. LPS with systemically delivered VSV resulted in rapid 
morbidity and mortality in the majority of mice [42]. This 
study highlights the benefits of i.t. over systemic treatment 
in terms of reduced toxicity. Another recent study showed 
that combination therapy with i.t. NDV and systemic 
CTLA-4 blockade regressed distant tumors and developed 
long-term CD8 T cells memory against poorly immuno-
genic B16 tumors. The therapeutic effect was dependent on 
CD8+ cells, natural killer cells and type I IFN [43].

Clinical trials of i.t. immunotherapy with oncolytic 
viruses

Mastrangelo et al. [44] used i.t. vaccinia virus encoding 
recombinant granulocyte–macrophage colony-stimulating 
factor (GM-CSF) and found it to be safe and effective in 
patients with metastatic melanoma. Similarly, in a phase 
II trial of talimogene laherparepvec (T-VEC), an onco-
lytic herpes simplex virus encoding GM-CSF, the virus 
was administered i.t. to patients with metastatic melanoma 
and caused complete regression of injected and uninjected 
lesions in eight of 50 patients [45] (Table 1). T-VEC also 
showed improvement in durable response rate (DRR) and 
improvement in overall survival approached statistical sig-
nificance in a Phase III trial when compared to systemic 

Table 1  Clinical trials based on 
intratumoral immunotherapy

Drug Phase Stage References/clinical trials.gov identifier

IL-12 plasmid DNA I/IB 1 or 2 tumors [105]

IL-12 plasmid DNA I IV [95]

Poly-ICLC II II [87]

ALVAC GMCSF/ALVACIL-2 I II–IV [106]

Oncovex (GM-CSF) II IIIc/IV [107]

Adenovirus-IFNγ/ΤG1041 I I–IV [108]

Vero-IL-2 II Metastatic [109]

Patients DC I Metastatic [110]

Ad.mda-7 I Melanoma [48]

T-VEC III Melanoma/glioblastoma [46]

COVATEK II Melanoma [37]

CpGODNS II Glioblastoma [86]

PF-3512676 I BCC/metastatic melanoma [85]

IL19-IL2 II IIIB/C [96]

TIL-Ad-IFNg I/II Metastatic melanoma NCT01082887

INXN-1001 I Glioblastoma NCT02026271

DNX-2401 ± IFNγ I Glioblastoma NCT02197169
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GM-CSF control treatment [46]. Phase I/II trial based on 
intratumoral injections of adenovirus-IL-2 (TG1024) have 
been conducted on patients with melanoma. The virus 
induced pronounced inflammation in the treated lesions 
with predominant CD8+, TIA+ (a granule-associated pro-
tein of cytotoxic T cells) lymphocytic infiltrates [47]. In a 
phase I clinical trial, i.t. injections of adenovirus-delivered 
mda-7/IL-24 (Ad.mda-7) proved safe, elicited tumor-sup-
pressive and immune-enhancing processes including Th1 
cytokines production and CD8 T cells activation and pro-
vided clinically significant anti-tumor activity [48]. Herpes 
simplex virus (HSV) have also been used to treat mouse 
and human glioblastoma and found to be a promising treat-
ment for patients with glioblastoma [49].

Naturally occurring or genetically modified oncolytic 
viruses are thus promising agents for the treatment of mela-
noma. The host-induced primary immune response against 
the virally infected tumor cells causes limited tumor 
destruction and cytokine production, and APC are acti-
vated, take up tumor antigen from killed tumor cells and 
prime tumor-specific CD8 T cells that may ultimately cause 
systemic anti-tumor immunity.

I.t. immunotherapy with synthetic 
immunoagonists

Synthetic TLR agonists can stimulate the TLR-MyD88 
pathway, activate innate immune cells and lead to tumor-
specific adaptive immunity. Combination therapy with i.t. 
poly I:C (a TLR-3 agonist) and CpG (a TLR-9 agonist) 
with adoptive T cell transfer eradicated established mela-
noma through an IFN-gamma-dependent mechanism [50]. 
We and others have shown that i.t. and peritumoral CpG 
administration routes are superior to intravenous and sub-
cutaneous routes for the activation of innate immune cells 
leading to induction of tumor-specific CTLs and long-
lasting tumor protection [51–53]. It has also been reported 
that TLR-9 expression on plasmacytoid DC is critical for 
the therapeutic effect of CpG [53]. A recent preclinical 
study showed that combination therapy with anti-CTLA-4 
and anti-OX40 antibodies together with CpG was able to 
modify the tumor microenvironment by depleting tumor-
infiltrating Tregs; this increased the therapeutic efficacy of 
CpG and generated a systemic anti-tumor immune response 
that eradicated distant tumors, including in the brain [54]. 
Shirota et al. reported that i.t. administration of CpG oli-
godeoxynucleotides (ODNs) reduced the immunosuppres-
sive activity of monocytic MDSCs (CD11b+Ly6G−Ly6Chi) 
which differentiated into tumoricidal macrophages 
(CD11b+F4/80+Ly6Chi). Monocytic MDSCs are present 
in high numbers in many tumors and suppress anti-tumor 
T cell function; therefore, switching the phenotypes of 

these cells from tumor promoting to tumor suppressing 
may enhance anti-tumor immunity. These studies provide 
insight into a novel mechanism by which CpG ODNs con-
tribute to tumor regression and also provide an example of 
how local treatment by a TLR agonist can convert a tumor-
promoting microenvironment to a tumor-suppressing one 
[55]. I.t. injection of polyguanosine ODNs boosted anti-
tumor immunity mediated through direct phosphorylation 
of Lck in CD8 T cells, resulting in expansion of CD8 T 
cells and IL-2 production [56].

I.t. injection of plasmid DNA encoding CD40L (pSP-D-
CD40L) with TLR-9 and TLR-3 agonists (CpG and poly 
I:C) changed the tumor microenvironment by increasing 
the number of cytotoxic CD8+ T cells and decreasing the 
number of DCs (it may due to the activation and migration 
of DCs to tumor-draining lymph nodes): These changes 
slowed tumor growth and prolonged mouse survival [57]. 
It has been shown that i.t. treatment with GVAX (GM-CSF 
secreting whole-cell tumor cell vaccine) plus LPS (TLR-4 
agonist) was more efficient at generating anti-tumor 
responses than GVAX alone [58]. An i.t. TLR-2 agonist 
switched mast cell phenotypes from tumor promoting to 
tumor inhibiting and secreted cytokines IL-6 from activated 
mast cells causing B16 melanoma regression [59]. These 
studies suggest that direct activation of the tumor-infiltrat-
ing TLR+ innate immune cells by TLR agonists induces 
effective innate immune response and also prime tumor-
specific CD8 T cell responses that could be long lasting and 
systemic if combined with T cells activating drug.

The synthetic TLR-7 agonist imiquimod showed syn-
ergy with live recombinant listeria vaccine and significantly 
enhanced its anti-tumor effects against murine melanoma 
[60]; similarly, this TLR-7 agonist also enhanced the anti-
melanoma effects of IL-2 [61]. Recently, two studies [62, 
63] showed that topical treatment with imiquimod sup-
pressed tumor growth by converting pDCs into granzyme 
B-expressing, tumor-killing effector cells. In addition, we 
found that i.t. treatment with a tissue-retained, injectable 
form of a TLR-7/8 agonist, 3M-052, suppressed melanoma 
growth through T and B cell-dependent mechanisms. It also 
stimulated tumor-associated macrophages and polarized 
them from M2 to M1 phenotypes, and these macrophages 
contributed to the anti-tumor activity [3].

CD137 or 4-1BB is a member of the TNF receptor fam-
ily that is expressed on activated T cells and crosslinking 
of CD137 with its ligand enhances T cell proliferation and 
cytokine production. It has been shown that CD137 agonist 
antibodies enhance the cytolytic function and prolifera-
tion of CD8 T cells and leads to regression of established 
tumors [64] I.t. delivery of liposome-coupled anti-CD137 
plus IL-2-Fc fusion protein appeared very effective against 
B16 melanoma and did not cause toxicity [65]. I.t. SFV-
IL-12 (Semliki Forest virus encoding IL-12) and systemic 
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anti-CD137 agonist antibodies therapy generated robust 
anti-tumor immunity against B16 melanomas (B16-OVA 
and B16.F10) and TC-1 lung carcinomas. I.t. injection of 
SFV-IL-12 induced strong expression of CD137 on CD8+ 
T lymphocytes, providing targets for the action of the 
CD137 agonist antibody [66]. Recently, Marabelle et al. 
described that pattern recognition receptor agonists includ-
ing TLR agonists and immunostimulatory monoclonal anti-
bodies like anti-CD137 and anti-CTLA-4 showed synergis-
tic effect when delivered intratumorally and stimulated the 
tumor-infiltrating leukocytes. This suggests that i.t. immu-
notherapy would be a better option to generate systemic 
anti-tumor immune response with lower toxicity than after 
systemic administration [67, 68]. Another report also com-
pared local delivery of slow release formulation of anti-
CTLA-4 or anti-CD40 near to tumor lesion with systemic 
therapy and found that controlled local delivery of immu-
nomodulating antibodies generates systemic anti-tumor 
CD8 T cells immunity but minimal toxicity compared to 
systemic treatment [69]. Interestingly, peritumoral route of 
treatment initiated different types of immune response than 
intratumoral treatment, likely because of differences in 
the immune environment of tumors versus normal tissues 
such as skin. Therefore, it is important to understand which 
immune cells initiate and modulate effective adaptive anti-
tumor immune response.

I.t. immunotherapy by synthetic STING agonist

STING (stimulator of interferon genes) is a transmembrane 
containing protein that is localized in the endoplasmic retic-
ulum (ER) of numerous cell types such as macrophages, 
dendritic cells, endothelial and epithelial cells [70]. It 
induces type I interferon production through recognition of 
pathogen or tumor-derived cytosolic DNA metabolites [71, 
72]. It has been shown to activate downstream transcrip-
tion factors STAT6 and IRF3 through TBK1, resulting in 
anti-viral and innate immune responses against intracellu-
lar pathogens [73]. CD8α+DCs and type I interferons are 
required for spontaneous T cell priming in growing tumors 
[74], and a major defect in both type I IFN induction and 
T cell priming was observed in STING−/− mice, as well 
in mice lacking the downstream transcription factor IRF3 
[75]. Presence of tumor cell DNA in host APCs correlated 
with STING pathway activation and IFN-β production [76].

DMXAA is a known strong agonist of the mouse STING 
pathway, and i.t. injection of DMXAA-induced tumor anti-
gen-specific CD8+ T cells had robust anti-tumor activity 
via a mechanism that was dependent on the host STING 
[77]. Intratumoral administration of a different STING 
agonist (cyclic diguanylate monophosphate; c-di-GMP) 
improved the survival of glioma-bearing mice associated 

with enhanced type I IFN signaling and T cell migration 
into the brain [78].

Thus, activation of STING pathway by naturally occur-
ring tumor DNA is the main source of type I interferon pro-
duction in tumor, which initiates tumor-specific immunity 
at some extent, and that immune response can be enhanced 
multifold by direct i.t. delivery of synthetic STING ago-
nists and can have profound therapeutic efficacy. However, 
all known murine STING agonists do not bind to human 
STING which may limit their use clinically. New genera-
tions of STING agonist are under development that binds 
murine as well as all known human STING variants.

Clinical trials of i.t. immunotherapy with synthetic 
immunoagonists

Food and Drug Administration-approved synthetic TLR7 
agonist imiquimod is a cream formulation for the treatment 
of cutaneous basal cell carcinoma, actinic keratosis and 
genital warts, and has limited activity against cutaneous 
melanoma and breast tumors [79–82]. The cream formula-
tion of imiquimod limits its application for deep, non-cuta-
neous tumors and systemic administration of TLR agonists 
is limited by severe toxicity, including cytokine storm 
[83]. Thus, the newly developed injectable, lipid-modified 
TLR7/8 dual agonist 3M-052 that is shown to have thera-
peutic efficacy against mice melanoma, could be a better 
option for future clinical trials of i.t. therapy of melanoma 
[3, 84].

A phase I trial of i.t. treatment with a TLR-9 agonist, 
PF-3512676, showed local tumor regression in patients 
with basal cell carcinoma (one complete regression and 
four partial regressions out of five treated patients) and 
metastatic melanoma (one complete regression out of 
five treated patients). All patient’s post-treatment biopsies 
showed moderate to abundant cellular infiltrates of lym-
phocytes in injected and uninjected lesions [85]. Carpen-
tier et al. [86] conducted a phase II trial to test the efficacy 
of i.t. CpG ODNs in patients with recurrent glioblastoma 
after radiotherapy and chemotherapy; the median over-
all survival was 28 weeks; however, this trial did not meet 
the targeted progression-free survival benefit in patients 
with recurrent GBM. Recently, Salazar et al. [87] treated 
a patient with facial embryonal rhabdomyosarcoma by i.t. 
and intramuscular injections of a stabilized dsRNA viral 
mimic, polyinosinic-polycytidylic acid-polylysine-car-
boxymethyl cellulose (poly-ICLC, Hiltonol) and reported 
tumor regression with extended survival. Thus, there is 
some evidence of clinical success with i.t. TLR agonists in 
specific settings, particularly superficial cutaneous disease.

TLR agonists are very promising adjuvants for i.t. 
immunotherapy because most tumor-associated innate 
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immune cells express TLRs and can easily be activated in 
response to these agonists. Some of these cells are able 
to switch their phenotypes from immunosuppressive to 
immune enhancing and kill tumor cells directly and/or 
prime tumor-specific T cells. If these tumor-specific T cells 
receive further stimulation through TNF receptor super 
family (TNFRSF) members such as 4-1BB or OX40, which 
keeps them in the activated stage and enhances their func-
tions, the result can be a strong, long-lasting, systemic anti-
tumor immunity. Therefore, combination therapy with TLR 
agonists and 4-1BB/OX40 agonists may be a promising 
strategy to treat established tumors.

I.t. immunotherapy with cytokines

I.t. administration of cytokines such as IL-2, IL-21, IFN-
alpha/beta and IL-12 can also generate anti-tumor immu-
nity and suppress tumor growth. Combination therapy with 
i.t. IL-12 and systemic anti-CTLA-4 led to eradication of 
murine glioblastoma in mouse [88]. I.t. administration of 
IL-21 showed better treatment effect than subcutaneous 
injection and caused superior CD8 T cell proliferation [89]. 
I.t. delivery of plasmid DNA encoding IL-12 by in vivo 
electroporation induced systemic immunity that was able 
to kill both injected and uninjected, distant tumors without 
the systemic toxicity commonly observed after systemic 
administration of cytokine protein [90]. The combina-
tion of i.t. IL-12 with T cells redirected against vascular 
endothelial growth factor receptor-2 had therapeutic effi-
cacy in mice with a variety of solid tumor types, including 
melanoma [91]. I.t. hu14.18-IL-2 showed better anti-tumor 
activity in mouse models compared with i.v. hu14.18-IL-2 
[92]. I.t. DC-IFN-gamma efficiently induced cross-presen-
tation of tumor antigens to specific CD8+ T cells and gen-
erated anti-tumor immunity against pre-established B16 
melanoma [93]. Van der Jeught et al. [94] showed that i.t. 
administration of mRNA encoding a fusion protein consist-
ing of interferon-β and the ectodomain of the transforming 
growth factor-β receptor II induced anti-tumor immunity in 
mice by enhancing the antigen-presenting capacity of den-
dritic cells and reducing the suppressive activity of mye-
loid-derived suppressor cells.

Clinical trials of i.t. immunotherapy 
with cytokines

In a clinical trial, i.t. administration of plasmid encod-
ing IL-12 was found to be effective in melanoma. Two of 
nine patients showed stable disease, and one had a com-
plete response. Patients, especially responders, generated 
antigen-specific immunity against MAGE-1 and MART-1 

antigens [95]. L19-IL-2, an immunocytokine made up of 
the recombinant human antibody fragment L19 (specific 
to the alternatively spliced EDB domain of fibronectin, a 
well-characterized marker of tumor neo-vasculature) and 
of human IL-2, has shown therapeutic efficacy in animal 
cancer models. Twenty-five patients with stage IIIB/IIIC 
melanoma and cutaneous/subcutaneous injectable metasta-
ses were treated i.t. with L19-IL-2, resulting in complete 
response (CR) in 25 % of patients by modified immune-
related response criteria (irRC) [96] (Table 1).

Overall, i.t. cytokine therapy is a rapid and effective 
method to generate tumor-specific adaptive immunity in 
several mouse models, with some evidence of efficacy in 
patients with melanoma.

I.t. immunotherapy with activated immune cells

Activated antigen-presenting cells are needed to prime 
tumor-specific T cells and develop long-lasting immunity. 
In this regard, many studies have been performed to deter-
mine the effectiveness of in vitro activated DCs in in vivo 
tumor killing. While most of these studies used antigen-
loaded DCs as vaccines for subcutaneous, intravenous or 
intranodal delivery, some studies directly introduced DCs 
i.t. to promote uptake of tumor antigen and T cell prim-
ing. Okano et al. reported that i.t. delivery of Fas-inhibited 
allogeneic DCs had anti-tumor effects similar to those of 
autologous DCs, and this approach offers an alternative in 
patients where autologous DCs cannot be used. This study 
suggests that blocking the Fas–FasL interaction between 
allogeneic DC and host T cells may be an useful strategy to 
overcome the rejection response against alloantigens on the 
DCs [97]. We have shown that i.t. administration of TLR9-
triggered pDCs induced robust anti-tumor immunity that 
resulted in regression of the treated tumor as well as dis-
tant tumors by natural killer cells and CD8 T cell-mediated 
mechanisms [98]. I.t. injection of immature DCs and IFN-
gamma into malignant tumors in dogs produced anti-tumor 
immunity including four complete responses and two par-
tial responses out of seven treated dogs [99]. In B16 mela-
noma, i.t. injection of poly I:C-treated DCs generated anti-
tumor immunity and led to infiltration of TRP-2-specific 
IFN-gamma-producing CD8+ T cells [100].

Other i.t. immunotherapy

Recently, i.t. injections of recombinant heat-shock protein 
(Hsp)70 were used to treat malignant brain tumors in chil-
dren; the therapy was safe but not highly effective (one of 
12 children had a complete response, and one had a partial 
response). However, an increased number of Th1 T cells 
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and decreased number of B and Treg cells were seen in the 
blood of all children in response to Hsp70 treatment [101], 
suggesting that locally injected Hsp70 may generate a sys-
temic anti-tumor immune response that could be further 
enhanced with additional immunomodulators such as the T 
cell checkpoint blockade agents approved for the treatment 
of metastatic melanoma, anti-CTLA-4 (ipilimumab) and 
anti-PD-1 (pembrolizumab).

In a study of i.t. therapy in mice, injection of alpha-gal 
glycolipids into experimental melanomas induced CD8 T 
cell-mediated protective immunity that was not only effec-
tive against the treated tumor but also suppressed distant 
metastasis [102].

Allovectin (velimogene aliplasmid) is an immuno-
therapeutic drug for direct i.t. administration. It is a plas-
mid that encodes both major histocompatibility com-
plex (MHC) class I heavy (HLA-B7) and light chains 
(β2-microglobulin) and i.t. administration of this plasmid 
stimulates both local and systemic anti-tumor immune 
responses [103]. Phase II and III trials were conducted 
using allovectin in 127 and 375 patients, respectively. 

However, in the phase III trial, allovectin failed to improve 
overall survival [37].

Sandin et al. [104] have suggested that local adminis-
tration of anti-CTLA-4 monoclonal antibodies is a better 
option to treat pancreatic adenocarcinoma than systemic 
treatment because local treatment had similar treatment 
efficacy to systemic treatment and did not cause accumula-
tion of Treg cells in secondary lymphoid organs. However, 
i.t. therapy of tumors at visceral sites such as the pancreas 
is more challenging than systemic therapy due to the need 
for image-guided i.t. administration, requiring specific 
equipment and expertise.

Perspectives

The induction of anti-tumor immunity by immune acti-
vation within tumors is an effective method to gen-
erate immune responses against multiple (self and 
non-self) tumor antigens and modify the tumor microenvi-
ronment. A great advantage is the possibility of producing 

Fig. 1  Activation of tumor-associated immune cells by i.t. immuno-
therapy generates strong local and systemic immunity: (i) i.t. delivery 
of immunoagonists, cytokines and other immune activating agents, 
(ii) activation of tumor-associated innate immune cells through toll-
like receptor, CD40 or cytokine pathway leads to conversion of M2 
macrophages, MDSC, DCs/pDCs and B cell to M1 macrophages, 
killer pDC/DC and B1 cells, respectively. (iii) These activated cells 
produce many cytokines or/and lytic molecules and kill tumor cells 

directly. (iv) They can also act as an antigen-presenting cells and (v) 
migrate to TDLN where they process and present tumor antigens to 
CD8 T cells to (vi) expand tumor-specific CD8 T cells and generate 
long-lasting tumor-specific immunity. (vii, viii, ix) Secondary co-
stimulation or blocking of inhibitory pathway further activates and 
facilitates migration of these tumor-specific CD8 T cells to injected 
and uninjected tumor and cause tumor lysis
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“off-the-shelf” reagents that can be applied across patient 
populations and tumor types, since antigens do not need 
to be identified. This approach could therefore be a more 
rapid, broadly applied and cost-effective therapeutic option 
than personalized immunotherapy. However, care should be 
taken in choosing the specific i.t. immunotherapy method 
because strong immune activation results in the up-reg-
ulation of chemokines within a tumor and may cause an 
influx of immune cells only in treated tumors and a lack 
of immunity or cell killing in untreated tumors. At this 
time, a wealth of approaches is being tried, and it is as of 
yet unclear which of these are most potent in their ability 
to induce systemic anti-tumor immunity and therapeutic 
benefit. Therefore, well-designed preclinical studies should 
be conducted to observe the effect of a particular drug and 
its mechanisms of action in metastatic disease models and 
especially in clinical trials. Administration of a reproduc-
ible amount of therapeutic agent into tumors and immune-
suppressive tumor environments can be challenging; how-
ever, i.t. immunotherapy could be safer than systemic 
treatment, with its local nature giving rise to fewer side-
effects such as systemic tissue inflammation or cytokine 
storm. As an exciting prospect, i.t. therapy can enhance the 
effect of the FDA-approved checkpoint blockade therapeu-
tics, anti-CTLA-4 and anti-PD-1, by promoting the gen-
eration of activated, tumor-specific T cells that can then 
become the targets for checkpoint blockade.

Conclusion

Many local tumor immunomodulation therapies to gener-
ate systemic anti-tumor immunity are emerging. The ben-
efits of i.t. immunotherapy depend not only on the gen-
eration of tumor-specific immunity but also on changing 
the tumor microenvironment from immunosuppressive 
to immunostimulatory (Fig. 1). This approach holds great 
promise in combination with chemotherapy and systemic 
immunotherapies. Opportunities include (1) i.t. immu-
notherapy with adoptive T cell transfer, (2) i.t. oncolytic 
viruses encoding immunomodulatory molecules and (3) 
combination of i.t. immunoagonists with i.t. or systemic 
anti-CTLA-4 or anti-PD1/PD-L1 blockade. These syner-
gistic combinations may provide a promising approach to 
generate systemic anti-tumor immunity for the treatment 
of metastatic melanoma with superior efficacy over single-
agent approaches.
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