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with a tyrosinase-specific T cell receptor (TCR) exhibited 
significantly enhanced functional activity when condi-
tioned with IL-12 as indicated by heightened granzyme B 
expression and elevated peptide-specific CD107a degranu-
lation. This effect was sustainable despite the 20  days of 
in vitro cellular expansion required to expand cells over 
1,000-fold allowing adequate cell numbers for administra-
tion to cancer patients. Overall, these findings support the 
efficacy and feasibility of ex vivo IL-12-conditioning of 
TCR-modified human CD8+ T cells for adoptive transfer 
and cancer therapy.
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Abbreviations
ACT	� Adoptive cell therapy
CAR	� Chimeric antigen receptor
CTX	� Cyclophosphamide
IL-12	� Interleukin-12
REP	� Rapid expansion protocol
Tc0	� CD8+ T cells not polarized
Tc1	� CD8+ T cells polarized with IL-12
TCR	� T cell receptor

Introduction

Adoptive cell therapy (ACT) has shown great potential for 
inducing curative responses in patients with advanced met-
astatic cancer. Recent findings provide additional optimism 
as it is apparent that tumor-reactive T cells can be rapidly 
and reliably generated by the transfer of tumor-reactive T 
cell receptor (TCR) and chimeric antigen receptor (CAR) 
genes [1–4]. Furthermore, it is becoming increasingly clear 
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in murine studies that the conditioning of T cells prior to 
ACT is also a critical parameter affecting in vivo efficacy. 
For CD8+ T cells, polarization with IL-12, IL-4, or TGFβ/
IL-6 leads to the generation of Tc1, Tc2, and Tc17 subsets, 
respectively [5–7]. These subsets each have unique func-
tional properties and have demonstrated improved anti-
tumor immunity when compared to unpolarized T cells 
(Tc0). Although there is a growing body of preclinical data 
demonstrating that polarized T cell subsets have improved 
durability and greater anti-tumor efficacy, current ACT 
clinical trials still use unpolarized T cells.

Perhaps the most therapeutically promising of the CD8+ 
T cell subsets are Tc1 cells. Early studies demonstrated 
that human CD8+ T cells activated and cultured with 
IL-12 were skewed toward a phenotype associated with 
enhanced function and cytotoxicity, as indicated by their 
ability to secrete IFNγ and degranulate upon antigen rec-
ognition [8–11]. These results were expanded upon using 
mouse T cells, leading to the formal identification of Tc1 
cells [12–14]. Then, in a series of mouse studies, Dutton 
and colleagues showed that Tc1 cells can mediate effective 
anti-tumor immunity in mice in a variety of settings and 
in a manner unique to that of other polarized CD8+ T cell 
subsets [15–19]. Importantly, in most models, Tc1 medi-
ate much more effective anti-tumor immunity than Tc2 or 
Tc17 cells [18–21].

While most studies have focused on a comparison of 
Tc1 cells with other effector cell subsets, Mescher and col-
leagues have more precisely defined the role of IL-12 in 
this process [22]. Using mouse T cells, they demonstrated 
that the presence of IL-12 during activation dramatically 
enhanced the functionality of CD8+ T cells as indicated 
by their ability to produce IFNγ, to be cytotoxic, to per-
sist in vivo, and to mediate anti-tumor immunity. Chang 
et  al. [23] demonstrated similar findings to Mescher and 
colleagues and also showed using a mixture of wild-type 
and IL-12Rβ1−/− T cells that IL-12 acts directly on CD8+ 
T cells. Interestingly, in all these studies, control CD8+ T 
cells cultured without IL-12 also produced IFNγ upon anti-
gen stimulation, albeit less than with the inclusion of IL-12. 
These results demonstrate that IL-12 can not only pro-
mote a Tc1 phenotype, but also IL-12 can fundamentally 
improve the functional quality of an activated CD8+ T cells 
already producing IFNγ.

In our previous work [24], we used an approach similar 
to Mescher and colleagues to assess the impact of ex vivo 
IL-12-conditioning on tumor-reactive CD8+ T cells from 
pmel-1 TCR transgenic mice. Pmel-1 CD8+ T cells express 
a TCR that recognizes the H-2Db-restricted gp10025–33 
epitope, an endogenous B16 tumor antigen [25]. Using 
peptide stimulation, we activated pmel-1 CD8+ T cells with 
(pmelIL-12) or without (pmelsham) IL-12-conditioning. We 
found that pmelIL-12 CD8+ T cells did not merely exhibit 

improved function in vitro, but also mediated robust regres-
sion of established melanoma when infused into mice lym-
phodepleted with cyclophosphamide (CTX) [24]. Thus, the 
combination of both ex vivo IL-12 conditioning of donor 
CD8+ T cells and host lymphodepletion led to synergisti-
cally enhanced anti-tumor immunity.

Here, we expand upon our previous findings by mecha-
nistically defining how IL-12-conditioning augments the 
function and anti-tumor activity of CD8+ T cells. Further, 
we demonstrate the ability to generate an IL-12-conditioned 
cellular product in support of a clinical trial platform. First, 
using mouse pmel-1 CD8+ T cells, we find that IL-12-con-
ditioning improves persistence and anti-tumor efficacy 
tenfold–100-fold. The enhanced effectiveness of IL-12-con-
ditioning was associated with maintenance in functional 
avidity. In studies with human CD8+ T cells, we genetically 
modified T cells with a tyrosinase-reactive TCR, TIL 1383I, 
which recognizes the HLA-A2-restricted tyrosinase368–376 
epitope, an antigen expressed on a high frequency of mela-
noma tumors [26, 27]. (This TIL 1383I TCR is being used 
in an ongoing ACT clinical trial (NCT01586403) at Loy-
ola Medical Center in Chicago(coauthor G.S.).) Using TIL 
1383I-modified CD8+ T cells, we found that IL-12-condi-
tioning led to enhanced functional activity, including ele-
vated expression of granzyme B and ability to degranulate, 
as indicated by surface CD107a expression in response to 
relevant antigen. Importantly, this enhanced functional abil-
ity was maintained during the 3-week period of expansion 
required for the CD8+ T cells to reach numbers adequate for 
patient administration.

Materials and methods

Mice

C57BL/6 (B6), B6.PL (Thy1.1), pmel-1 TCR transgenic 
[25], HLA-A2 transgenic, IFNγ−/−, and NSG mice were 
obtained from Jackson Laboratory (Bar Harbor, ME). We 
have described the generation of h3T TCR transgenic mice 
previously [28]. Pmel-1 mice were maintained by crossing 
a pmel-1 (male) to a Thy1.1 (female) generating hemizy-
gous offspring. We generated pmel-1/IFNγ−/− mice in our 
colony. All animals were housed under specific pathogen-
free conditions in accordance with institutional and federal 
guidelines at the Medical University of South Carolina.

Cell cultures

B16-F1 tumor cells were obtained from ATCC (Manassas, 
VA, USA) and cultured as previously described [24]. T2-A2 
cells are a TAP-deficient hybridoma expressing HLA-A2. 
For generation of mouse gp100-reactive T cells, pmel-1 TCR 
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transgenic splenocytes (1.5 × 106 cells/well in 1.5 ml) were 
stimulated with 1 µg/ml H-2Db-restricted human gp10025–33 
peptide (KVPRNQDWL, American Peptide Company) 
for 3 days with or without mIL-12 (10 ng/ml, Shenandoah 
Biotechnology, Warwick, PA, USA) to generate pmelIL-12 
or pmelsham T cells, respectively. In some experiments, we 
generated pmelIL-2 cells by substituting hIL-2 (200  ng/ml) 
for IL-12 during the 3-day culture. For generation of mouse 
tyrosinase-reactive T cells, h3T TCR transgenic splenocytes 
(1.5 × 106 cells/well in 1.5 ml) were cultured with irradiated 
HLA-A2 transgenic splenocytes (3.8 ×  106  cells/well) and 
stimulated with 1  µg/ml HLA-A2-restricted human tyrosi-
nase368–376 (hTyr) peptide (YMDGTMSQV, American Pep-
tide Company) for 3 days with or without mIL-12 (10 ng/
ml) to generate h3TIL-12 or h3Tsham T cells, respectively. For 
analysis of functional avidity, pmelIL-12, pmelsham, h3TIL-12, 
or h3Tsham were restimulated with the indicated concentra-
tion of relevant peptide for 6 h and assessed for IFNγ expres-
sion. For pmel-1 experiments, 105 T cells were co-cultured 
with 105 irradiated B6 splenocytes. For h3T experiments, 105 
T cells were co-cultured with 105 irradiated T2-A2 cells.

Human T cells were obtained from Research Blood 
Components (Boston, MA, USA) and cultured using one 
of the following two protocols. For generation of TCR-
modified human T cells, we used a modification of a previ-
ously described protocol [29–31]. On day 1, human PBMC 
were stimulated with soluble anti-CD3 mAb (OKT3, NCI 
preclinical repository) for 48 h. Except during the spinocu-
lation step, cells were cultured with hIL-2 (30 IU/ml) and 
hIL-15 (100 ng/ml) and maintained between 1 and 2 × 106 
cells/ml. On day 3, activated T cells were transduced by 
co-culture with 50  % retroviral supernatant from PG13 
packaging cells transfected with the TIL 1383I TCR/CD34t 
construct. Transduction was done with retronectin-coated 
plates and spinoculation (2,000  g for 2  h at 32  °C). On 
day 8, cells underwent a rapid expansion protocol (REP) 
by incubation in an upright T175 flask of 1 ×  106 trans-
duced T cells with 2 × 108 irradiated (5,000 rad) allogeneic 
feeder cells from human donors. Soluble anti-CD3 mAb 
(OKT3, 30 ng/ml) was also added to the cultures. On day 
~20, cultures were harvested and analyzed by flow cytom-
etry or in functional assays. For assessment of CD107a 
degranulation, human T cells (105) were mixed with T2-A2 
cells (105) with or without 1 µg/ml hTyr peptide. As con-
trol, we added PMA/ionomycin. Antibody against CD107a 
was added to the culture during the last 5 h of the 6-h cul-
ture. For expansion of non-genetically modified T cells for 
transfer into NSG mice, on day 1 PBMCs were stimulated 
with anti-CD3 mAb (OKT3) for 48  h. Beginning on day 
3, cells were cultured in hIL-2 and hIL-15 and maintained 
between 1 and 2 ×  106 cells/ml. Throughout the culture, 
cells were grown with or without hIL-12 (10 ng/ml). Cells 
were phenotyped and injected on day 7 of culture.

Flow cytometry

For flow cytometry, cells were analyzed as previously 
described [32]. For intracellular flow cytometry, cells were 
stained using the BD Cytofix/Cytoperm with Golgistop kit 
(BD Bioscience, San Jose, CA, USA). Flow cytometry was 
performed on a BD LSRII or a BD Accuri, and data were 
analyzed using Flowjo software (TreeStar, Ashland, OR, 
USA) and CFlow software (BD Bioscience).

RNA isolation and real‑time PCR

Total cellular RNA was isolated from pmelIL-12 and pmelsham 
CD8+ T cells using Trizol (Invitrogen). cDNA was gener-
ated from total RNA (1 µg/sample) using the High-Capacity 
cDNA Reverse Synthesis Kit (Bio-Rad, Hercules, CA, USA). 
The resulting cDNA was amplified by PCR using primer 
pairs for the BCL3 (forward 5′-CCGGAGGCCCTTTAC 
TACC-3′; reverse 5′-GAGTAGGCAGGTTCAGCAGC-3′), 
18S (forward 5′-CCAGAGCGAAAGCATTTGCCAAGA-3′; 
reverse 5′-TCGGCATCGTTTATGGCTGGAACT-3′), and 
the beta-actin (forward 5′-ACGTAGCCATCCAGGCTG 
GTG-3′; reverse 5′-TGGCGTGAGGGAGAGCAT-3′) using 
2× Sso advance SYBR green on CFX96 Touch real-time 
PCR detection system (Bio-Rad). The levels of Bcl-3 cDNA 
in each sample were normalized to beta-actin and 18S cDNA. 
The final relative expression of mRNA species was calculated 
using the comparative Ct method.

Tumor challenge, cyclophosphamide (CTX) 
preconditioning, and adoptive T cell transfer

For tumor experiments, B6 mice were injected (s.c.) with 
2.5 × 105 B16-F1 tumor cells. Tumor growth was measured 
blindly by caliper twice per week and tumor surface area 
(mm2) was calculated by length x width. For CTX injec-
tions, mice were given 4 mg by i.p. injection. For adoptive 
transfer experiments, T cells were injected i.v. at the doses 
indicated. For antibody mediated depletion of IFNγ, mice 
received 150 µg anti-IFNγ mAb (XMG1.2 clone, Bioxcell) 
on days 0, 2, 4, and 6, after adoptive transfer.

Statistical methods

Data from all experiments were graphically displayed 
to identify the need for transformation. When analyz-
ing number or % donor cells, a squareroot transformation 
was used to adhere to assumptions of ANOVA and other 
regression models (i.e., assumption of constant variance of 
residuals). Although conditions were compared using trans-
formed endpoints, data are displayed on the original scale. 
Data shown in Fig.  1a, b were analyzed using ANOVA. 
Data in Fig.  1c, d were analyzed using random effects 
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linear regression where random intercepts were included 
per mouse and main effects of time, group, and their inter-
actions were included. To adequately represent the nonlin-
ear pattern over time, both time and time2 were included 
in the models. Likelihood ratio tests were used to evaluate 
significance of conditions. Time-to-kill data are graphically 
displayed using Kaplan–Meier curves (Suppl. Figure  1), 
and groups were compared using a Gehan–Wilcoxon test 
(the modified Peto-Peto version). Conditions in Suppl.  
Figure  3A were compared using a random effects model 
where random intercepts were included for experiment and 
a fixed effect of IL-12 (vs. sham). p < 0.05 was considered 
significant for all experiments.

Results

Ex vivo IL‑12‑conditioning improves T cell persistence

To better characterize how ex vivo IL-12-conditioning of 
T cells improves the anti-tumor responses upon transfer 
into mice after host lymphodepletion, we initially assessed 
T cell persistence in non-tumor-bearing mice. Mice were 
pre-treated with or without cyclophosphamide (CTX, 4 mg, 
i.p.) and then adoptively transferred with 3  ×  106 pme-
lIL-12 or pmelsham CD8+ T cells. Only the combination of 
IL-12 conditioning and lymphodepletion led to a signifi-
cantly enhanced donor CD8+ T cell persistence (Fig. 1a). 
Importantly, this improved persistence was systemic in 
nature as it was also observed in the liver and lymph nodes 
(Fig.  1b). Titration of adoptively transferred cells demon-
strated that the IL-12-conditioned CD8+ T cells (pmelIL-12) 
in the peripheral blood persisted at least 100-fold better 
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Fig. 1   IL-12 conditioning improves CD8+ T cell persistence in lym-
phodepleted hosts at least 100-fold. a B6 mice were treated with or 
without cyclophosphamide (CTX), and 1 day later adoptively trans-
ferred with 3 ×  106 pmelIL-12 or pmelsham T cells. On day 10 after 
adoptive transfer, spleens were harvested and the number of donor T 
cells (CD8+ Thy1.1+) was determined. Each triangle represents an 
individual mouse, and the bar indicates the mean. b As in a, except 
liver (top) and lymph node (bottom) cells were harvested and the fre-
quency of donor T cells was determined. In a, b, pmelsham +  CTX 
and pmelIL-12 + CTX conditions (denoted with an asterisk) were sig-
nificantly different (p  <  0.0001). c As in a, except titrated numbers 
of pmelIL-12 or pmelsham were injected. Blood was harvested at the 
indicated time points. Each point represents the mean of 3–6 mice. 
The % donor T cells differed significantly across time for all three 
conditions with CTX (p < 0.0001). d Similar to c with the transfer of 
pmelIL-2 cells. Each point represents the mean of 3–5 mice. There was 
a significant difference (p < 0.0001) between pmelIL-12 and pmelIL-2. 
There was no difference between pmelsham and pmelIL-2 (p =  0.40). 
Data are representative of at least two independent experiments
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than control CD8+ T cells (pmelsham) (Fig. 1c). Finally, the 
enhanced persistence induced by IL-12-conditioning was 
not seen when the T cells were cultured with a high dose 
of IL-2 (pmelIL-2) for 72 h (Fig. 1d), indicating that IL-12 
imparts a unique signal.

Ex vivo IL‑12‑conditioning improves anti‑tumor efficacy

To determine whether improved T cell persistence corre-
lated with enhanced anti-tumor efficacy, we treated mice 
bearing subcutaneous B16 tumor cells with CTX and 
titrated numbers of adoptively transferred pmelIL-12 or 
pmelsham cells. PmelIL-12 cells exhibited at least a tenfold 
improvement in efficacy compared with pmelsham cells as 
indicated by reduced tumor growth (Fig. 2) and enhanced 
survival (Sup. Fig.  1). As we have observed previously, 
anti-tumor immunity was dependent on both ex vivo IL-12 
conditioning and lymphodepletion [24].

To understand the mechanism by which pmelIL-12 
cells mediated anti-tumor immunity after adoptive trans-
fer into a lymphodepleted host environment, we assessed 
the role of donor cell IFNγ. In some tumor models, Tc1 
cells require IFNγ [16, 33], while in other models, IFNγ 
is dispensable [15, 34]. As our experiments are unique in 
that donor pmelIL-12 were transferred into a lymphopenic 
environment, we assessed the role of IFNγ in our model 
and generated pmelIL-12 T cells from wild-type or IFNγ−/− 
mice. As shown in Fig.  3, effective anti-tumor immunity 
was dependent on the ability of donor T cells to produce 
IFNγ, as pmelIL-12-lacking IFNγ exhibited markedly infe-
rior anti-tumor immunity.

We also assessed whether IL-2 could substitute for IL-12 
during the priming of pmel-1 CD8+ T cells. Similar to our 
findings in Fig.  1, pmelIL-2 cells failed to mediate effec-
tive anti-tumor immunity compared with pmelIL-12 cells 
(Fig. 3). PmelIL-2 and pmelsham cells were not distinguish-
able. Thus, IL-12 induces a qualitatively unique signal in 
these CD8 T cells that cannot be achieved by increasing the 
level of IL-2 signaling.

IL‑12‑mediated STAT4 phosphorylation requires T cell 
activation

The ability of IL-12 to improve the function of tumor-reac-
tive T cells is thought to be most efficient on activated T 
cells, as activation (or TCR engagement) leads to upregu-
lation of the IL-12 receptor (IL-12R) subunits [35–37]. To 
validate that activated T cells are more responsive to IL-12 
compared with resting T cells on a per cell basis, we used 
flow cytometry to assay for STAT4 phosphorylation, which 
is immediately downstream of the IL-12R [38, 39]. Resting 
mouse or human CD8+ T cells cultured with IL-12 failed 
to induce the phosphorylation of STAT4 (Sup. Fig. 2, left), 

which is consistent with resting T cells not expressing a 
functional IL-12R. In contrast, IL-12 culture of activated 
mouse or human CD8+ T cells induced significant phos-
phorylation of STAT4 (Sup. Fig.  2, right). These results 
are consistent with T cell responsiveness to IL-12 that is 
dependent on T cell activation.
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IL‑12‑conditioning improves T cell survival and avidity

To better understand the qualitative changes induced by 
IL-12 conditioning, we compared the survival of pmelIL-12 

and pmelsham CD8+ T cells in the absence of exogenous 
growth factors such as IL-2 or IL-15. PmelIL-12 exhib-
ited better short-term viability as compared with pmelsham 
after washing and overnight culture without addition of 
cytokines (Sup. Fig.  3A). In comparison, culture with a 
low dose of IL-15 (1 ng/ml) improved the viability of both 
pmelsham and pmelIL-12 cells (Sup. Fig.  3B). These results 
suggest that the improved functional efficacy of pmelIL-12 
cells may be due to their ability to survive or function at 
least initially in the absence of critical T cell growth fac-
tors in the host. These results are consistent with previous 
findings, and the enhanced survival may be mediated by 
IL-12-induced upregulation of Bcl-3 [23, 40]. In fact, we 
observed elevated Bcl-3 in pmelIL-12 versus pmelsham cells 
(Sup. Fig. 3C).

A property critical to optimal anti-tumor immunity is 
the ability to recognize even nominal amounts of antigen 
on a tumor cell. As IL-12-conditioning was reported to 
reduce the ability of T cells to bind relevant tetramer [23], 
it was important to determine whether IL-12-condition-
ing impacted the ability to functionally recognize limit-
ing amounts of antigen as indicated by the production of 
IFNγ. PmelIL-12 showed a slightly enhanced ability to pro-
duce IFNγ in response to low amounts of antigen as com-
pared to pmelsham cells (Fig. 4a). We also found that pme-
lIL-12 cells bound relevant tetramer comparably to pmelsham 
cells (Fig. 4b) and that this was not temperature dependent 
(Fig. 4c). Using a second TCR, from h3T TCR transgenic 
mice (which expresses a murine version of TIL 1383I [28]), 
we observed a similar trend toward enhancement of IFNγ 
production in response to low amounts of antigen (Fig. 4d, 
e). Cumulatively, our results demonstrate that conditioning 
of T cells with IL-12 does not impair their ability to recog-
nize the limiting amounts of antigen that may be present on 
tumor cells.

IL‑12 improves the functional qualities of human T cells 
genetically modified with a tyrosinase‑reactive TCR 
and expanded using a clinically relevant protocol

As a next step in translating our approach, we defined the 
functional parameters of human T cells cultured with or 
without IL-12 using conditions that would facilitate trans-
lation to a clinical trial for cancer patients. As part of this 
protocol, we genetically modified human T cells with the 
TIL 1383I TCR, generating tumor-reactive T cells reac-
tive against the melanoma tumor antigen, tyrosinase. We 
used a modified version of a T cell expansion protocol 
that has been successfully used to generate sufficient num-
bers of receptor-modified cells for patients in a variety of 
trials [29–31] including an ongoing trial at Loyola Medi-
cal Center in Chicago using the TIL 1383I TCR platform. 
However, in contrast with the ongoing Loyola trial using 
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Fig. 3   IL-12-conditioned CD8+ T cells depend on IFNγ for opti-
mal anti-tumor immunity. Mice with s.c. B16 tumors were treated 
on day 7 with cyclophosphamide (CTX). On day 8, mice were 
adoptively transferred with 3 ×  106 pmelIL-12, pmelIL-2, or pmelsham 
cells from wild-type or IFNγ−/− pmel-1 mice. Tumors were meas-
ured blindly twice per week, and each line represents one mouse 
(n = 8–10/group). A similar requirement for IFNγ was also observed 
in B16-tumor-bearing mice given 6 Gy (in lieu of CTX), adoptively 
transferred with pmelIL-12, and injected with or without 150  µg of 
anti-IFNγ mAb (clone XMG1.2) on days 0, 2, 4, and 6
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lentiviral vectors, we used retroviral vectors encoding the 
same three gene products, which include the TIL 1383I 
TCR α and β, and a truncated CD34 gene [41]. Expres-
sion of the truncated CD34 gene enables the enrichment 
and in vivo detection of genetically modified cells. Using 
this established clinical protocol as a starting point, we cul-
tured human T cells with or without IL-12 for ~3  weeks 
and monitored the cellular expansion. At the end of the 
culture, we assayed cells phenotypically and by functional 
readouts.

As shown in Fig. 5a, addition of IL-12 to the expansion 
protocol did not compromise our ability to generate suffi-
cient numbers of cells for patient infusion, although there 
was a trend toward lower cellular expansion with IL-12 
in the culture. There were high frequencies of genetically 
modified T cells with or without IL-12 culture (Fig.  5b). 
Similar to mouse cells, we observed higher levels of gran-
zyme B in the presence of IL-12 (Fig. 5b). In response to 
relevant peptide, IL-12-conditioned CD34hi cells degranu-
lated to a greater extent than CD34hi unconditioned coun-
terparts (Fig.  5c). Cumulatively, our results indicate that 
the addition of IL-12 did not impede the generation of 
sufficient numbers of genetically modified T cells needed 
for patient infusion, and furthermore, IL-12-conditioned 
human T cells have the characteristics consistent with 
improved in vivo functional activity.

IL‑12‑conditioned human T cells persist 
in immunodeficient NSG mice

In an attempt to understand how IL-12-conditioned cells 
would engraft in cancer patients, we next sought to deter-
mine how IL-12-conditioning impacts the ability of human 
T cells to persist in immunodeficient mice. In addition to 
functional capability, T cell persistence correlates with the 
therapeutic effectiveness of ACT therapy [5, 42]. Thus, 
we used a simplified version of our clinical protocol and 
activated human T cells with anti-CD3 mAb for 2  days 
followed by culture for 1  week with hIL-2 and hIL-15. 
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Human T cells were cultured with or without hIL-12 dur-
ing the entire length of the culture and then harvested for 
phenotypic analysis and subsequently injected in vivo into 

immunodeficient NSG mice [43]. As observed in our clini-
cal T cell transduction culture protocol, culture with IL-12 
enhanced granzyme B expression (Sup. Fig.  4A). Human 
donor cells exhibited efficient engraftment (Sup. Fig. 4B), 
and furthermore, IL-12 conditioned cells appeared to 
preferentially persist. However, in addition to the initial 
engraftment, there appeared to be a second rapid expansion 
phase beginning about 2–3 weeks post-injection, possibly 
suggesting graft versus host disease. Despite the poten-
tial of graft versus host disease, we noted that the ex vivo 
IL-12-conditioned donor T cells exhibited a trend toward 
elevated frequencies of donor cells as compared to non-
conditioned cells when transferred into NSG hosts.

Discussion

The field of adoptive T cell therapy is developing the abil-
ity to reliably generate TCR and CAR gene transfer plat-
forms with an increasing capability of inducing curative 
responses in patients with advanced metastatic cancer. It is 
becoming clear, however, that the conditioning of T cells 
with cytokines capable of affecting the functional and 
phenotypic fingerprint of transferred T cells prior to ACT 
is also a critical means of improving in vivo efficacy and 
durability. Despite this growing body of preclinical data, 
current ACT therapies have yet to leverage this dimension 
by incorporating these potentially more sophisticated T 
cells into phase I studies. While it would seem that transla-
tion of these concepts into human trials would be relatively 
straightforward, there are significant conceptual and logis-
tical barriers that must be addressed. These hurdles include 
identifying a cytokine-conditioning methodology that can 
have a durable impact in vivo. Furthermore, it will be criti-
cal to develop the methodology for reliably and efficiently 
integrating the application of cytokine preconditioning into 
the complex methodology of T cell transduction that needs 
to be considered in order to reliably deploy a TCR trans-
duction clinical protocol that meets FDA standards.

Among several therapeutically promising phenotypes, 
including Tc2 and Tc17 cells, we have focused on Tc1 cells 
because early studies by several investigators have clearly 
demonstrated that CD8+ T cells cultured with IL-12, and 
skewed to a Tc1 phenotype, had enhanced functional abil-
ity and anti-tumor efficacy [8–11, 15–24]. The ex vivo 
dimension of these findings are especially cogent for IL-12 
where significant in vivo clinical toxicity [44, 45] has lim-
ited the utilization of this promising cytokine and led inves-
tigators to look for non-systemic approaches. With the goal 
of translating these observations into a safe and effective 
therapy for cancer patients, we have characterized the 
impact of ex vivo IL-12-conditioning on both mouse and 
human T cells. We found that IL-12-conditioned mouse T 
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cells exhibit tenfold–100-fold improvement in persistence 
and anti-tumor immunity when transferred into lympho-
penic hosts. Furthermore, IL-12-conditioned cells demon-
strate improved survival in the absence of T cell growth 
factors and also retention of T cell avidity. Importantly, 
when applied to a clinical expansion protocol, we found 
that IL-12-cultured and TCR-modified human T cells are 
capable of being expanding to the numbers necessary for 
patient administration. Furthermore, IL-12-conditioning of 
these TCR-modified human T cells improved their func-
tionality as indicated by granzyme B and antigen-specific 
CD107a degranulation.

One important aspect of our study was the direct titra-
tion of cell numbers transferred and the benefits of IL-
12-conditioning on the persistence and function of mouse 
T cells. IL-12-conditioned mouse T cells exhibited at 
least a tenfold increase in anti-tumor activity versus con-
trol cells. Similarly, we observed that the ability of these 
IL-12-conditioned CD8+ T cells to persist in vivo was 
improved approximately 100-fold by IL-12 conditioning. 
These beneficial effects were dependent on cyclophospha-
mide preconditioning, suggesting that the in vivo environ-
ment induced by lymphodepletion is critical for the optimal 
function of IL-12-conditioned T cells. This result suggests 
the existence of host factors that may selectively support 
the functional ability of IL-12-conditoned cells during lym-
phodepletion. Although not directly addressed in this body 
of work, the discernment of the mechanisms involved with 
this synergistic partnership will be important to under-
stand as we work to thoughtfully build on our current ACT 
protocols.

In direct support of the potential of ex vivo IL-12-con-
ditioning in patient care, we utilized a modification of 
a currently used clinical protocol for the expansion and 
genetic modification of human TIL 1383I-modified T cells 
(NCT01586403). Variations of this protocol have been 
used by several groups to induce efficient engraftment of 
TCR- and CAR-modified T cells, and in some cases anti-
tumor responses [29–31]. However, in these prior studies, 
IL-12 was not incorporated into the culture methodology. 
Our findings show that addition of IL-12 to the 3  weeks 
of culture did not impair our ability to generate sufficient 
numbers of T cells for patient administration. Furthermore, 
the T cells generated exhibited functional qualities which 
would predict enhanced anti-tumor efficacy in vivo includ-
ing higher levels of granzyme B and the improved ability to 
mobilize CD107a in response to relevant antigen.

To assess the impact of IL-12-conditioning on persis-
tence of human T cells in vivo, we used the NSG immu-
nodeficient mouse model [43]. These mice, which are on 
a NOD, SCID, and IL-2Rγ−/− background, are thought to 
represent one of the best models for assaying the function 
of human immune cells in mice. We cultured human T cells 

using a simplified ~9-day protocol involving soluble anti-
CD3 mAb stimulation with or without continual IL-12. 
Unfortunately, engraftment of the human cells into NSG 
mice was only successful in 1 of 3 experiments independ-
ent of IL-12-conditioning. In the one experiment where 
engraftment could be assessed (Sup. Fig. 4), we observed a 
trend of enhanced persistence in cells cultured with IL-12. 
Thus, at a minimum, IL-12 conditioning was not detri-
mental to T cell persistence. Despite the limitations of our 
model, these results provide a basis for future experiments 
involving the transfer of human T cells into NSG mice and 
identification of the factors important for achieving stable 
engraftment. Moving forward in the NSG mouse model, 
our goal is to determine whether IL-12-conditioned human 
T cells genetically modified with the TIL 1383I TCR and 
adoptively transferred will not only persist longer but medi-
ate enhanced anti-tumor immunity.

It is relevant to note that one other group has reported 
the transfer of IL-12-conditioned human T cells into immu-
nodeficient mice [10]. Using a 3-week culture protocol but 
no REP as in our experiments, the authors demonstrated 
that IL-12-conditioned human T cells genetically modified 
with a CAR recognizing CEA led to enhanced anti-tumor 
immunity compared with human T cells cultured without 
IL-12. The authors did not assess the persistence of the 
human T cells in the immunodeficient mice, but demon-
strated in vitro a functional improvement in human T cells 
following culture with IL-12. Our findings build on these 
earlier observations and demonstrate the ability to generate 
adequate numbers of cells for patient administration.

One alternative IL-12-based approach for augment-
ing T cell-mediated immunity warrants review. Several 
groups have recently reported that genetically modifying 
tumor-reactive CD8+ T cells to express IL-12 significantly 
improves anti-tumor immunity [46–49]. While these results 
are exciting and the approach is being evaluated clini-
cally, we note that the mechanism is likely distinct from 
that described in our study. Thus, Kerkar et al. [46] found 
that CD8+ T cells deficient in functional IL-12 receptor 
still exhibited improved anti-tumor ability when geneti-
cally modified to express IL-12. These authors concluded 
that IL-12 was not acting on the donor T cells, and instead, 
IL-12 was modifying the myeloid cell compartment to 
facilitate the function of the donor T cells. In contrast, in 
our studies the impact of IL-12 is only on the donor T cells 
and IL-12 is removed prior to T cell infusion. Given the 
clinical toxicities that have been reported with IL-12, this 
methodological distinction is important.

In summary, we find that IL-12-conditioning of 
murine and human tumor-reactive CD8+ T cells can 
lead to a significant enhancement in function and anti-
tumor immunity. We also demonstrate for the first time 
that TCR-modified human T cells can be effectively 
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expanded with IL-12-conditioning to numbers sufficient 
for patient administration using a clinically relevant pro-
tocol. Our findings demonstrate a pathway for the safe 
clinical application of IL-12 which could have applica-
tion in tumor immunology and other domains of clinical 
immunology.
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