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Abstract Mass cytometry addresses the analytical chal-

lenges of polychromatic flow cytometry by using metal

atoms as tags rather than fluorophores and atomic mass

spectrometry as the detector rather than photon optics. The

many available enriched stable isotopes of the transition

elements can provide up to 100 distinguishable reporting

tags, which can be measured simultaneously because of the

essential independence of detection provided by the mass

spectrometer. We discuss the adaptation of traditional

inductively coupled plasma mass spectrometry to cytome-

try applications. We focus on the generation of cytometry-

compatible data and on approaches to unsupervised

multivariate clustering analysis. Finally, we provide a high-

level review of some recent benchmark reports that high-

light the potential for massively multi-parameter mass

cytometry.

Keywords Mass cytometry � Multivariate cluster

analysis � Hematopoiesis � Memory T cells �
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Introduction

Mass cytometry is a novel adaptation of atomic mass

spectrometry that enables uniquely high-dimensional flow

cytometry applications. It employs stable isotopes of the

transition elements as tags in the same manner that fluo-

rophores have been used, and ‘‘reads’’ these with a mass

spectrometer that has been developed for high-accuracy

elemental analysis and isotope ratio measurements.

The inductively coupled plasma mass spectrometer

(ICP-MS) has been the state-of-the-art tool for the deter-

mination of the elemental and isotopic composition of

matter almost from the time of its implementation [1] and

subsequent commercial launch in 1983. It has found

ubiquitous use in the determination of environmental

contamination by heavy (lead, uranium) or toxic (chro-

mium, aluminum, tin, antimony) metals, the analysis of

metals (arsenic, chromium, cadmium) in drinking water,

clinical assay of blood (for thallium, lead), the determi-

nation of neutron-capture isotopes in nuclear fuel materials,

and the detection of fast-effusing elements (lithium,

potassium, calcium) in semiconductor production. Impor-

tantly, it was realized early that ICP-MS was a powerful

means to independently measure the various isotopes of

elements, which is of profound significance in geology

(rubidium-strontium dating of rocks, prospecting and pro-

filing mineralization through fingerprint rare earth ele-

ments) and more recently in provenance determination of

rice, wines, juices, and fruits through determination of trace

element isotope ratios that are characteristic of local
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regions. Until very recently, this ‘‘flavor’’ of mass spec-

trometry has emphatically not been popularized in biologic

applications, simply because its protagonists are interested

in atomic composition, whereas the biologic analytical

community attends to the molecular composition and

interactions that drive the genesis of life and health.

However, the ability to simultaneously and exquisitely

resolve multiple isotopes, when these are configured to

report on biomarkers, is well suited to meet the multi-

parametric demands common in biologic applications.

For various reasons (including for internal standardiza-

tion of assays using isotope dilution mass spectrometry), a

wide variety of elements can be obtained in the form of

enriched isotopes. For example, samarium has six stable

isotopes, and neodymium has seven stable isotopes, all of

which are available in enriched form. The thirteen lantha-

nide elements are provided in at least 37 isotopes that have

non-redundantly unique masses. Figure 1 provides the mass

spectrum, recorded using the CyTOF� mass cytometer, of

thirty of these enriched isotopes. The ‘‘resolution,’’ fre-

quently defined as the full width at half maximum intensity

(FWHM), or at 10 or 1 % maximum, is not really the

analytical issue, because the isotopes of the same element

differ by a full atomic mass unit (or dalton, essentially the

mass of a neutron). Of more importance for the atomic mass

spectrometry community is the abundance sensitivity,

defined as the residual signal owing to a dominant isotope at

its neighbor (M ? 1 and M - 1) masses, which in some

respects emulates fluorescent overlap into neighboring

photomultiplier detector channels. However, because of the

importance of isotopic analysis over very large dynamic

range, ICP-MS instruments have been developed to have

exceedingly high (or low, depending on how you look at it)

abundance sensitivity, with conventional quadrupole-based

instruments having less than 1 part in 106 overlap

(0.0001 %) in the adjacent mass channels. For all intents

and purposes, this offers the potential for no equivalent need

for fluorescence-style compensation. What remains, in

some instances, is a correction for the purity, or rather the

amount of impurity isotopes, in the enriched isotope (typi-

cally less than 1 % with exceptions for isotopes of very low

natural abundance), a fraction that is determined at the time

of enrichment and is not affected by the assay and accord-

ingly does not require measurement at the time of analysis,

and a typically even lesser contribution for oxide ions

(M ? 16) that is determined by the ion-oxide bond strength

and the temperature of the plasma (ICP).

The ICP is a high-temperature plasma supported in a

flowing argon stream, about 7,000�K at the skin and

5,500�K in the core, and substantially ionized. Because it is

a toroidal plasma, sample can be injected along the axis,

whereupon it is heated by convection and radiation. Suffi-

ciently small particles (e.g., cells) are vaporized and

atomized as they flow through the plasma. These conditions

convey some essential and beneficial analytic characteris-

tics. Under local thermodynamic equilibrium conditions,

atoms having ionization potentials below about 9 eV (the

majority of the periodic table of the elements) are practi-

cally 100 % ionized. Accordingly, the ionization efficiency

is not significantly affected by the cellular matrix, the

sensitivities for all atoms that are similarly efficiently ion-

ized are similar, and the number of ions extracted from the

plasma are directly and quantitatively related to the number

of atoms introduced into the plasma—these form the basis

of quantitative elemental analysis.

In mass cytometry, cells are immunologically stained in

the familiar manner, except that the probes are tagged with

metal isotopes instead of fluorophores [2]. In order to

achieve sensitivities that are comparable to fluorophores,

about 100 atoms of a given isotope should be bound to each

antibody. This is conveniently achieved by constructing

monodisperse polymers containing 30 monomer units each

containing a pendant diethylenetriaminepentaacetic acid

(DTPA) chelator: DTPA binds 3? lanthanide ions with a

dissociation constant KD * 10-16 (recall that streptavi-

din–biotin has a KD * 10-15), so that the tag atoms are

essentially covalently bound and do not ‘‘cross talk’’ with

differentially tagged polymers. Each polymer terminates in

a thiol that reacts with a bismaleimide linker that similarly

binds the metal-chelated polymer (MCP) to the reduced

disulfides in the Fc region of an antibody. Typically, 4–5

such polymers will be linked to each antibody in order to

achieve the desired sensitivity [3].

Experimental

The present experiments used either straight-chain (‘‘X8’’)

polymers or third-generation dendritic (‘‘DN3’’) polymers,

both available as MAXPAR� reagents (DVS Sciences,
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Fig. 1 Mass spectrum of 30 enriched stable isotopes of the lantha-

nides, recorded for solution analysis at concentrations of approxi-

mately 20 ng/L (20 parts per trillion W/W) for each isotope
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Sunnyvale, CA, USA). Most recent results take advantage

of metal-conjugated antibodies that have become available.

Though the synthesis protocol has changed, the X8 poly-

mer is approximately similar in structure to that described

by Lou et al. [2]; the DN3 polymer is a derivative construct

that replaces the methacrylate backbone with a PAMAM-

core dendrimer (Dendritic Nanotechnologies, Midland, MI,

USA) that has been modified with DTPA chelators and the

maleimide linker. Generally, the same tagging construct is

used for all antibodies, since the DTPA chelator is equally

efficacious for all lanthanide isotopes: the difference in

probe is only which isotope is loaded into the polymer.

Large dimensional panels are constructed using both cell

surface and intracellular antibody probes: generally, an

antibody that generates a useful flow cytometry response is

also effective in mass cytometry. Because of the essential

independence of the detection channels, it is possible to

perform a single titration of all probes simultaneously, and

‘‘N - 1’’ assays are not required because of the lack of

fluorescence-like compensation.

Almost all experiments reported here used rhodium (Rh)

and iridium (Ir) metallo-intercalators to probe DNA (and

some RNA) [3–5]. Though the intercalators are not tight

binders, their pseudo-equilibrium distribution led them to

be originally adopted in order to provide information

regarding the amount of DNA [4]. However, today they

serve two other important functions in mass cytometry.

Because the intercalators are unable to penetrate the

membranes of live cells [4], the live sample can be probed

with the Rh intercalators, for which only the dead cells will

be labeled. Subsequently, the cells are fixed and perme-

abilized and stained with the Ir-intercalators, which will

then label all cells, and the data can be gated on Rh-neg-

ative cells to extract results only for live cells [3]. The Ir-

intercalator provides the additional benefit of being a uni-

versal probe (for DNA-containing cells) that appears at

high signal level and provides a convenient trigger for the

identification of single cell events (see following section on

‘‘Data generation’’).

A recent publication [6] reports that dead cells bind

cisplatin more readily than live cells during short exposure

to the drug. It is shown that a pulse treatment (ca. 1 min at

25 lM) allows distinction of dead cells by the presence of

Pt. Since the Pt appears to be covalently bound to the cell,

it is reported that the cisplatin method is more resilient to

stringent washing of samples.

Results reported and reviewed here were obtained at

various installations of the CyTOF� mass cytometer (DVS

Sciences, Toronto, Canada). The original prototype of the

instrument has been described in some detail by Bandura

et al. [7]: the fundamental core of the instrument remains

similar to that description, one of the more significant

changes being to the cell introduction method which has

dispensed with the aerosol splitter providing an improve-

ment in cell injection efficiency to approximately 30 %. At

its heart, the mass cytometer is an ICP-MS instrument, but

it has been adapted specifically to analyze single cell sus-

pension-based samples common to traditional flow

cytometry. Once injected, the cells are captured in an argon

gas stream, where they are largely stripped of buffer.

Subsequently transported into the central core of the

plasma, the cells are rapidly and sequentially vaporized,

atomized, and ionized. The cell is then represented by a

cloud of ions (see ‘‘Data generation’’ section) that is

extracted through the vacuum interface into the ion optics

section of the mass cytometer. The ion current extracted

from the ICP is enormous: approximately 1.5 mA passes

through the vacuum interface, and this generates a self-

defocusing space-charge-limited field [8, 9]. The majority

of these ions are low mass, associated with argon, and since

the mass cytometer is required only to determine the ions

that are used as cell probes, significant advantage is had

by maintaining hard extraction conditions while removing

the ions below 100 dalton: the result is a less dense ion

beam enriched in the masses that include the 100–200

dalton region and that can be manipulated and focused

more efficiently. This pre-selection allows the ICP-MS to

be configured with a time of flight (TOF) mass analyzer,

which is normally less popular for atomic analysis because

of the compromises required to deal with the effects of

space charge in the TOF accelerator and flight tube.

Removing the space charge throttle earlier in the ion optics

allows advantage to be taken of the high spectral scan rate

of the TOF, which will be seen to be critical for cell

analysis. The transmitted ions are then focused into a sheet

beam in the accelerator, whereupon they are pulsed through

a fixed potential: under the same acceleration potential, low

mass ions fly faster than high mass, and so the ions arrive at

the detector in a manner such that their times of flight have

a (square-root) dependence on ion mass. Resolution of the

mass channels is thus a function of the ‘‘purity’’ of the ion

energies and in this configuration can be established to

provide abundance sensitivity sufficient to resolve adjacent

mass channels by approximately 3 orders of magnitude. All

the data are collected on a single detector, digitized at

1 Gs/s, and approximately 3,200 single-byte one-nanosec-

ond samples are recorded for each spectrum. Each mass

window is about 25 one-nanosecond windows wide. The

flight time of the slowest atomic ions is approximately

13 ls, and so the TOF generates 76,800 spectra per sec-

ond—and each spectrum is separately processed. Ulti-

mately, as described below, the data are integrated and

stored as an *.fcs file (each cell associated with n integrated

signals, where n is the number of parameters requested in

the experiment) that can be ported into third-party flow

cytometry analysis software.
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Data generation

Each cell passes through the plasma (from injector to

vacuum interface) in about 0.7 ms [10]. The cell exits the

injector at a velocity of about 5 m/s and accelerates as it

passes through the hot plasma to about 10 m/s. During that

transit, the cell is vaporized, atomized, and ionized. Fol-

lowing ionization, the ‘‘cloud of ions’’ expands in a dif-

fusion-limited manner. At the point of extraction into the

vacuum interface, the cloud of ions for a single cell is

approximately 2 mm diameter. Importantly, since the

plasma is diffusion limited, the size of this cloud of ions is

essentially independent of the size of the original (intact)

cell: a 10-lm-diameter cell generates a 2 mm cloud of ions

as does a 70-lm-diameter cell. At 10 m/s, this (essentially

spherical) cloud of ions passes through the plane of the

sampling aperture in about 200 ls: assuming that the

temporal profile is maintained through the accelerator of

the TOF where the transient signal is segmented into 13 ls

pulses, this is essentially carried through the detector, and a

single cell event is characterized by a transient signal of

pseudo-Gaussian shape with a FWHM (full width at half

maximum) of some 200 ls. Two implications arise from

this. First, with stochastic cell introduction, the maximum

cell throughput in order to minimize coincident arrival of

ions from separate cell events is of the order of 1,000 cells

per second. Second, the temporal evolution of the signal

can be used to distinguish single cell events (Gaussian,

200 ls FWHM) from duplex (concomitant) cell events

(bimodal, wider arrival time distribution) and cell fragment

events (anticipated to be more broadly spread in time, and

less regular).

Spectra are recorded at 13-ls intervals. Between cell

events, the spectra are largely blank (reflecting only the

metal content of the solution between cells, which may

contain metals associated with antibodies that have dis-

lodged from the cells—and therefore does not provide a

suitable ‘‘negative’’ background). When a cell event arrives

at the detector, a series of some 20–35 spectra reflect the

pseudo-Gaussian transient and contain all the metal ions

associated with the cell, including those metal isotopes that

were intentionally attached as probes (of antibodies, DNA

and viability indicators). The current version of the soft-

ware provides a real-time display of the first 3 ms of data

acquired each second, as an indicator of satisfactory ana-

lytical conditions. An example is provided in Fig. 2,

showing a screen capture during the analysis of a PBMC

sample stained with 27 metal-tagged antibodies. The dis-

play indicates a pixel each time an ion signal is recorded

and shows the masses along the X-axis and the sequential

spectra along the vertical axis. It is clear that the raw data

cluster in two dimensions: along the x-axis in mass of the

isotopes and along the y-axis in cell arrival events (e.g.,

each cell event is marked in about 20–35 sequential spectra

of 13 ls each).

Using the Ir-intercalators as an indicator (although any

single or combination of mass signals can be used), the two

Ir isotopes (191 and 193 dalton) rise and fall in concert, and

if their distribution is approximately Gaussian and 200 ls

FWHM (e.g., ‘‘cell length,’’ being the time for the signal to

rise and fall between 3 % full maximum limits, is about

450 ls) then the event is flagged as a single cell event.

Accordingly, the data in each mass window are integrated

in two dimensions over the ca. 25 one-nanosecond win-

dows of each mass spectrum and over the ca. 20–35 mass

spectra corresponding to the cell transient (‘‘cell length’’),

and a raw text file is written that includes the cell arrival

time information and the integrated signals for each isotope

indicated as used as a probe. This text file is then translated

into an *.fcs file, including any data manipulation that is

defined by the user (e.g., randomization of exact zero

counts so that the digital data emulate the more diffuse

distributions familiar in fluorescence cytometry).

The *.fcs file can be read by any flow cytometry soft-

ware package. Typically, such software allows interroga-

tion of the data through a set of orthogonal bivariate dot

plots that display the correlation of 2 parameters for each

cell. A typical four-parameter flow experiment can be

represented by 6 such bivariate plots. A 32-parameter mass

cytometry data set is represented by 496 bivariate plots,

each of which can be gated and expanded in the remaining

30 dimensions. This approach is best described as a

supervised assay that is hypothesis testing, since the user

selects the gates and essentially asks the software a ques-

tion that queries the data based on the user’s understanding

of the biologic system. It is evident that, while generally

accepted and quite effective for small dimensional data

sets, the approach fails to glean the available from a large

dimensional set. Accordingly, it seems that a propitious

approach to mass cytometry data will include unsupervised

‘‘gating’’ that can best be regarded as hypothesis generat-

ing. Examples that seem effective to date are frequently

based on networking algorithms.

Data analysis with demonstrative applications

The basis of one such approach to unsupervised assay lies

in the display of multidimensional data in a polar plot that

represents the intensity of each parameter by its distance

from the axis of a circular plot. Figure 3 is such a display,

presenting the data for 3 distinct samples in 20 parameters.

The polar plot can be drawn as an integral for each sample,

as here, or integrated over a gated population or a cluster or

even for a single cell. The significant point is that in suf-

ficiently multidimensional space, each cell ‘‘type’’ is
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Fig. 2 Computer screen shot during mass cytometric analysis of

adult PBMC. These cells were probed with antibodies against 27

surface antigens. Each antibody was labeled with a different stable

isotope (given in the table at the top of the figure: the antigen is

indicated, such as CD2, followed by the isotope used to tag the

corresponding antibody, 175Lu). In addition, cellular DNA was

labeled with an Ir-intercalator (used as a trigger for cell recognition)

KG1a FAB M0

THP-1 FAB M5

BCLQ Patient M5a 147Sm
145Nd

142Nd

174Yb

146Nd

139La

170Er

141Pr

165Ho
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169Tm
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Fig. 3 Radial polar plot display

of 20-parameter data for two

cell lines (KG1a and THP-1)

and a patient bone marrow

sample (BCLQ), representative

of different acute myeloid

leukemia subtypes. Intensity is

displayed in logarithmic form as

the distance from the axis of the

plot. In this instance, the plots
provide the marker signals

averaged over a cell population:

similar displays can be

generated for gated populations

or even for individual cells
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distinguished from each other by its biomarker fingerprint:

the more parameters that are used (regardless of whether

they are positive, dim, or negative) the more confidently

the fingerprint points to a specific phenotype or state.

The ability to distinguish cells by their fingerprints

commends the application of bioinformatics for multi-

parametric cytometry data sets, and specifically data clus-

tering to identify the cell subpopulations in a sample [11].

Clustering (or computer-assisted gating), particularly in the

instance that compensation is not required, should allow

populations to be more readily distinguished (better

defined, less biased, boundaries), and the ability to deter-

mine many parameters simultaneously suggests that

unsuspected or rare populations might be more readily

recognized. The latter speaks to the advantage of unsu-

pervised assay. One such approach that has found popu-

larity in other multivariate applications is the unsupervised

neural network (UNN) [12, for example]. A discussion of

the various algorithmic approaches to UNN is beyond the

scope of this work, but in general clusters are identified by

their proximity in n-dimensional space to their most similar

characteristics (boundary of the cluster) and by their dis-

tance from other clusters of dissimilar character using a

variety of distance or similarity measures. The input to the

UNN (or training) includes the raw data, and the number of

distinguishable clusters that are desired, dimensionality,

and type of similarity measure; biologic presumption, and

even information regarding the sample, is not required. A

trained UNN includes the boundary conditions that split the

multi-parametric space into trained clusters spaces. The

trained UNN recognizes this underlying structure in other

samples belonging to the same set.

Unsupervised neural networks have two principal

applications (1) to recognize a cell population that is

included in a training set and (2) to distinguish n clusters in

a sample, such clusters being subsequently subject to

Fig. 4 Unsupervised neural network analysis of Ramos B cells

contaminated with 0.1 % PBMC from a leukemia patient. a Two-

dimensional dot plot (CD45 vs. CD20) for the entire sample. These

data were subjected to a UNN requesting identification of 15

distinguishable clusters of cell, 5 of which are shown in b. Radial

polar plots are shown for these 5 clusters in d: 14 of the 15 clusters

were similar and were distinguished as ‘‘different clusters’’ princi-

pally on the basis of intensity. A 15th cluster corresponding to the

gated region in a was identified on the basis of its polar plot shown in

c as the cells corresponding to the leukemia patient
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analyst identification. One example of use of a UNN to

identify an unanticipated cell population is shown in Fig. 4.

In this instance, a Ramos B cell sample was contaminated

with 0.1 % of a leukemia patient’s blast cells. The

20-parameter (plus intercalators) data were submitted to

UNN for analysis without provision of any sample infor-

mation other than the raw per cell data. The UNN was asked

to identify 15 clusters or which 14 were characteristic of the

B cell fingerprint: because the fingerprint signatures were so

similar, the clusters in this case were differentiated on their

overall intensities. However, a cluster defined by a distinct

fingerprint was distinguished and associated with 0.1 % of

the cell population, and furthermore, the fingerprint asso-

ciates that cluster with the patient whose cells were spiked

into the sample. The example points to a potential clinical

application of determining rare cell populations in a com-

plex matrix, and identifying that population once the UNN

is trained on multiple representative samples.

There are a variety of other clustering approaches

that have been applied to flow cytometry: for example,

SamSpectral [13], Flowclust [14], and FLAME [15]. Very

recently, this suite of algorithms has been complemented to

discern cellular hierarchy via RchyOptimyx [16] and

applied to mass cytometric data. It is shown that this latest

approach, based on graph theory and related optimization

algorithms, is able to generate a minimal but sufficient top-

down relationship of cell populations that are connected

using parent–child relationships.

We close out this discussion of data analysis with three

quite distinct application-specific analytical approaches

that have been reported in the recent literature.

In their groundbreaking paper using mass cytometry

to characterize signaling responses, Bendall et al. [17]

simultaneously combined 31 markers to elucidate the func-

tional response of the entire human hematopoietic system to

immune modulators and small molecule drug inhibitors. In

Fig. 5 Bone marrow samples were analyzed for 31 proteins, of which

13 were cell surface markers used for subpopulation analysis, and 18

were intracellular signaling molecules used to measure functional

response to stimulation and inhibition. The data presented here focus

on the 13 cell differentiation markers. The data were subjected to

unsupervised cluster analysis (SPADE), which identifies distinct

phenotype populations and determines the relationships based on

nearest neighbor populations (see [17, 18] for detailed information).

a Highlights the major steps in defining the SPADE hierarchical tree.

The outcome of the analysis is the ‘‘tree’’ shown in b which is

interpreted to reflect immunological populations based on the marker

distributions, a subset of which are shown in c and d. The ‘‘tree’’ that

is formed is reminiscent of the hierarchical progression that is

consistent with models for hematopoiesis. From Bendall et al. [17].

Reprinted with permission from AAAS
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their model system, human bone marrow samples were

incubated with the various stimuli in the presence or absence

of small molecule signaling inhibitors. Each sample was then

simultaneously probed with 13 immunophenotyping and

either 18 additional subset-specific surface markers or 18

functional markers (including 16 phospho-specific signaling

markers) and analyzed on the CyTOF� instrument. The sur-

face markers were used to generate an immunophenotyping

tree with the SPADE algorithm [18] (as implemented in

Cytobank software), which groups cells of identical pheno-

type into clusters, connected to each other based on similarity

in a tree structure (Fig. 5). Within the tree, all the traditional

bone marrow cell types were identified by backgating known

subset immunophenotypes, which allowed grouping of the

clusters as indicated. This analysis greatly increases the

understanding of cell types and their relationship to each other

within normal bone marrow, and enables presentation of the

bone marrow as a continuum of phenotypes. The paper goes

on to show the impact of stimuli and small molecule inhibitors

on signaling pathways for each of the bone marrow subsets.

For example, BCR activates PLCc2 specifically in B cells,

while pervanadate induces PLCc2 phosphorylation in most

subsets, and activation by both immunomodulators is abol-

ished with dasatinib. Alternatively, IL7 specifically induces

STAT5 activation in T cells, while pervanadate acts as a pan-

subset STAT5 activator. Dasatinib abolishes PVO4-induced

STAT5 activation in all subsets except plasmacytoid den-

dritic cells, but has no impact on IL7 stimulation. These data

Fig. 6 Major T cell clusters were determined using metal-encoded

tetramer probes and examined using 25 metal-labeled antibodies

against cell differentiation and signaling molecules. The data are

displayed in a as 3D PCA plots constructed from the 25 antibody

response signals, principally distinguishing differentiation state,

memory segregation, and memory status (see [19] for details).

Phenotypic and functional capacity progression are displayed in b and

c by expansion along the PC2 (memory progression) axis. Reprinted

from Newell et al. [19] with permission from Elsevier
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demonstrate that the effects of inhibitors are both cell type-

specific and stimulation-specific. This information is criti-

cally important for understanding the expected drug efficacy

in different disease states and/or treatment regimens, and

CyTOF� instrument provides the multi-parametric dimen-

sionality to attain this detailed system information.

Using a different analytical approach, Newell et al. [19]

used 32 parameter mass cytometry data to uniquely char-

acterize the functional and phenotypic diversity virus-spe-

cific CD8? memory cells within human peripheral blood.

Sixteen immunophenotyping markers and 9 functional

markers (including chemokines, cytokines and cytotoxic

granule markers) were combined using principal compo-

nent analysis (PCA) to cluster cells based on phenotypic

and functional characteristics (Fig. 6). The composition of

each major cluster was determined by displaying naı̈ve

(green) and memory (central (Tcm), yellow; effector

(Tem), blue; short-lived effector (Tslec), red) subpopula-

tions gated by known surface marker phenotype. Doing so

revealed that PC1 primarily discriminates naı̈ve from

memory cells, while PC2 differentiates memory status.

Following the expression of memory phenotypic and

functional markers along the PC2 axis shows progressive

gain in markers associated with effector memory cells

(granzyme B and CD107) and loss in markers (CD62L,

CCR7, and IL2) associated with central memory cells

(Fig. 6b, c). Further studies in the paper showed that

hundreds of functionally distinct subpopulations, as defined

by the array of expressed cytokines, chemokines, and

granule components, could be discriminated upon stimu-

lation, revealing a previously unappreciated heterogeneity

of memory cell diversity. Additional studies utilized metal-

tagged peptide-MHC complexes to identify and function-

ally characterize the immune response of virus-specific

memory cells (data not shown, see paper). This approach

revealed that CMV memory displays a short-lived effector

memory bias, consistent with the chronic and highly

immunogenic nature of CMV infection, while Flu memory

displays a more central memory bias, consistent with the

episodic nature of Flu infection and the fact that none of

the donors were ill at the time of donation. Each virus-

specific niche favored different combinations of function-

ally distinct subpopulations. In all, the highly multi-para-

metric nature of mass cytometry data display a continuous

Fig. 7 Exemplary data from an assay of PBMC using 9 probes to

distinguish 14 immunological populations, 14 probes against 14

intracellular signaling molecules, and 7 bar-coding elements to

multiplex 96 samples that were probed with 8 concentrations each

of 12 stimulants (96 samples) and inhibited with each of 27 inhibitors.

In this instance, the data are presented for the population identified as

CD14? HLA-DRmid showing the signaling responses for the 14

signaling molecules (arrayed as in the upper left figure) to the 12

stimulants indicated at the left (one per row) and inhibitors indicated

in each column. The size and color of each spot indicates the IC50

and percent inhibition observed in each instance (see [20] for details).

For example, in this instance, in the presence of ruxolitinib, inhibition

of phosphorylation of STAT1 (IC50 = 23 nM, 93 % inhibition) and

STAT3 (IC50 = 4 nM, 147 % inhibition) was observed. Reprinted by

permission from Macmillan Publishers Ltd.: Bodenmiller et al. [20]
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nature of CD8? T cell differentiation with a high degree of

functional diversity, revealing a remarkable degree of

flexibility in the immune response to viral infection.

A recent paper from Bodenmiller et al. [20] that com-

prehensively map the signaling responses of human PBMC

takes multiplexing of multi-parameter mass cytometry data

to a new plane. In this report, the impact of 27 different

drugs on 14 signaling pathways in 14 PBMC subpopula-

tions was measured with mass cytometry. Each inhibitor

profile consisted of an 8-point dose response of inhibitor for

each of 12 stimuli and thus occupied an entire 96-well plate.

Because of the scale of this experiment, mass-tag cellular

barcoding (MCB) was employed that allowed combination

of all 96 wells of an inhibitor plate into a single tube for

subsequent sample processing, data collection, and decod-

ing for individual sample analysis. MCB involves labeling

each sample with a unique binary (present/not present)

array of isotope tags (linked to thiol-reactive moieties that

link to surface-exposed cysteines) prior to combining

samples for processing and analysis. Seven isotope tags

allow unique barcoding of 27 samples and were thus used in

this experiment to encode each inhibitor plate. MCB not

only dramatically increases sample throughput, but also

ensures uniform sample labeling and data collection, and

reduces experimental cost by requiring less staining

reagents. Following MCB, samples were simultaneously

probed with 9 immunophenotyping markers to identify 14

PBMC subpopulations and 14 phospho-specific markers to

measure activation state of signaling pathways. This

experiment generated an enormous database of greater than

60,000 IC50 values (27 inhibitors on 12 stimuli for each of

14 signaling pathways in 14 subpopulations) that enables

context-specific classification of inhibitor function and

cellular response. One can visualize and query this database

using a signaling response map (Fig. 7). For each signaling

pathway (indicated by spatial address), the IC50 (indicated

by size of bubble) and percent inhibition (heat map color)

for each of the 27 inhibitors (columns 2–28) on the 12

stimuli (rows 1–12) are shown for the indicated monocyte

subpopulation. Looking at all the data, it was clear that

inhibitor activity was cell type and context specific. Fur-

thermore, PCA-based compound classification suggested

novel inhibitor mechanisms of action. The large database of

cellular signaling states could be queried to influence pre-

clinical development, potentially enabling predictive

selection of drugs for defined disease states.

Conclusions

Mass cytometry is a specific implementation of inductively

coupled plasma mass spectrometry (ICP-MS, atomic mass

spectrometry) that enables an unprecedented degree of

multi-parametric single cell analysis and provides an

opportunity for absolute quantification. Though funda-

mentally a different technology, mass cytometry has

adapted key attributes common to conventional flow

cytometry that make it attractive for subpopulation and rare

event analysis. Mass cytometry data are compatible with

conventional cytometry analysis approaches, which can

largely be categorized as supervised and hypothesis-test-

ing, and which are most appropriate for low-dimensional

data. However, high dimensionality data analysis benefits

from unsupervised approaches and naturally lends itself to

hypothesis-generating interrogation. UNNs, PCA, and

spanning tree progression analysis (SPADE) have been

successfully applied to 30? dimensional mass cytometry

data and serve as benchmarks for further developments that

are evidently in process. The dimensionality, not to men-

tion sample throughput, is dramatically increased with the

introduction of metal encoding, which enables multiplexed

multi-parameter cellular analysis.
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