
FOCUSSED RESEARCH REVIEW

FccRIIB controls the potency of agonistic anti-TNFR mAbs

Ann L. White • H. T. Claude Chan • Ruth R. French •

Stephen A. Beers • Mark S. Cragg • Peter W. M. Johnson •

Martin J. Glennie

Received: 19 October 2012 / Accepted: 21 January 2013 / Published online: 31 March 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract Isotype plays a crucial role in therapeutic

monoclonal antibody (mAb) function, mediated in large

part through differences in Fcc receptor (FccR) interaction.

Monoclonal Abs such as rituximab and alemtuzumab,

which bind target cells directly, are designed for efficient

recruitment of immune effector cells through their activa-

tory FccR engagement to mediate maximal target cell

killing. In this setting, binding to inhibitory FccRIIB is

thought to inhibit function, making mAbs with high acti-

vatory/inhibitory (A/I) FccR binding ratios, such as mouse

IgG2a and human IgG1, the first choice for this role. In

contrast, exciting new data show that agonistic mAbs

directed against the tumour necrosis factor receptor

superfamily member CD40 require interaction with

FccRIIB for in vivo function. Such ligation activates

antigen-presenting cells, promotes myeloid and CTL

responses and potentially stimulates effective anti-cancer

immunity. It appears that the role of FccRIIB is to mediate

mAb hyper-crosslinking to allow CD40 downstream

intracellular signalling. Previous work has shown that

mAbs directed against other TNFR family members, Fas

and death receptor 5 and probably death receptor 4, also

require FccRIIB hyper-crosslinking to promote target cell

apoptosis, suggesting a common mechanism of action. In

mouse models, IgG1 is optimal for these agents as it binds

to FccRIIB with tenfold higher affinity than IgG2a and

hence has a relatively low A:I FccR binding ratio. In

contrast, human IgG isotypes have a universally low

affinity for FccRIIB, but in the case of human IgG1,

engineering the Fc to increase its affinity for FccRIIB can

potentially overcome this problem. Thus, modifying the

A/I binding ratio of human IgG Fc can be used to optimise

different types of therapeutic activity by enhancing cyto-

toxic or hyper-crosslinking function.
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Immunomodulatory anti-cancer mAbs

Immunomodulatory mAbs are a novel class of anti-cancer

agent designed to eradicate tumour by stimulating anti-

cancer immunity and overcoming tumour-induced immune

suppression [1–3]. They fall into two groups with distinct

mechanisms of action: (1) immunostimulatory mAbs that

bind agonistically to co-stimulatory receptors (e.g. CD40,

CD27, 4-1BB, OX40) on antigen-presenting cells and T

cells to stimulate immunity and (2) immune ‘checkpoint’

blockers that inhibit key receptors (e.g. CTLA4, PD1)

involved in regulating immune responses and mediating

tolerance. Interest in immunomodulatory agents has been

galvanised by recent studies showing clinical benefit,

including prolonged survival, in difficult to treat malig-

nancies. A recent study of 21 patients with non-resectable

metastatic pancreatic adenocarcinoma (PDA) showed

increased progression-free and overall survival in response

to the agonistic anti-CD40 mAb, CP870,893 [4]. In a
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larger, phase III trial, the anti-CTLA4 mAb, ipilimumab

(Yervoy, MDX-010) was the first agent ever to signifi-

cantly improve survival in patients with metastatic mela-

noma [5] and has since been approved for the treatment of

this disease. A more recent phase II trial with the anti-PD1

mAb, BMS-936558 (MDX-1106, ONO-4538), produced

impressive objective responses of 18–28 % in patients with

late stage skin, lung or kidney cancer [6], while around

13 % of a similar group responded to a mAb (BMS936959)

directed against a ligand for this receptor, PD-L1 [7].

Importantly, consistent with their proposed mechanisms of

action, clinical benefit may be associated with CD8 T cell

responses against the cancer antigen NY-ESO-1 in patients

treated with ipilimumab [8] and anti-PD1 therapy appeared

effective only in patients whose tumours expressed PD-L1

[6]. Unfortunately, only a proportion of patients respond to

these treatments and, due to their immune stimulation, side

effects related to cytokine-release syndrome and inflam-

mation are frequently observed [5–7]. At this time, the

relationship between immune-related adverse events and

patient response is not clear. A priority is to optimise

activity while reducing drug associated toxicity. One

aspect of drug design that may influence these parameters

and which is the subject of our current work, is mAb

isotype.

Role of isotype and FccR engagement in therapeutic

mAb activity

The relationship between mAb isotype and therapeutic

activity is complex and depends upon events downstream

of antibody-antigen interaction. Its effect has been most

thoroughly investigated for ‘direct-binding’ anti-cancer

mAbs. These include agents such as rituximab [9], trast-

uzumab [10] and alemtuzumab [11] that have been used

successfully to treat a variety of malignancies for many

years [12–14] and act by binding directly to the cancer cell

target then recruiting the immune system to mediate cancer

cell killing. An important aspect of this activity is the

interaction of the mAb Fc with Fcc receptors (FccR) on

immune effector cells, such as macrophages and NK cells.

The FccR family has a number of members, most of

which are activatory (FccR I, IIA, IIC, IIIA, IIIB in

humans; I, III and IV in mice) and one of which is inhib-

itory (FccRIIB in humans, FccRII in mice, hereafter

referred to as FccRIIB) [15]. Experiments in mouse models

[16–20] as well as human genetic studies [21–24] reveal a

vital role for activatory FccR in the therapeutic effects of

direct-binding mAbs. Engagement of the cancer-bound

mAb by these activatory FccR on immune effector cells

promotes cell killing via antibody-dependent cell-mediated

cytotoxicity (ADCC) and antibody-dependent cellular

phagocytosis (ADCP). In contrast, interaction with the

inhibitory FccRIIB is detrimental to mAb activity [20, 25,

26]. Antibody isotypes that have a high activatory/inhibi-

tory FccR (A/I) binding ratio (IgG2a in mice, IgG1 in

humans) are optimal for activity and those with a low A/I

ratio (mouse IgG1) are much less active [20]. Indeed, much

effort has gone in to developing reagents with enhanced

A/I ratios to improve drug potency [27].

For direct-binding anti-cancer mAbs, there is thus a

clear relationship between mAb isotype and therapeutic

activity that is determined through differences in FccR

engagement. For immunomodulatory mAbs, however, the

role of the Fc region in activity and the influence that

isotype may have on this, is much less explored. We have

begun to investigate this issue in mouse models focussing

on immunostimulatory anti-CD40 mAbs.

Anti-CD40 as a cancer therapeutic

CD40 is a tumour necrosis factor receptor (TNFR) super-

family member expressed on antigen-presenting cells

(APC), such as B cells, macrophages and dendritic cells

(DC), as well as many non-immune cells and a wide range

of tumours [28–30]. Interaction of CD40 with its trimeric

ligand on activated T cells results in APC activation,

required for the induction of adaptive immunity [28, 29].

Reagents targeting this molecule have been investigated as

cancer therapeutics for more than 10 years and include

both mAbs and CD40 ligand [31, 32]. In pre-clinical

models, rat anti-mouse CD40 mAbs show marked thera-

peutic activity in the treatment of CD40 positive B cell

lymphomas as well as certain CD40 negative tumours [31,

33, 34]. A number of anti- human CD40 mAbs (CP-

870,893 [35], SGN-40 [36], HCD122 [32, 37], ch5D12[38]

and ChiLob7-4 [39]) have been investigated in phase I/II

trials. These reagents show diverse activities ranging from

antagonist (HCD122, ch5D12) to strong agonist (CP-

870,893) [32]. Promising clinical data have emerged,

reviewed in [32]. Of particular note is the recent study with

the highly agonistic CP-870,893 in PDA (discussed

above). Anti-CD40 mAbs cause appreciable, but manage-

able, immune-related adverse events related to cytokine-

release. These appear to be related to the level of agonistic

activity as the maximum tolerated dose for CP-870,893

(0.2 mg/kg [35]) is much lower than that of the less ago-

nistic mAbs (ChiLob 7–4 tenfold higher [39], SGN40

12 mg/kg [40]). In the light of such encouraging clinical

data the issue of whether agonism and toxicity can be

uncoupled, the mechanisms and cell types involved in

mediating therapeutic effects, and the influence of mAb

isotype on these parameters are crucial questions to

address.
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Role of isotype in anti-CD40 activity

To address the role of isotype in anti-CD40 activity, we

engineered the epitope binding (variable) regions of the rat

anti-mouse CD40 mAb, 3/23 [41], onto mouse IgG1 (m1)

or mouse IgG2a (m2a) constant regions [42]. These iso-

types were chosen as previous studies on anti-CD20 mAbs

had shown that the contrasting low and high A/I FccR

binding ratios of m1 and m2a, respectively, dictated very

different in vivo activities [16]. Exchange of constant

regions did not influence binding of the 3/23 mAbs to

CD40, and both mAbs retained biological activity as

assessed by increased B cell survival in vitro and B cell

redistribution in vivo [42].

However, 3/23 m1 and m2a demonstrated profound

differences in immunostimulatory activity. When injected

into mice together with the model antigens ovalbumin

(OVA) or 4-hydroxy-3-nitrophenyl (NP)-OVA, 3/23 m1

promoted a dramatic increase in OVA- and NP-specific Ab

responses (Fig. 1a), and OVA-specific CD4 [42] and CD8

T cell stimulation (Fig. 1b). Importantly, both primary and

secondary CD8 T cell responses were enhanced consistent

with the establishment of increased immune memory

(Fig. 1b). In contrast, 3/23 m2a had no stimulatory effect

on either humoral or cell-mediated immunity, observations

that were not explained by a reduced half life (data not

shown). The contrasting activities of m1 and m2a anti-

CD40 mAbs in these experiments diametrically oppose

those of anti-CD20 mAbs and suggest very different roles

for FccR in the activity of these agents.

To examine the role of FccR in anti-CD40 activity,

FccR-/- mice were used [42]. Loss of FccRIIB prevented

3/23 m1 from increasing both anti-OVA Ab responses [42]

and CD8 T cell responses (Fig. 1b). In contrast, loss of ac-

tivatory FccR had no effect on immunostimulatory activity

[42]. FccRIIB was similarly required for anti-CD40 medi-

ated therapy in the mouse B cell lymphoma model, BCL1

(manuscript in preparation). Similar results were obtained by

Li and Ravetch [43], who showed that in FccRIIB-/- mice

the anti-mouse CD40 mAb IC10 was unable to stimulate an

immune response to DC-targeted OVA and failed to show

therapeutic activity in three different cancer models. The

requirement for FccRIIB interaction was surprising as this

receptor usually plays an inhibitory role in the immune

system [44]. It also directly contrasts requirements for direct-

binding anti-cancer mAbs where interaction with FccRIIB is

detrimental for activity [20, 25, 26].

FccRIIB and mAb crosslinking

To understand how inhibitory FccRIIB may promote

immune stimulation, we established an in vitro assay where

anti-CD40 agonistic activity was measured through its

ability to induce proliferation of isolated B cells. Consis-

tent with the in vivo data, while 3/23 m1 but not m2a could

stimulate division of FccRIIB?/? B cells, neither was

effective on FccRIIB-/- B cells [42] (Fig. 2a). In contrast,

knockout of the adaptor molecules myeloid differentiation

protein 88 (MyD88) and TIR-domain-containing adapter-

inducing interferon-b (TRIF) did not inhibit 3/23 m1

activity (Fig. 2b), confirming that neither toll-like receptor

(TLR) signalling nor contamination with TLR ligands was

responsible for its stimulatory effect [45]. Further in vitro

experiments suggested that the role of FccRIIB was in anti-

CD40 crosslinking. Thus, (1) when immobilised on plastic

3/23 m1 and m2a became equally agonistic [42], (2)

signalling-defective (e.g. cytoplasmic tail deleted) forms

of FccRIIB promoted B cell activation in vitro [42], (3)
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Fig. 1 Role of isotype and FccRIIB in anti-CD40 activity. a C57Bl/6

mice were immunised i.v. with 100 lg OVA (left) or OVA-NP (right)
plus 100 lg of the indicated 3/23 or control (C) mAbs. Serum anti-

OVA and anti-NP titres were determined 14 days later. b OVA-

specific (OTI) CD8 T cells were transferred into wild type (WT) or

FccRIIB-/- mice as indicated and the mice immunised as above.

Levels of circulating OTI cells were determined 5 days later (primary

response and right panel) or on day 60 after boosting with 100 lg

SIINFEKL peptide on day 52 (memory response, centre) and are

expressed as a percentage of circulating CD8? lymphocytes.

Methods were as described [42]
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co-culture of FccRIIB-/- and CD40-/- B cells allowed

proliferation only of the FccRIIB-/- (i.e. CD40 positive)

cells in the presence of 3/23 m1 [42], and (4) crosslinking

of 3/23 m2a with rabbit anti-mouse Fc polyclonal Ab

allowed 3/23 m2a to stimulate B cell proliferation in vitro

(Fig. 2c).

The fact that co-culture with CD40-/- (FccRIIB?/?)

B cells allowed 3/23 m1 to promote proliferation of

FccRIIB-/- (CD40?/?) B cells demonstrated that FccRIIB

did not need to reside on the same cell as CD40 for activity.

Further in vivo experiments suggested that in fact it was

necessary for FccRIIB to be present on an adjacent cell

(Fig. 2d). Thus, while both WT and FccRIIB-/- CFSE-

labelled B cells transferred into WT mice proliferated in

response to 3/23 m1, neither proliferated when transferred

into FccRIIB-/- mice (Fig. 2d). A similar FccR cross-

linking mechanism has been demonstrated for mAbs

directed against three other TNFRs, Fas [46], death

receptor 4 (DR4) and DR5 [47, 48]. We are currently

investigating whether crosslinking also is required for anti-

CD40 mediated activation of DC [42].

Role of FccR in mAb crosslinking

and immunostimulatory activity

In the light of the requirement for FccRIIB in anti-CD40

agonistic activity, the difference in immunostimulatory

function of 3/23 m1 and m2a can be explained by the

approximately tenfold difference in affinity of these isotypes

for the inhibitory receptor [42, 49]. However, m2a binds to

both FccRI and IV with much higher affinity than m1 does to

FccRIIB [49], and indeed cells expressing high levels of

these receptors can mediate 3/23 m2a crosslinking in vitro

[42]. This suggests that the bioavailability of FccRIIB

in vivo, rather than an intrinsic receptor property, determines
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Fig. 2 FccRIIB increases anti-CD40 activity through mAb cross-

linking. a and b Splenic B cells from WT (solid lines) and

FccRIIB-/- (a) or MyD88-/-/TRIF-/- (b) mice (dashed lines) were

incubated with the indicated concentrations of 3/23 m1, m2a or

control mAbs and proliferation measured by 3H thymidine incorpo-

ration on day 5. c 3/23 m1 or m2a, or m2a crosslinked with rabbit

anti-mouse Fc (X-linked), were incubated at 1 lg/ml with WT B cells

and proliferation measured as in a and b. d CFSE-labelled WT

or FccRIIB-/- B cells were transferred into WT or FccRIIB-/-

recipient mice as indicated (D = donor, R-recipient). Recipient mice

were then injected with 100 lg of 3/23 m1 or isotype control mAb as

indicated. B cell proliferation was visualised as CFSE dilution by flow

cytometry 5 days later. Representative plots from one isotype control

and two 3/23 m1 samples are shown. Methods were as described [42]
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its dominant role in anti-CD40 activity. Although CD40 is

widely expressed, it is likely that APC (DC, B cells, mac-

rophages) are the most important targets. While DC and

macrophages express both activatory and inhibitory FccR, B

cells express only FccRIIB [15]. It is tempting to speculate a

predominant role for this cell type in mediating anti-CD40

activity in vivo. B cells are well documented to present

antigen to CD8 T cells, and treatment with anti-CD40 can

enhance this role [50]. Additionally, prior depletion of B

cells from mice with anti-CD20 mAb drastically reduces the

ability of 3/23 m1 to stimulate anti-OVA CD8 T cells

(manuscript in preparation). Of note, when given subcuta-

neously (rather than intravenously as in previous experi-

ments), 3/23 m2a becomes immunostimulatory (unpublished

data). This may implicate different APC populations in

mediating the effects of anti-CD40 when the mAb is

administered via different routes and is significant as dif-

ferent types of immune response are required for therapy in

different settings. For example, macrophage activation is

required for therapy in PDA [4], whereas CD8 T cell acti-

vation is necessary in lymphoma models [31]. The role of

FccRIIB in anti-CD40 mediated macrophage activation and

therapy in PDA is as yet unknown, and the association

between mAb administration route and activity is specula-

tive. To address these issues, we are currently examining the

relationship between anti-CD40 isotype, route of adminis-

tration and therapy in a number of lymphoid and solid

tumours including PDA.

Another important point to consider, at least in a vac-

cination setting, is the form of antigen administered along

with anti-CD40. The studies detailed here, and in our

previous work [42], have utilised the protein antigen, OVA.

For other forms of vaccine, such as DNA or RNA, the

timing of administration of the anti-CD40 mAb may be

crucial due to differences in time taken for APC to acquire

and present antigen.

Immunostimulatory mAbs against other targets

If the isotype requirements of immunostimulatory mAbs

vary depending upon the location of their target expres-

sion, how does this affect mAbs that bind to co-stimu-

latory receptors on target cells, such as T cells, that do

not express FccR? Surprisingly, our own studies with a

variety of anti-mouse and anti-human mAbs targeted to a

number of co-stimulatory molecules (CD27, CD28,

4-1BB and OX40) show that m1 is consistently superior

to m2a when used both in vitro and in vivo (manuscript

in preparation). Further experiments in various FccR-/-

mice will be required to elucidate the role of FccRIIB

and other FccR in the activity of these mAbs. However,

the results suggest that FccRIIB interaction may be

universally important for immunostimulatory agents, at

least when given intravenously.

Studies with mAbs directed against other TNFRs (Fas,

DR4, DR5) also suggest a dominant role for FccRIIB in

mAb crosslinking [46–48, 51]. In each of these cases,

crosslinking initiates downstream signalling events leading

to target cell apoptosis. Studies of the anti-DR5 mAb,

drozitumab, show that, like anti-CD40, both activatory and

inhibitory FccR can mediate crosslinking in vitro leading

to the suggestion that tumour infiltrating leucocytes, that

express both activatory and inhibitory FccR, may perform

this function in vivo [48]. Interestingly, however, the effi-

cacy of drozitumab is significantly reduced in FccRIIB-/-

mice, suggesting a particularly important role for this

receptor. Indeed, a more recent study with the anti-mouse

DR5 mAb MD5.1 demonstrated that therapeutic activity in

a murine colon cancer model was entirely dependent on

FccRIIB crosslinking [47]. The picture is not entirely clear,

however, as earlier studies had shown that MD5.1 required

activatory FccR and not FccRIIB for therapeutic activity in

a breast cancer model [52]. Interpretation of these data may

be complicated by the involvement of opposing down-

stream events. In addition to stimulating apoptosis, anti-

DR5 can mediate cell death through recruitment of immune

effector cells and ADCC/ADCP. Individual tumours may

vary in their susceptibility to each of these killing mech-

anisms thus influencing the type of FccR interaction

required for efficacy. The ability to promote these different

downstream events may be mutually exclusive as interac-

tion with FccRIIB inhibits ADCC/ADCP [20, 25, 26].

Thus, in this case, the optimal isotype to use may need to

be determined empirically for each antibody target and

tumour type.

Future directions

How do we translate data obtained in mouse models into

optimised human therapeutics? For direct-binding mAbs,

mouse models have been extremely informative for pre-

dicting activity in humans and the roles that FccR play.

Thus, human IgG1 (h1) that has a similar FccR binding

profile and A/I ratio to m2a [49, 53] has been selected as

the optimal isotype for these reagents. However, there is no

equivalent human isotype to m1 in terms of FccR binding,

in fact association with FccRIIB is universally low for

human mAbs [42, 49, 53]. One way to overcome this may

be to engineer increased FccRIIB affinity into the mAb Fc.

Two h1 mutants, S267E and S267E/L328F, have been

described that increase binding affinity by approximately

30- and 430-fold, respectively [54]. When incorporated

into the anti-human CD40 mAb ChiLob 7–4 h1, these

changes markedly enhanced the ability to activate and
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cause proliferation of isolated human B cells (Fig. 3).

These amino acid changes also increased therapeutic

activity of anti-mouse CD40 and anti-mouse DR5 in

human FccRIIB transgenic animals [43, 47, 55]. One

concern, however, is that increasing mAb agonism will

also increase reagent toxicity, and it is still not clear

whether efficacy and toxicity can be separated or will

always go hand in hand. Studies in mice with anti-DR5

mAb suggest that, with careful dosing, agonistic activity

and toxicity can be uncoupled [47]. Further studies in

human CD40 transgenic mice may help address the optimal

isotype/mutant to use for anti-CD40 clinical reagents. It is

also likely that the ‘optimal’ agonistic potency of a par-

ticular reagent will vary for different applications with the

agonistic activity of an anti-CD40 mAb designed for local

application perhaps being higher than one for systemic use.

Despite a clear role for FccR in therapeutic activity for

some mAbs, other mechanisms must also be considered.

Factors such as epitope specificity [56, 57] and mode of

engagement [58] are documented to play important, perhaps

dominant, roles in mAb function for some reagents. It is also

possible that other, as yet undetermined, isotype-dependent

effects may be important. For example, it is interesting that

the most agonistic of the anti-CD40 mAbs in the clinic, CP-

870,893, is of the human IgG2 isotype (h2), whereas the

others are either h1 (mild agonists, antagonist) or IgG4 (h4)

(antagonist). These isotype differences might be coinciden-

tal and the differences in mAb performance may be deter-

mined solely by epitope specificity, however, we should not

overlook the possibility that certain isotypes might favour

crosslinking efficacy at the cell surface. Finally, we cannot

ignore potential cytotoxic activity as h1 mAbs have the

potential to recruit natural effectors and delete targets. In

patients it appears that, at least in the periphery, only B cells

are deleted with ChiLob7-4 treatment (unpublished data)

with information on other cell populations currently under

investigation. Our own studies and those of Li and Ravetch,

however, demonstrate that m2a anti-CD40 mAbs do not

delete APC in mouse models [42, 43]. Nevertheless,

removing APC, such as B cells, could have a profound and

unpredictable effect on therapeutic outcome. Thus, design-

ing and using agonistic and antagonistic mAbs is a complex

process where optimisation will be required for each mAb

agent, and possibly for each application of that agent, to

achieve the greatest therapeutic benefit. It is also clear that

mAbs, with their limitless specificity for individual epitopes

and diverse interaction with different FccR, will continue to

surprise us with their therapeutic versatility well into the

future.
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