
REVIEW

Bioinformatics for cancer immunology and immunotherapy

Pornpimol Charoentong • Mihaela Angelova •

Mirjana Efremova • Ralf Gallasch •

Hubert Hackl • Jerome Galon • Zlatko Trajanoski

Received: 27 July 2012 / Accepted: 4 September 2012 / Published online: 18 September 2012

� The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Recent mechanistic insights obtained from pre-

clinical studies and the approval of the first immunotherapies

has motivated increasing number of academic investigators

and pharmaceutical/biotech companies to further elucidate

the role of immunity in tumor pathogenesis and to reconsider

the role of immunotherapy. Additionally, technological

advances (e.g., next-generation sequencing) are providing

unprecedented opportunities to draw a comprehensive pic-

ture of the tumor genomics landscape and ultimately enable

individualized treatment. However, the increasing com-

plexity of the generated data and the plethora of bioinfor-

matics methods and tools pose considerable challenges to

both tumor immunologists and clinical oncologists. In this

review, we describe current concepts and future challenges

for the management and analysis of data for cancer immu-

nology and immunotherapy. We first highlight publicly

available databases with specific focus on cancer immunol-

ogy including databases for somatic mutations and epitope

databases. We then give an overview of the bioinformatics

methods for the analysis of next-generation sequencing data

(whole-genome and exome sequencing), epitope prediction

tools as well as methods for integrative data analysis and

network modeling. Mathematical models are powerful tools

that can predict and explain important patterns in the genetic

and clinical progression of cancer. Therefore, a survey of

mathematical models for tumor evolution and tumor–

immune cell interaction is included. Finally, we discuss

future challenges for individualized immunotherapy and

suggest how a combined computational/experimental

approaches can lead to new insights into the molecular

mechanisms of cancer, improved diagnosis, and prognosis of

the disease and pinpoint novel therapeutic targets.
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Introduction

Recent mechanistic insights obtained from preclinical

studies and the approval of the first immunotherapies have

motivated increasing number of academic investigators and

pharmaceutical/biotech companies to further elucidate the

role of immunity in tumor pathogenesis and to reconsider

the role of immunotherapy. Several factors contributed

considerably to this renaissance phase of cancer immu-

nology and immunotherapy [1].

First, major advances in immunology over the past

30 years improved our understanding of the complex

interaction between the immune system and the tumor [2].

The immune system can respond to cancer cells by reacting

against tumor-specific antigens or against tumor-associated

antigens. The antigenic determinants, epitopes, are pre-

sented on the cell surface, where they can be recognized by

T cells or antibodies, eventually eliciting tumor destruction

or enforcing proliferation. Cancer immunosurveillance is

considered to be an important host protection process to

inhibit carcinogenesis and to maintain cellular homeostasis

[3]. Extensive work in experimental systems has elucidated

some of the mechanisms underlying spontaneous antitumor
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immunity and has formed the basis for the cancer immu-

noediting hypothesis. This hypothesis divides the immune

response to cancer into the ‘‘three E’s’’ which are elimi-

nation, equilibrium, and escape [4–6].

Second, there is increasing clinical evidence that the

immune system influences the recurrence of cancer. For

example, our previous results have shown the close cor-

relation between the ‘‘high’’ intra- and peri-tumoral adap-

tive immune reaction in colorectal carcinoma and a good

prognosis, and inversely, a ‘‘low’’ density of T cells was

correlated with a poor prognosis [7, 8]. In fact, of all the

various clinical and histopathologic criteria currently

available, the immune T cell infiltrate was shown to be the

most important predictive criteria for survival [7–9].

Third, FDA approval of two cancer immunotherapies:

(1) ipilimumab antibody directed against CTLA-4, a mol-

ecule that downregulates T cell activation for the treatment

of melanoma, and (2) sipuleucel-T, a therapy consisting of

autologous PBMC activated with the prostatic acid phos-

phatase; prostate cancer–associated antigen fused to

GM-CSF for the treatment of patients with advanced hor-

mone-refractory prostate cancer. Over and above, recent

promising results for the blockade of programmed death 1

(PD-1), an inhibitory receptor expressed by T cells

[10, 11], are likely to provide a new benchmark for anti-

tumor activity in immunotherapy and will initiate a number

of studies for future multimodal therapy. Historically, the

treatment methods for the different types of cancers were

surgery, radiation therapy, chemotherapy, or combinations

of these to limit the progression of malignant disease. The

fourth modality of immunotherapy is now starting to be

used in clinical practice and will become a standard

treatment for a variety of cancers [2, 12].

Fourth, recent technological advances [e.g., next-gen-

eration sequencing (NGS)] are providing unprecedented

opportunities to draw a comprehensive picture of the tumor

genomics landscape and ultimately enable individualized

treatment. Due to the rapid declination of costs per base

pair, NGS projects are now affordable even for small- to

mid-sized laboratories. Point mutations, chromosomal

rearrangements, translation from cryptic start sites or

alternative reading frames, splicing aberrations, and over-

expression have all been reported as sources of tumor

antigens [3, 13, 14] and can be now readily detected. It is

noteworthy that recent study showed a proof-of-concept in

which somatic mutations are first detected using NGS, then

the immunogenicity of these mutations is defined, and

finally, mutations are tested for their capability to elicit T

cell immunogenicity [15]. Thus, tailored vaccine concepts

based on the genome-wide discovery of cancer-specific

mutations and individualized therapy seem technically

feasible.

However, the increasing complexity of the generated

data and the plethora of bioinformatics methods and tools

for the analysis pose considerable challenges. In this

review, we describe current concepts and future challenges

for the management and analysis of data for cancer

immunology and immunotherapy. We first highlight pub-

licly available databases with specific focus on cancer

immunology including databases for somatic mutations

and epitope databases. We then give an overview of the

bioinformatics methods for the analysis of next-generation

sequencing data (whole-genome and exome sequencing) as

well as bioinformatics tools for epitope prediction, inte-

grative data analysis, and network modeling. Mathematical

models are powerful tools that can predict and explain

important patterns in the genetic and clinical progression of

cancer. Therefore, a survey of mathematical models for

tumor evolution and tumor–immune cell interaction is

included. Finally, we discuss future challenges for indi-

vidualized immunotherapy and suggest how a combined

computational/experimental approaches can lead to new

insights into the molecular mechanisms of cancer,

improved diagnosis, and prognosis of the disease and

pinpoint novel therapeutic targets.

Data sources

The continuous improvement of existing technologies for

large-scale data generation like microarrays and proteo-

mics, as well as the development of novel powerful tech-

nologies including NGS and high-content techniques, led

to an increased use in cancer research. Figure 1 illustrates

the data and information flow in contemporary cancer

immunology research and, in near future, also in person-

alized cancer immunotherapy. Without surprise, within the

last few years, the amount of data generated and deposited

in publicly available databases exploded. Thus, a cancer

researcher can address today a specific question and not

only by generating proprietary high-throughput data but

also by accessing and mining available datasets. We

therefore describe cancer databases and databases for

cancer immunology.

Cancer databases

The volume of post-genomic data has resulted in the cre-

ation of a plethora of resources for cancer research com-

munity and lead to innovative approaches to cancer

prevention [16]. We summarized major sites where these

data sets can be assessed in Table 1. Note that the contents

of the databases are not exclusive for a specific molecular

type and are partly redundant.
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Cancer genomic data sources can be divided as follows:

(a) Databases harboring gene/microRNA expression pro-

files The discovery of gene/microRNA expression

patterns provides better predictions of clinical out-

come than traditional clinicopathologic standards [31]

and can be used for molecular classification of human

cancer [32, 33].

(b) Databases for copy number of variations (CNV)

Results generated using various reliable platforms

including NSG for high-resolution detection of DNA

copy number changes are available [31, 34, 35]. The

publicly available data generated with diverse plat-

forms are given in the second column.

(c) DNA mutation detection databases All cancers arise

as a result of the acquisition of a series of fixed DNA

sequence abnormalities. These abnormalities include

base substitutions, deletions, amplifications, and

rearrangements [36]. Thus, the strongest predictors

of risk of developing cancer and of response to

therapy appear to be at the DNA level [31].

Databases were designed to store, manage, organize,

and present the information on somatic mutations in

cancer (i.e., COSMIC, caSNP, dbSNP). For example,

COSMIC database describes somatic mutations

information relating to human cancers. Recently,

genome-wide somatic mutation content of tumor

samples, including structural rearrangements and

non-coding variants, has been included. COSMIC

is now integrating this information into the database,

providing full coding and genomic variant

annotations for samples, both from CGP laboratories

and recent publications [19].

(d) Epigenetic profiles databases The datasets include

histone acetylation, histone methylation, and DNA

methylation. These modifications are now thought to

play important roles in the onset and progression of

cancer in numerous tumor types [37].

(e) Databases with integrative analyses These databases

provide results representing analysis of data across a

cohort of samples where statistical methodologies and

computational algorithms were applied to identify

molecular subtypes from various data sources [38].

For example, the Cancer Biomedical Informatics Grid

(caBIG) aims to provide a common informatics plat-

form to the cancer research community by integrating

heterogeneous datasets and the provision of open access

interoperable tools (i.e., caArray, caGWAS) [16].

(f) Databases with other data types Finally, there are

databases with other types of data (i.e., mouse models,

phenotypic data, networks, proteomics) also aiming at

collecting and providing insights into the mechanism

of cancer development [38]. For example, Cancer

Model Database (caMOD) provides information about

animal models for human cancer [39] to the research

community.

Epitope databases

There are a number of publicly available databases con-

taining experimentally and computationally derived

Fig. 1 Data and information

flow in cancer immunology

research. The datasets are

integrated from clinical

observations, medical records,

‘‘omic’’ technologies, and the

next-generation sequencing

technology and analyzed by

using bioinformatics methods.

Cancer researchers are using

these data to extract information

for diagnosis, classification,

prognosis, and therapeutic

guidance. Furthermore, the

multi-parametric data can lead

to the improvement of the

immunotherapy and can be

exploited for patients benefit

using individualized therapeutic

cancer vaccines

Cancer Immunol Immunother (2012) 61:1885–1903 1887
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information on T cell and B cell epitopes, binders to the

major histocompatibility complex (MHC) molecules, and

the transporter associated with antigen processing (TAP)

(Table 2). Since there is a considerable overlap between

the databases, we calculated the unique entries by filtering,

formatting, and merging the contents of the databases. This

analysis shows that there are currently about 35,000 entries

for human peptides (Fig. 2).

Bcipep [50] and CED [41] are sources of B cell epi-

topes, linear and conformational, respectively. Both of

them offer a descriptive measure of epitope immunoprop-

erty. IEDB [46], MHCBN [47], and SYFPEITHI [49] are

currently the largest repositories. IEDB is most frequently

maintained, well annotated, and supplies broad informa-

tion. It is easily queryable for tumor-related information

and provides extensive experimental details. The epitope

immunogenicity is quantified with affinity measures, T cell

activity, or antibody binding assays. It is generated from

automatically compiled publications that describe epitopes,

which are classified using machine learning methods, and

subsequently manually curated by senior immunologists.

However, since cancer is not one of the priority diseases,

for this database, cancer-related literature is not yet com-

prehensively covered. Thus, despite IEDB’s large size, the

contents of other databases are complementary.

Unlike IEDB, MHCBN also contains information on

TAP binders, in addition to peptides binding to MHC

molecules. Moreover, not only the positive examples of

binding proteins are collected from the literature and the

available databases, but also non-binding peptides are

included. It is a rich source of information, where the

immunogenicity of the peptides is quantified with cate-

gorical measures (low, medium and high) of binding

affinity and T cell activity; nevertheless, there is still space

for improvement, for example, a more comprehensive

source-protein description could alleviate interpretation.

Smaller but similar to MHCBN is EPIMHC [45], also

neglecting rich source-protein annotation.

SYFPEITHI has evolved from the first collection of

MHC ligands into one of the largest databases. It has

contributed significantly to our understanding of binding

motifs and to the advances in development and validation

of epitope prediction. It has been continuously maintained

for more than 20 years. The constitutive MHC binders and

T cell epitopes are gathered from the literature and each of

them described with anchors and auxiliary anchor amino

acids.

Databases developed specifically to serve for cancer

vaccine target discovery are Peptide Database [48], TAN-

TIGEN, DFRMLI [44], CIG-DB [42], and CTDatabase

[43]. Peptide Database not only provides manually curated

list of T cell-defined tumor antigens but also categorizes

into unique, differentiation, overexpressed, and tumorT
a
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specific [48]. CTDatabase presents only antigens from the

last category, also referred to as Cancer-Testis. TANTI-

GEN follows the proposed scheme for antigen classifica-

tion. Additionally, it is much more abundant and focuses

on antigen annotation. It contains experimentally validated

HLA ligands and T cell epitopes accompanied with the

original sequence and a detailed description of the source

human tumor antigens, such as multiple sequence align-

ment of the isoforms, gene expression profiles, database

IDs in COSMIC or SwissProt for the causing substitution

mutations. CIG-DB performs literature mining, training,

and clustering to semi-automatically classify T cell

receptors (TCR) and immunoglobulins (IG) for human and

mouse into two groups: cancer therapy and hematological

tumors. Additionally, it aggregates publicly available epi-

tope sequences that interact with IG and TCR. An inter-

esting initiative of the Dana-Farber institute is DFRMLI, a

repository of immunological data sets from major public

databases, intended for training and testing of machine

learning methods [44].

All of the databases are populated with experimentally

derived information supplied in the literature, with the

exception of MHCBN and EPIMHC, which include

information from available databases. There has been one

attempt for computational derivation of T cell epitopes,

catalogued in the HPtaa [51] database; however, it is cur-

rently not maintained and its access is impeded.

Bioinformatics tools for cancer immunology

and immunotherapy

The management and analysis of data generated with

‘‘standard’’ technologies like microarrays including SNP

arrays and array CGH arrays has been subject of previous

reviews [52–56]. In this paper, we therefore highlight NGS

data analysis, since this methodology is gaining increasing

popularity. Moreover, whole-genome or whole-exome

sequencing provides also information of single-nucleotide

variants, which can be further used to predict epitopes.

Epitope prediction tools were then reviewed followed by

methods for integrative data analyses and network

modeling.

Next-generation sequencing

Next-generation sequencing (NGS) has emerged with a great

power to provide novel and quantitative insights into the

molecular machinery inside the tumor cell. In addition to

expression profiling of transcripts and genes, and detection of

alternative splicing, it has enabled the discovery of single-

nucleotide variants (SNV), insertions, amplifications, dele-

tions, and inter-chromosomal rearrangements in the whole

genome and transcriptome. Its potential for cancer is very far

from being fully exploited, having the anticipated single-cell

sequencing, for example, already appearing on the horizon.

Sophisticated bioinformatics methods for analysis and

interpretation of tumor sequencing data are therefore of

utmost importance.

The tumor is genomically unstable. Altered ploidy,

tumor heterogeneity, and normal contamination are only a

few of the features characterizing the tumor sequencing

data that prompt the need for new and sophisticated bio-

informatics approaches. For example, according to the

experience of our and other labs, the different mutation

rates, allelic frequencies and structural rearrangements

across cancer types, subtypes, and within the tumor itself,

fail to meet the assumptions underlying the statistical

methods for SNV discovery in rare diseases. Therefore,

most of the currently available tools for mutation detection

show limited accuracy and small overlap. A step higher to

RNA level brings additional challenges for detection of

somatic mutations, such as post-transcriptional modifica-

tions, RNA fidelity, allele-specific expression, and

expression levels ranging between extreme values. How-

ever, analyses of RNA-Seq data are complex, and we refer

the readers to a recent review [57].

Whole-genome sequencing and whole-exome sequenc-

ing have proven to be valuable methods for the discovery

of the genetic causes of rare and complex diseases.

Although cheaper than Sanger sequencing, whole-genome

sequencing remains expensive on a grand scale. Over

and above, one sequencing run provides enormous amount

of data and poses considerable challenges for the analysis

and interpretation. In contrast, whole-exome sequencing

becomes a popular approach to bridge the gap between

genome-wide comprehensiveness and cost-control by

capturing and sequencing approximately 1 % of the human

genome that codes for protein sequences.

The complete whole-genome or whole-exome sequence

data analysis process is complex, includes multiple pro-

cessing steps, is dependent on a multitude of programs and

databases, and involves dealing with large amounts of

heterogeneous data. Currently, there are 168 individual

tools addressing some of the required analysis steps, 13

complete pipelines, and 11 workflow systems. Combining

different tools and methods for analysis to obtain biological

meaningful results presents a challenge. These problems

can be eased by using comprehensive and intuitive pipe-

lines that consist of combination of software tools, which

are capable of analyzing all steps starting from raw

sequences to a set of final annotations.

However, not all pipelines cover essential steps of read

alignment, variant detection, and variant annotation. We

therefore describe only the pipelines covering the entire

analysis workflow: HugeSeq [58], Treat [59], and

Cancer Immunol Immunother (2012) 61:1885–1903 1891

123



T
a

b
le

2
D

at
ab

as
es

co
n

ta
in

in
g

im
m

u
n

o
g

en
ic

an
d

n
o

n
-i

m
m

u
n

o
g

en
ic

p
ep

ti
d

es
in

h
u

m
an

D
at

ab
as

e
C

o
n

te
n

t
#

E
n

tr
ie

s
U

R
L

R
ef

er
en

ce

B
ci

p
ep

L
in

ea
r

B
ce

ll
ep

it
o

p
es

w
it

h

d
es

cr
ip

ti
v

e

im
m

u
n

o
g

en
ic

it
y

m
ea

su
re

7
1

9

h
tt

p
:/

/b
io

in
fo

rm
at

ic
s.

u
am

s.
ed

u
/

m
ir

ro
r/

b
ci

p
ep

[4
0
]

C
E

D
C

o
n

fo
rm

at
io

n
al

B
ce

ll

ep
it

o
p

es
w

it
h

im
m

u
n

o
p

ro
p

er
ty

d
es

cr
ip

ti
o

n

2
9

3
h

tt
p

:/
/i

m
m

u
n

et
.c

n
/c

ed
[4

1
]

C
IG

-D
B

P
u

b
li

cl
y

av
ai

la
b

le
ep

it
o

p
es

th
at

in
te

ra
ct

w
it

h
IG

(l
in

ea
r

an
d

co
n

fo
rm

at
io

n
al

)
an

d
T

C
R

2
7

0
h

tt
p

:/
/s

cc
h

r-
ci

g
d

b
.j

p
[4

2
]

C
T

D
at

ab
as

e
C

an
ce

r-
T

es
ti

s
an

ti
g

en
s

an
d

co
rr

es
p

o
n

d
in

g
m

R
N

A
an

d

p
ro

te
in

ex
p

re
ss

io
n

,
an

d

im
m

u
n

e
re

sp
o

n
se

1
2

6
h

tt
p

:/
/w

w
w

.c
ta

.l
n

cc
.b

r
[4

3
]

D
F

R
M

L
I

H
L

A
b

in
d

in
g

p
ep

ti
d

es

p
ac

k
ed

u
p

in
to

re
ad

y
-t

o
-

tr
ai

n
-a

n
d

-t
es

t
d

at
a

se
ts

,

an
d

T
ce

ll
ep

it
o

p
es

7
1

8
T

A
A

s

h
tt

p
:/

/b
io

.d
fc

i.
h

ar
v

ar
d

.e
d

u
/

D
F

R
M

L
I

[4
4
]

E
P

IM
H

C
H

L
A

li
g

an
d

s
as

so
ci

at
ed

w
it

h
h

ig
h

,
lo

w
,

m
o

d
er

at
e,

o
r

u
n

k
n

o
w

n
b

in
d

in
g

le
v

el

an
d

a
fl

ag
in

d
ic

at
in

g

im
m

u
n

o
g

en
ic

ep
it

o
p

es

2
9

0
T

A
A

s
h

tt
p

:/
/i

m
ed

.m
ed

.u
cm

.e
s/

ep
im

h
c

[4
5
]

IE
D

B
L

in
ea

r
an

d
co

n
fo

rm
at

io
n

al

an
ti

b
o

d
y

an
d

T
ce

ll

ep
it

o
p

es
cr

o
ss

-r
ef

er
en

ce
d

w
it

h
p

u
b

li
ca

ti
o

n
s,

M
H

C

b
in

d
in

g
ex

p
er

im
en

ts
an

d

T
ce

ll
as

sa
y

s

5
9

8
C

o
n

f.

1
8

9
5

0
L

in
.

h
tt

p
:/

/i
m

m
u

n
ee

p
it

o
p

e.
o

rg
[4

6
]

Im
m

u
n

o
lo

g
y

D
B

H
IV

an
ti

b
o

d
y

ep
it

o
p

es

(m
ai

n
ly

fr
o

m
n

o
n

-h
u

m
an

so
u

rc
es

),
H

IV
C

T
L

an
d

T

h
el

p
er

ep
it

o
p

es
,

ep
it

o
p

e

v
ar

ia
n

ts
an

d
es

ca
p

e

m
u

ta
ti

o
n

s
(E

V
E

M
)

1
,4

9
3

T
ce

ll
ep

it
o

p
es

2
5

1
6

E
V

E
M

h
tt

p
:/

/h
iv

.l
an

l.
g

o
v

/c
o

n
te

n
t/

im
m

u
n

o
lo

g
y

M
H

C
B

N
C

la
ss

I
an

d
II

M
H

C
an

d

T
A

P
b

in
d

er
s

as
so

ci
at

ed

w
it

h
b

in
d

in
g

af
fi

n
it

y
an

d

T
ce

ll
ac

ti
v

it
y

m
ea

su
re

s,

as
w

el
l

as
n

o
n

-b
in

d
er

s

6
4

5
T

A
P

1
8

,4
0

4
M

H
C

h
tt

p
:/

/i
m

te
ch

.r
es

.i
n

/r
ag

h
av

a/
m

h
cb

n
[4

7
]

P
ep

ti
d

eD
at

ab
as

e
T

ce
ll

-d
efi

n
ed

tu
m

o
r

an
ti

g
en

s

3
7

8
h

tt
p

:/
/c

an
ce

ri
m

m
u

n
it

y
.o

rg
/p

ep
ti

d
e

[4
8
]

1892 Cancer Immunol Immunother (2012) 61:1885–1903

123

http://bioinformatics.uams.edu/mirror/bcipep
http://bioinformatics.uams.edu/mirror/bcipep
http://immunet.cn/ced
http://scchr-cigdb.jp
http://www.cta.lncc.br
http://bio.dfci.harvard.edu/DFRMLI
http://bio.dfci.harvard.edu/DFRMLI
http://imed.med.ucm.es/epimhc
http://immuneepitope.org
http://hiv.lanl.gov/content/immunology
http://hiv.lanl.gov/content/immunology
http://imtech.res.in/raghava/mhcbn
http://cancerimmunity.org/peptide


SIMPLEX [60]. HugeSeq is a fully integrated pipeline for

NGS analysis from aligning reads to the identification and

annotation of all types of variants (SNPs, Indels, CNVs,

SVs). It consists of three main parts: (1) preparing and

aligning reads, (2) combining and sorting reads for parallel

processing of variant calling, and (3) variant calling and

annotating. Treat is a pipeline where the user can use each

of the three modules (alignment, variant calling, and var-

iant annotation) separately or as an integrated version for

an end-to-end analysis. It provides a rich set of annotations,

html summary report, and variant reports in Excel format.

SIMPLEX [60] is an autonomous analysis pipeline for the

analysis of NGS exome data, covering the workflow from

sequence alignment to SNP/DIP identification and variant

annotation. It supports input from various sequencing

platforms and exposes all available parameters for cus-

tomized usage. It outputs summary reports and annotates

detected variants with additional information for discrim-

ination of silent mutations from variants that are potentially

causing diseases.

In contrast to the pipelines described above, workflow

management systems are specifically designed to compose

and execute a series of data manipulation or analysis steps.

Most existing systems provide graphical user interfaces

allowing the user to build and modify complex workflows

with little or no programming expertise. Galaxy [61] is a

web-based platform where the user can perform, reproduce,

and share complete analyses. Pipelines are represented as a

history of user actions, which can be stored as a dedicated

workflow. It contains over a hundred analysis tools and

users can add new tools and share entire analysis steps and

pipelines. The Taverna [62] workflow management system

stores workflows in a format that is simple to share and

manipulate outside the editor. Initially, it did not ship with

any prepackaged NGS analysis tools and integrating tools

requires some programming experience. LONI [63] is a

workflow processing application that can be used to wrap

any executable for use in the environment. In order to

access the tools, users need to connect to either public or

private pipeline servers.

Epitope prediction tools

Point mutations, chromosomal rearrangements, translation

from cryptic start sites or alternative reading frames,

splicing aberrations, and over-expression have all been

reported as non-conventional sources of antigens [64, 65].

Regardless of whether these genetic changes contribute to

oncogenesis or not, they could affect the immune response.

For the first time, comprehensive characterization of the

tumor genotype is enabled by sophisticated computational

analysis of deep-sequencing data. The mutational signa-

tures can further be screened for potential impact onT
a
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immune activity, in order to detect vaccine target candi-

dates or to predict response to therapy.

Somatic amino acid substitutions and short DNA dele-

tions and insertions that reside in exons result with changes

in the protein sequences that could eventually be discrim-

inated as non-self and potentially trigger anti-tumor

behavior. Mutations could be a source of novel peptides

that are presented on the cell surface by MHC molecules,

where they can be recognized by T helper or cytotoxic T

lymphocytes (CTL). To obtain a set of potentially immu-

nogenic peptides, sequence windows spanning each newly

introduced amino acid should be extracted, with window

sizes incremented within the known epitope length range.

These sequence fragments are then analyzed by epitope

prediction tools. An alternative method is based on anti-

gen–antibody interactions which play an important role in

human immune response. In case when conformational

epitopes are sought, the whole mutated antigen sequence is

analyzed, as opposed to sequence windows, since potential

structural changes should also be considered.

Epitope prediction has been a subject of study for many

years, and it remains an active area of research. Many new

methods have been published, and the existing tools have

been considerably improved. The growth of experimental

data has enabled the use of more sophisticated methods,

resulting in increased prediction accuracy. Furthermore,

the diversity of MHC molecules that can be studied has

also increased. Binding predictions are now available for

hundreds of MHC alleles, resulting in the coverage of the

majority of the population. There is a plenty of reviews

describing the technical background of the prediction

algorithms [66–68]. Here, we describe freely available,

state-of-art tools that currently stand out in the huge rep-

ertoire of methods.

T cell epitope prediction

The initial attempts for epitope prediction aimed at esti-

mation of MHC binding affinity, for the purpose of

reducing the list of candidate T cell epitopes. Since then,

much of the efforts have been invested into MHC binding

prediction. It starts with the binding motifs [49], when

experimentally confirmed binders are used to create a

matrix, where each element represents a score for one

amino acid at a given position. The highest score is

assigned to amino acids that frequently reside at the anchor

position. The scores decrease reversely to frequency of

occurrence of the residue down to the minimum score for

amino acids that are unfavorable for binding. Later, it was

confirmed that MHC binding is the best indicator of

immunogenicity, and therefore, the first prediction methods

are still popular. The matrix-based methods: SYFPEITHI

[49] for MHC class I and II binding prediction, and BIMAS

[69], intended for identification of HLA-class I binders, are

widely used, particularly for prediction of HLA-A*0201

restricted epitopes [70–73]. Being one of the most frequent

HLA-class I allele, HLA-A*0201 has been the first and the

most widely studied. The peptides that should be selected

Fig. 2 Databases for epitopes

and calculation of the total

number of epitopes. Shown are

available databases and the

number of entries in each

database (see text for

abbreviations). Since there is a

considerable overlap between

the databases, we have analyzed

the data and as of to date

identified the number of unique

peptide sequences to be around

35,000. The number of entries

per database refers only to

human peptide sources
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are the 2 % of the highest scoring predictions, because they

are expected to contain naturally presented T cell epitopes

[69, 74], in more than 80 % of the cases for SYFPEITHI

[74].

This approach assumes that each amino acid at a par-

ticular position contributes to the MHC-peptide complex

stability independently of the other amino acids, which is

considered as its main limitation. The growth of experi-

mental data enabled the use of elaborated machine learning

methods that capture the patterns of amino acid depen-

dencies in the sequence. Among the matrix-based tools,

stabilized matrix method (SMM) [75] and NetMHC [76]

stand out for their performance [77, 78] and have been

continuously upgraded. The outcome of the higher-order

methods depends on the training set, for example the range

of peptide lengths they output is limited to the peptide

lengths used for training, which is small for long MHC

class II peptides. However, given an appropriate training

datasets, the higher-order methods are also more accurate.

The binding strength to the MHC class I molecules has

been proved to be the most restrictive step for immuno-

genicity prediction and to be the easiest to estimate from

the peptide sequence. However, the remaining components

in the antigen presenting pathway can be used to increase

the prediction confidence. There are tools that predict MHC

class I pathway events, such as proteasomal cleavage and

TAP transport efficiency. TAP binding should be consid-

ered with caution, because it might not be the best choice

for HLA-A2 binder prediction since around 10 % of the

HLA-A2 restricted peptides are transported to the endo-

plasmic reticulum independently of TAP. The proteasomal

cleavage tools predict potential cleavage sites or most

probable peptide fragments. Standalone tools for prote-

asomal cleavage and TAP transport did not reach as

widespread acceptance as MHC prediction tools, because

these events are more complicated to model and alternative

pathways also interfere. In spite of that, they have con-

tributed to greater prediction power when integrated with

MHC binding predictors [79].

The tools for MHC class II binding exhibit declined

performance, owing to the variable length of the peptides

that bind to the open groove of the MHC class II molecule.

As mentioned above, SYFPEITHI can be used for MHC

class II prediction. However, it is only limited to peptides

with length of 8–11 and 15 and offers small allele cover-

age. Tools that overcome these limitations and exhibit

relatively high accuracy are netMHCIIpan [80] and

TEPITOPEpan [81]. TEPITOPEpan is the predecessor of a

recent upgrade of the once-most-popular tool for MHC

Class II binding prediction, TEPITOPE. It is able to detect

only HLA-DR binders, more than 700 allele types, shows

comparable accuracy to NetMHCIIpan, and performs well

in predicting binding cores.

SYFPEITHI, BIMAS, and IEDB AR occur in the

majority of published papers. Even though there are more

refined methods claiming higher accuracy, SYFPEITHI

and BIMAS remain to be widely used. The explanation

could be that they have shown good performance on HLA-

A2 restricted peptides, and HLA-A2 is the most abundant,

and hence, the most studied human serotype. Pan-specific

methods represent state of the art [80–82]. Lack or scarcity

of experimental binding information for HLA alleles, for

which the sequence is known, is not a limitation anymore.

This is achieved by using the peptide sequence and the

contact information for the corresponding MHC molecule

to train the algorithm. In this way, the algorithm is able to

recognize binding potential to uncharacterized MHC mol-

ecules. Benchmark studies have estimated NetMHCpan as

the most accurate pan-specific MHC binding predictor [83]

and NetCTLpan as the best performing integrated approach

[82].

B cell epitope prediction

The predictive performance of B cell epitope prediction

methods has only gradually advanced over the years [84].

BepiPred predicts linear B cell epitopes by combining a

hidden Markov model and two propensity scores: Levitt’s

secondary structure and Parker’s hydrophilicity, achieving

an AUC of 0.6 [85]. ABCPred [86] is another linear B cell

predictor that achieves accuracy of *66 % in the best case

by using recurrent artificial neural networks. Choosing an

epitope selection threshold for these methods requires a

trade-off between sensitivity and specificity.

Most of the tools for prediction of conformational B cell

epitopes require the protein structure of the antigen. Nor-

mally, the structure of the novel protein sequence resulting

from genetic alterations in the tumor is not known. In such

cases, sequence-based methods and auxiliary tools for

structure prediction are convenient. CBTope [87] is a

Support Vector Machine model trained on experimentally

verified protein chains to detect antibody interacting resi-

dues. Thus, it requires only the antigen sequence as input.

It reports a very high maximum accuracy of more than

85 % (AUC 0.9). The biggest drawback of CBTope is that

it does not discriminate the epitope coordinates from the

antigen. ElliPro [88] is more convenient method for this

purpose. It generates a list of predicted linear and confor-

mational epitopes. It was shown that the method overper-

forms 6 other structure-based methods with an AUC of

0.732 [88]. In case of a missing protein structure, the tool

accepts protein sequence as input, which is then compared

with structural templates in PDB using BLAST. A user-

defined number of best-hit structural templates are used to

model a 3D structure of the submitted sequence by

MODELLER [89]. It identifies the components of the
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conformational B cell epitopes as clusters of neighboring

residues based on their protrusion index values.

Integrated data analysis and network modeling

Utilizing various high-throughput technologies for char-

acterizing the genome, epigenome, transcriptome, prote-

ome, metabolome, and interactome enables one to

comprehensively study molecular mechanisms of cancer

cells and their interactions with the immune system. The

real value of the disparate datasets can be truly exploited

only if the data are integrated. To our experience, it is of

utmost importance to first set up a local database hosting

only the necessary data. Only preprocessed and normalized

data are stored in a dedicated database whereas primary

data are archived at separate locations including public

repositories. Although it is tempting to upload and analyze

all types of data in a single system, experience shows that

primary data are mostly used once. This approach is even

more advisable for large-scale data including microarrays,

proteomics, or NGS data. However, links to the primary

data need to be secured so that later re-analyses using

improved tools can be guaranteed. In this context, it is

noteworthy that in the majority of published studies, the

analyses were based on medium-throughput data, meaning

that the number of analyzed molecular species was in the

range of 100–1,000 (after filtering and pre-selection). With

this number of elements, the majority of the tools perform

satisfactorily on a standard desktop computer.

Once the data are integrated, that is, preprocessed and

deposited in a dedicated database, tools for integrative data

analysis can be applied. Only then, the results of the inte-

gration of these heterogeneous datasets will provide cancer

biologists with an unprecedented opportunity: to manipu-

late, query, and reconstruct functional molecular networks

of the cells [90]. One of the most common computational

approaches to delineate functional interaction networks is

based on Bayes integration [91, 92] or on a statistical

method for combination of p values from individual data

sets [93]. Additionally, network and graph theory can be

applied to describe and analyze the complexity of these

biological systems and subsequently visualize the networks

[94, 95]. For example, to reconstruct gene co-expression

networks, genes (nodes) with similar global expression

profiles over samples (tumor/patients) are connected, and

innovative methods can be then used to identify key tran-

scriptional regulators (ARACNe [96], MINDy [97]).

In addition to gene expression, a number of different

datasets can be integrated into networks, highlighting fur-

ther information otherwise hidden in the complex data sets.

Especially, protein–protein interaction data provide a

meaningful complementary source and can be applied to

identify relevant biological effects at the network level [53,

98]. In cancer research, a number of network modeling

approaches showed to be very promising [99–104]. These

network approaches enable also the inclusion of clinical

data from patients, which can comprise collected data

during standard treatment procedures, and during clinical

trials include histopathology, cancer stages and scores,

prognosis (survival time, relapse time), cancer subtypes,

and cancer biology parameters like ER-status for breast

cancer [53].

More recently, NGS (large-scale tumor–resequencing

and whole-genome exome sequencing studies) has added a

new dimension to cancer research and revolutionized our

ability to characterize cancers at the gene and transcript

and epigenetic levels and enables identification of immu-

nogenic tumor mutations targetable by individualized

vaccines [15, 105]. A number of integrated genome anal-

yses approaches have recently performed on several cancer

types and cohorts of patients [106–117] (see in particular

The Cancer Genome Atlas (TCGA)). Using these resulting

human genome data sets in conjunction with bioinformat-

ics tools, it is possible to predict biological meaning by

searching for substantially altered pathways, missense

mutations that are likely to be oncogenic, or regions of

altered copy numbers [106]. For this specific purpose,

recently tools were developed to address which cancer

genome alterations are functionally important, what path-

ways are affected, or what are the mutations likely to be

drivers in tumor progression (NetBox [118], DriverNet

[112], MEMo [119], PARADIGM [120], CHASM [121],

GISTIC [122], VarScan2 [123], CONEXIC [124]).

In summary, to gain further insight into a disease state

and suggest treatment strategies integrative analysis is

inevitable [125]. For example, Curtis et al. [107] presented

an integrated analysis of copy number and gene expression

in a discovery and validation set of primary breast tumors

from 2,000 patients with long-term clinical follow-up.

Their results provided a novel molecular stratification of

the breast cancer population, derived from the impact of

somatic copy number aberrations on the transcriptome.

Similarly, Ascierto et al. [126] performed comparative

analysis and validated the 5 genes signature of immune

response of breast cancer in two cohorts to determine

whether some patients with relapse may also show

expression of the immune function genes in their tumors.

Mathematical modeling in tumor immunology

and cancer immunotherapy

Modeling has been successfully applied in physiology for

many decades, but only recently the quality and the

quantity of biomolecular data became available for the
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development of causative and predictive models. Due to

their importance cancer in general, tumor immunology and

cancer immunotherapy in particular have also been in the

focus of theoretical investigators. For example, application

of theoretical techniques and the postulation of the ‘‘two

hit’’ hypothesis in the early 1970s led to the identification

of tumor-suppressor genes [127]. Later, in a landmark

paper, it was shown that cancer results from evolutionary

processes occurring within the body [128]. The theoretical

field of cancer immunology and immunotherapy experi-

enced similar development as the experimental: enthusiasm

phase in the 1970s and 1980s, skepticism phase from mid-

1980s to the end of last century, and recent renaissance

phase. The availability of genomic and other types of

quantitative data has recently driven the development and

application of a number of mathematical models of both

types, descriptive and mechanistic. In this review, we are

focusing on two areas in which mathematical modeling has

seen recent great progress: (a) modeling clonal evolution in

cancer, and (b) modeling tumor-immune cell interaction.

Modeling clonal evolution in cancer

Cancer progression is an evolutionary process [97] that

results from accumulation of genetic and epigenetic vari-

ations in a single somatic cell. These variations are heri-

table and can provide the cell with a fitness advantage. The

genetic changes produce phenotypic changes associated

with increased proliferation capabilities, decreased death,

enhanced migration and invasion, evasion of the immune

system, or the ability to induce angiogenesis. Cells with

advantageous mutations eventually outgrow competing

cells and tumor development proceeds by successive clonal

expansions. In each clonal expansion, additional mutations

are accumulated that drive cancer progression and lead to

more invasive phenotypes. New mutations cause the

simultaneous presence of multiple subclones of cells at

different malignancy levels, all sharing a common ances-

tor, which leads to tumor heterogeneity [129].

Because of its importance, the dynamics of the clonal

cancer progression has been the subject of several mathe-

matical studies [130–134]. Mathematical models may be

used to address some of the important biological questions,

such as understanding the mechanism of cancer initiation,

progression, distinguishing driver from passenger muta-

tions, defining the order of the genetic changes during

progression, and understanding the therapeutic resistance.

An in-depth review of the models has been recently pub-

lished and is beyond the scope of this paper [135]. Here, we

focus on recent studies with clinical implications.

The earliest approaches were models where mutations

accumulate in a population of constant size, considering

only one or two mutations [131, 134]. More recent studies

have focused on the waiting time to cancer [136, 137], that

is, the time until a critical number of driver mutations are

accumulated and initiate the growth of carcinoma and have

attempted to quantify the selective advantage of the driver

mutations [130, 132, 133].

Beerenwinkel et al. [132] related the waiting time to the

population size, mutation rate, and the advantage of the

driver mutations and showed that selective advantage of

mutations has the largest effect on the evolutionary

dynamics of tumorigenesis. In a recent study, Bozic et al.

[130] provided an equation for the proportion of expected

passenger mutations versus the proportion of the drivers

and estimated that driver mutations give an average fitness

advantage of 0.4 %. Martens et al. [133] found that spatial

structure, compared with non-structured cell populations

assumed in other studies, increases the waiting time.

Additionally to the identification of the driver mutations

and their selective advantage, it is also important to

determine the order in which genetic events accumulate in

tumors. The order can vary among tumors and even among

different compartments of the same tumor and might

explain important events in carcinogenesis. Early muta-

tions are promising therapeutic targets, and late mutations

are important in metastasis. Several mathematical models

have been developed to define this order and explain

important events in carcinogenesis [138, 139]. For exam-

ple, Gerstung et al. [140] used a probabilistic graphical

model and their results showed stronger evidence for

temporal order on pathway level than on gene level, indi-

cating that temporal ordering results from selective pres-

sure acting at the pathway level [140].

Another important clinical problem in cancer research is

the development of resistance to targeted therapies. Several

models have been developed to explain the evolutionary

dynamics of drug resistant cancer cells [141, 142]. In a

recent study, Diaz et al. [143] showed that tumors became

resistant to anti-EGFR antibodies as a result of emergence

of resistance mutations in KRAS and other genes that were

present in clonal subpopulation within the tumors before

the initiation of the treatment.

The dynamics of cancer progression is determined not

only by the mutations accumulating in the cells, but also by

the tumor’s interactions with the microenvironment. There

are several studies that use mathematical modeling to

quantify the interactions of the tumor cells with the sur-

rounding environment [144, 145]. In 2008, Gatenby et al.

[146] proposed a model that identifies six microenviron-

mental barriers that tumor has to overcome to emerge as an

invasive cancer. In another study, the authors used mod-

eling to quantify the interactions between tumor cells and

their surrounding stroma [147]. Their results showed that

the evolution of invasiveness occurs by coupling prolifer-

ation and motility, as increased motility allows the
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cancerous cells to escape the microenvironmental restric-

tions that reduce their proliferation ability.

In summary, mathematical models can assist in the

investigation of the clonal evolution of cancer and can give

an important insight into the history of the disease.

Understanding the evolutionary forces that drive carcino-

genesis could lead to more effective methods for preven-

tion and therapy. Over and above, mathematical models

can predict and explain success or failure of anticancer

drugs [148] and will be an important tool for the design of

combination therapies and minimize drug resistance.

Modeling of tumor–immune cell interactions

There is long history of theoretical studies and simulation

techniques involving mathematical and computational

approaches to study tumor progression and tumor–immune

cell interaction. The used techniques include deterministic

models, stochastic models, Petri nets, cellular automata,

agent-based model, and hybrid approaches [149, 150]. A

summary of different mathematical and computational

techniques in cancer systems biology is given in a recent

review paper [149–152].

One of the issues addressed using mathematical models

in tumor–immune cell interaction was adoptive immuno-

therapy. Adoptive immunotherapy using tailored T cell

infusion to treat malignancies has been proven to be

effective in certain type of tumor [153–155]. However,

there are still many unanswered questions for example how

to generate a large number of tumor-specific T cells, how

many T cells to use for therapy, and what schedule would

be most effective [153]. Integrative mathematical modeling

of tumor-immune system interactions and immunotherapy

treatment could provide an analytical predictive framework

to address such questions.

The interplay of different cytokines like IL-2 and

transforming growth factors like transforming growth fac-

tor (TGF-b) is another aspect in the focus of theoretical

research. There are several mathematical models that spe-

cifically incorporate the effect of the TGF-b protein on

tumor development [156–159]. Recently, Wilson et al.

[160] developed a mathematical model to highlight the fact

that immunotherapy alone is not always effective in killing

a tumor. Their studies provide an initial analytical frame-

work for studying immunotherapy via TGF-b inhibition in

combination with vaccine treatment, which help popula-

tions of immune cells to expand during initial phases of

tumor presentation.

The effect of innovative new melanoma cancer therapies

was investigated using models based on systems of dif-

ferential equations [161]. Kirschner et al. [162] were one of

the first to illustrate through mathematical modeling the

dynamics between tumor cells, effector T cells, and IL-2.

They explored the effects of adoptive cellular immuno-

therapy on the model and described in which circumstances

the tumor can be eliminated. Other groups have developed

and investigated the effect of IL-2. De Pillis et al. [163]

proposed a sophisticated model involves tumor cells and

specific and non-specific immune cells (i.e., nature killer

(NK) cells) and employs chemotherapy and two types of

immunotherapy (IL-2 supplementation and CD8? T cell

infusion) as treatment modalities. In the later version of the

model, the concentrations of CD8? cells and the NK cells

of the model were changed. Then, it was possible to sim-

ulate the effect of endogenous IL-2 production on CD8?

cells and NK cells. Finally, it was shown that the potential

patient-specific efficacy of immunotherapy may be

dependent on experimentally determinable parameters

[164].

One of basic concepts of immunotherapy is the

improving of the ability of tumor-specific T lymphocytes.

Kronik et al. [153] presented a new mathematical model

developed for modeling cellular immunotherapy for mel-

anoma. They found that the tumor-immune dynamics

model provided minimal requirements (in terms of T cell

dose and T cell functionality) depending on the tumor

characteristics (tumor growth and size) for a clinical study

[153].

In most mathematical models, the tumor cells interact-

ing with the immune system were considered as homoge-

neous. Recently, Iwami et al. [165] implemented a model

with in which the dynamics of tumor progression under

immune system surveillance was investigated considering

the effects of increasing mutation rates. It could be shown

that there are three different thresholds depending on the

rate of mutations and the number of variants. Until the first

threshold is reached, the immune response suppresses all

tumor variants (phase of tumor dormancy). After reaching

the first threshold, some tumor cells are able to escape the

immune response (phase of partial immunoescape). If the

number of variants reaches the second threshold, all tumor

cells escape the immune response (phase of complete im-

munoescape). After reaching the third and last threshold

through the high number of variants, an error catastrophe

occurs. In this phase, the original tumor can no longer

expand the population and the original tumor cells go

extinct. After the examination of different treatment strat-

egies the model shows that combination of chemotherapy

and immunotherapy is the therapy that could lead to tumor

eradication and cure. To find the effective threshold of

cytokine and adoptive T cell therapy is not only important

to gain a broad understanding of the specific system

dynamics but will also help to guide the development of

combination therapies [163]. Kogan et al. [166] worked on

generalized mathematical modeling for high grad malig-

nant glioma-immune system interaction applied in
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untreated cases and under T cell immunotherapy. Their

models described the dynamic of tumor cells, T cells, and

quantities of secreted cytokines (TGF-b and IFN-c). They

also estimated a level of T cell infusion on a per-patient

basis, clinical measurements, which effects tumor size.

Moreover, their analysis suggested that the duration of

treatment is necessary for adoptive cellular therapy.

In summary, mathematical models of tumor-immune

interactions provide an analytical view of cancer systems

biology in order to address specific questions about tumor-

immune dynamics. In silico experimental models of cancer

have the potential to allow researchers to refine their

experimental programs with an aim of reducing costs and

increasing research efficiency [167].

Conclusion

This paper reviews bioinformatics methods used in a

contemporary cancer immunology research and cancer

immunotherapy. From the plethora of tools and methods

for the analysis of biomolecular data, we reviewed selected

topics which are of major importance for the field: dat-

abases, bioinformatics methods for NGS data, epitope

prediction, integrative data analysis and network modeling,

and mathematical models. Other topics are of similar

importance, but due to the page limitations, these are not

introduced. For example, digital pathology is gaining a

major impact in research, teaching, and routine applica-

tions [168]. New devices for automated staining and high-

resolution scanners are already in use and provide a wealth

of high-content data (i.e., images with [100 Gbytes per

slide). From these images, one can extract the number, the

location, and type of infiltrating T cells and define an

immune score, which is superior to the AJCC/UICC-TNM

staging [9]. Without doubt, this and similar type of image-

based information in combination with biomolecular

measurements will be of great importance in future clinical

practice. However, these datasets pose considerable tech-

nical challenges, which are only partially solved.

As of today, we and others strongly believe that NGS

data will not only enable the identification of novel genes

and pathways relevant for diagnosis and prediction of

tumor progression but will also be fundamental in the near

future in clinical practice. Specifically, whole-exome

sequencing is increasingly being used to characterize the

genomic landscape of the tumor showing a number of

novel insights into the biology of the cancer and identifying

novel therapeutic targets [169]. The current bottleneck in

whole-exome sequencing projects is not the sequencing of

the DNA itself but lies in the structured way of data

management and the sophisticated computational analysis

of the experimental data.

Cancer immunology research and cancer immunother-

apy add an additional layer of complexity and require a

specific solution. As NGS projects are delivering hundreds

or even thousands of germline and somatic mutations per

patient sample, automated tools are needed to process these

datasets and predict putative epitopes. The accuracy of

current T cell epitope predictors has reached a high level

and hence enables researchers to focus on a subset of

potential epitope candidates. To our experience, the overlap

of the output of the prediction tools is not always identical,

and we therefore recommend a consensus approach.

The ever-increasing amount of data as well as the het-

erogeneity and complexity of the datasets urge for inten-

sified use of bioinformatics tools and mathematical

methods. We strongly argue that only interdisciplinary

teams can extract the relevant information and so generate

knowledge from these datasets. Thus, wet-lab scientists

should consider data management at the very beginning of

the project and commit considerable resources to data

management and analysis for several reasons. First, science

is becoming increasingly driven by data as a source of

hypotheses, and the ability to integrate and analyze heter-

ogeneous data is crucial. Inclusion of additional data from

public sources and integration with proprietary data can

pinpoint novel molecular interactions. Second, specific

projects require specific database solutions to manage the

captured data and therefore specific adaptations and/or

developments of databases are of utmost importance. And

third, in our view, an approach by which biomedical

questions are addressed through integrating experiments in

iterative cycles with mathematical modeling, simulation,

and theory will considerably contribute to the field.
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