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Abstract IL-21, and to a lesser extent IL-15, inhibits diVer-
entiation of antigen-primed CD8 T cells and promotes their
homeostasis and anti-tumour activity. Here, we investigated
molecular mechanisms behind tumour-speciWc responses of
primary murine T lymphocytes engineered to express a TCR
directed against human gp100/HLA-A2 following short-term
exposure to IL-15 and/or IL-21. We demonstrated that
IL-15 + IL-21, and to a lesser extent IL-21, enhanced antigen-
speciWc T-cell cytotoxicity, which was related to enhanced

expression of granzymes A and B, and perforin 1. Further-
more, IL-15 + IL-21 synergistically enhanced release levels
and kinetics of T-cell IFN� and IL-2, but not IL-10. Enhanced
secretion of IFN� was accompanied by increased gene
expression and cytosolic protein content, and was restricted
to eVector memory T cells. To summarize, we show that
IL-15 + IL-21 improves antigen-speciWc responses of TCR-
transduced eVector T cells at multiple levels, which pro-
vides a rationale to treat T cells with a combination of these
cytokines prior to their use in adoptive TCR gene therapy.

Keywords IL-15 · IL-21 · Cytokines · T lymphocyte · 
Cytotoxicity

Abbreviations
Gzm Granzyme
MFI Mean Xuorescence intensity
NKT Natural killer T cell
Prf1 Perforin 1

Introduction

TCR gene transfer represents an attractive therapeutic strat-
egy to provide patients with tumour-speciWc T-cell immu-
nity [1–5]. The clinical feasibility of this experimental
therapy has recently been demonstrated in trials with TCR-
gene modiWed T cells to treat melanoma patients who were
pre-conditioned with lympho-ablative chemotherapy [6, 7].
Objective response rates in these trials ranged from 12% to
30%, and although impressive, still lagged behind the 50%
objective response rates observed in earlier trials with non-
gene modiWed T cells [8, 9].

One way to enhance the eYcacy of TCR gene therapy,
other than choosing high-aYnity or genetically improved
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TCR transgenes [6, 10], is to expose T cells to common-�
cytokines other than interleukin-2 (IL-2) prior to their adop-
tive transfer. Notably, antigen priming of CD8 + T cells in
the presence of IL-21, and to a lesser extent IL-15, sup-
presses diVerentiation of naive T cells into eVector T cells,
which in turn enhances in vivo persistence of T cells and
antigen-speciWc eVectiveness [11, 12]. In fact, clinical anti-
tumour eYcacy of T cells irrespective of gene-modiWcation
appears to be directly related to T-cell persistence [13–15],
which in turn is reported to be associated with diVerentiation
state and replicative history of transferred T cells [16].

IL-2, IL-15 and IL-21 all act as co-mitogens for antigen-
activated eVector CD8 T cells [17, 18]. In contrast to IL-2,
however, IL-15 enhances survival of CD8 eVector T cells
[19] and IL-21 does not induce proliferation of regulatory T
cells [20]. Next to their eVects on CD8 T-cell homeostasis,
IL-15 and IL-21 are able to enhance the in vivo anti-tumour
eVects of CD8 T cells [12, 21–25]. For example, adoptively
transferred T cells resulted in potentiated tumour regression
when pre-treated with IL-15 or IL-21 [12, 21, 23]. It is of
interest that IL-21 turns out to be superior to IL-15 in
inducing anti-tumour responses and achieving long-term
tumour control by endogenous as well as adoptively trans-
ferred CD8 T cells [12, 18]. Moreover, combined in vivo
treatment with IL-15 and IL-21 enhanced CD8 T-cell
expansion and anti-melanoma responses relative to the
administration of either cytokine separately [26].

Here, we investigated molecular mechanisms behind
functional responses of primary murine T lymphocytes
engineered to express a TCR directed against human
gp100/HLA-A2 and treated with IL-15 and/or IL-21. Unex-
pectedly, we observed that a combination of IL-15 and IL-
21 promotes antigen-speciWc T-cell responses at multiple
levels. First, IL-15 + IL-21 enhanced T-cell cytotoxicity in
response to hgp100-positive tumour cells, which paralleled
up-regulated expression of granzymes A, B and perforin-1.
Second, these cytokines showed a synergistic eVect in
enhancing levels and kinetics of secreted IFN� and IL-2,
but not IL-10, in an antigen-speciWc manner. The enhanced
IFN� protein production, the most signiWcant response
noted upon co-treatment with IL-15 and IL-21, was due to
enhanced IFN� mRNA levels and was restricted to the sub-
set of CD62L¡/CD44+ eVector memory CD8 T cells.

Results

IL-15 decreases the number of TCR transgene-positive
T cells, whereas IL-21 increases the expression levels 
of TCR transgenes per cell

Primary murine T cells were retrovirally transduced with
TCR�� directed against human gp100280–288/HLA-A2

(gp100/A2) and subsequently treated either with IL-2,
IL-15, IL-21 or the combination of IL-15 and IL-21 (i.e.,
IL-15 + IL-21). Analysis of TCR-V�14 transgene expres-
sion revealed that diVerences among T-cell cultures were
small, yet signiWcant when analysing large series of TCR
transductants (n = 18). Percentages of TCR-V�14 + T cells
following exposure to IL-15 were decreased compared to
T-cell cultures exposed to IL-2 (Fig. 1a: 46, 35, 44 and 48%
TCR-V�14 + cells for IL-2, IL-15, IL-21 and IL-15 + IL-21
T-cell cultures, respectively, IL-15 vs. IL-2 p < 0.05).
Although percentages of TCR-V�14 + T cells in IL-21 T-cell
cultures did not diVer from those in IL-2 T-cell cultures, the
mean Xuorescence intensity (MFI) of TCR-V�14 + T cells
was increased in IL-21 T-cell cultures relative to that of
IL-2 T-cell cultures (Fig. 1b: MFI of 69, 56, 106 and 88 for
IL-2, IL-15, IL-21 and IL15 + IL-21 T-cell cultures,
respectively, IL-21 vs. IL-2 p < 0.05). Percentages as well

Fig. 1 IL-15 decreases the number of TCR transgene-positive T cells,
whereas IL-21 increases the expression levels of TCR transgenes per
cell. Primary murine T cells were retrovirally transduced with TCR��
directed against human gp100280–288/HLA-A2 (gp100/A2) and subse-
quently treated either with IL-2 (100 U/ml), IL-15 (50 ng/ml), IL-21
(50 ng/ml) or IL-15 + IL-21 (50 ng/ml each). T cells were analysed by
Xow cytometry for expression of TCR-V�14 within the FSC/SSC lym-
phocyte gate. Mock-transduced T cells were used as negative controls
and showed <5% TCR-V�14 staining (data not shown). Transduction
eYciencies at day 5 after start of culture (i.e., 3 days after addition of
various cytokines) are indicated as percentages (a) or mean Xuores-
cence intensities (MFI) (b) of T cells expressing TCR-V�14
(mean § SEM, n = 18, *p < 0.01 compared to IL-2)
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as MFI of TCR-V�14 + T cells following exposure to IL-
15 + IL-21 were not signiWcantly diVerent from IL-2 T-cell
cultures. Mock-transduced T cells consisted of <5% TCR-
V�14 + T cells (data not shown).

T cells treated with a combination of IL-15 and IL-21 show 
enhanced antigen-speciWc cytotoxicity

Chromium release assays demonstrated that T cells were
able to recognize human gp100280–288 peptide-loaded B16
melanoma target cells expressing human HLA-A2
(B16A2), irrespective of the cytokine added to the T-cell
cultures (Fig. 2a). B16gp100/A2 cells, which present
endogenously processed human gp100 in the context of
HLA-A2 were not, or only to a low extent, killed by T cells
that had been cultured in the presence of IL-2 or IL-15
(Fig. 2b). However, B16gp100/A2 cells were clearly lysed
by IL-21 cultured T cells, an eVect that was even more pro-
nounced when T cells were cultured in the presence of IL-
15 + IL-21 (Fig. 2b). Cytotoxic responses towards peptide
loaded B16A2 and B16gp100/A2 cells were qualitatively
similar in that IL-15 + IL-21 cultured T cells showed the
highest cytotoxicity, IL-2 cultured T cells the lowest cyto-
toxicity and IL-15 or IL-21 cultured T cells an intermediate
cytotoxicity. Mock-transduced T cells showed no back-
ground activity, except for some background activity (up to
20% at E:T > 40:1) of IL-15 + IL-21 T cells towards
B16gp100/A2 (not towards B16A2 with or without gp100
peptide).

The abilities of T cells to kill tumour cells paralleled
gene expression levels of eVector molecules. Figure 3
shows that gene expression of granzyme A (Gzma, Fig. 3a),
granzyme B (Gzmb, Fig. 3b) and perforin 1 (Prf1, Fig. 3c)
were most profoundly increased in IL-15 + IL-21 treated T
cells following antigen stimulation (4- to 5-fold increase for
Gzma, Gzmb and Prf1, p < 0.05 when compared to IL-2 T
cells). Interestingly, IL-15 reduced gene expression of
Gzma, but not of the other lytic eVector molecules (Fig. 3a;
p < 0.05 when compared to IL-2 T cells). Gene expression
levels of Gzmb, but not Gzma or Prf1, were slightly but sig-
niWcantly up-regulated in T cells cultured with IL-15 + IL-
21 following stimulation with antigen-negative B16 cells
(Fig. 3b).

Antigen-speciWc secretion of IFN� is enhanced and shows 
accelerated kinetics upon combined treatment with IL-15 
and IL-21

In cytokine release assays, IL-2 and IL-15 T-cell cultures
showed low levels of IFN� (Fig. 4a), IL-2 (Fig. 4b) or IL-
10 (Fig. 4c) secretion in response to B16gp100/A2 target
cells. IL-21 cultured T cells secreted higher levels of
IL-2 and IL-10, but not IFN�, whereas the highest levels

of secretion for all three cytokines were observed for IL-
15 + IL-21 cultured T cells (Fig. 4). Secreted levels of
IFN� and IL-2 by IL-15 + IL-21 T cells reached statistical

Fig. 2 T cells treated with a combination of IL-15 and IL-21 show
enhanced antigen-speciWc cytotoxicity. Murine splenocytes were
gp100/A2 TCR-transduced and cultured with IL-2, IL-15, IL-21 or IL-
15 + IL-21 as described in legend to Fig. 1. Cytokine-stimulated T
cells were co-cultured for 4 h with 51Cr-labelled target cells. Target
cells included B16A2 cells loaded with human gp100 peptide (a),
B16gp100/A2 cells (b) or B16A2 cells (c). EVector to target ratios and
percentages of speciWc 51Cr-release are indicated in the Wgures.
Mock-transduced T cells served as negative controls. Only in case of
mock-transduced T cells cultured with IL-15 + IL-21 there was some
background activity towards B16gp100/A2 (not towards B16A2 with
or without gp100 peptide) up to 20% of 51Cr-release at E:T ratio’s of
>40:1. At the moment of cytotoxicity assay, 2 weeks after start of
culture, TCR-V�14 surface expression was around 40% (data not shown).
Results are from a representative experiment out of 6 experiments
with similar results
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signiWcance when compared to IL-2 T cells. IL-10 levels
were generally low and not statistically diVerent among the
diVerent cytokine cultures. Notably, IL-15 + IL-21 cultured
T cells secreted 27-fold more IFN� than IL-2 cultured T
cells (Fig. 4a: 2,400 and 90 pg/ml, respectively), whereas
IL-15 or IL-21 alone hardly induced secretion of IFN�
(Fig. 4a: 22 and 143 pg/ml, respectively). This observed
synergy between IL-15 and IL-21 for IFN� secretion was
also evident, although to a lesser extent, for IL-2 and IL-10
secretion, with a 13-fold increase both in IL-2 and in IL-10
secretion for IL-15 + IL-21 T cells compared to IL-2 T cells

(Fig. 4b, c, with IL-15 and IL-21 alone resulting in only a
2- to 5-fold increase in IL-2 or IL-10 secretion). Stimula-
tion with antigen-negative B16 cells resulted in low levels
of secreted IFN� and negligible levels of secreted IL-2 or
IL-10 for IL-15 + IL-21 T cells (Fig. 4). Mock-transduced
T cells showed no cytokine secretion in any condition
tested (data not shown).

Next, we investigated the kinetics of antigen-speciWc
cytokine secretion, and observed that IL-15 + IL-21 cul-
tured T cells secreted IFN� at enhanced levels already at 4 h
after stimulation (Fig. 5a, p < 0.05 when compared to IL-2

Fig. 3 A combination of IL-15 and IL-21 enhances antigen-speciWc
Gzma, Gzmb and Prf1 gene expression in T cells. Murine splenocytes
were gp100/A2 TCR-transduced and cultured with IL-2, IL-15, IL-21
or IL-15 + IL-21 as described in legend to Fig. 1. Five days after start
of culture, T cells were stimulated with B16gp100/A2 or B16 cells for
20 h. Stimulated T cells were analysed by micro-array for gene expres-
sion of Granzyme A (Gzma, a), Granzyme B (Gzmb, b) or Perforin 1
(Prf1, c). See “Materials and methods” for details about micro-array
procedures. Y-axes show relative gene expression for cytokine cul-
tures compared to a common reference. Two independent experiments
(starting from T-cell cultures) gave similar results (mean § SD, n = 3,
*p < 0.05 compared to IL-2)

Cytokine cultures

0

1000

2000

3000

4000

5000

6000

7000
G

zm
a 

g
en

e 
ex

p
re

ss
io

n
(r

el
at

iv
e 

u
n

it
s)

B16gp100/A2 B16

*

*

0

10000

20000

30000

40000

50000

60000

G
zm

b
 g

en
e 

ex
p

re
ss

io
n

(r
el

at
iv

e 
u

n
it

s)

*

*

B16gp100/A2 B16

0
200

600

1000

1400

1800

2200

2600

IL-2 IL-15 IL-21 IL-15+IL-21

P
rf

1 
g

en
e 

ex
p

re
ss

io
n

(r
el

at
iv

e 
u

n
it

s)

*B16gp100/A2 B16

a

b

c

Fig. 4 Antigen-speciWc secretion of IFN� is enhanced upon combined
treatment with IL-15 and IL-21. Murine splenocytes were gp100/A2
TCR-transduced, cultured with cytokines and stimulated with B16 tar-
get cells as described in legend to Fig. 3. Stimulated T cells were ana-
lysed by commercial ELISA for the secretion of IFN� (a), IL-2 (b) and
IL-10 (c). During the stimulation assay, no exogenous cytokines were
added to the T-cell:target cell co-cultures. T cells cultured with medi-
um or Con A served as negative and positive controls, respectively.
Mock-transduced T cells showed no cytokine secretion in any condi-
tion tested (data not shown). The diVerent T-cell cultures and the levels
of cytokines that were present in supernatants are indicated on the
X- and Y-axis, respectively (mean § SEM, n = 4 (IL-2 and IL-10) or
n = 10 (IFN�), *p < 0.05 and **p < 0.005 compared to IL-2)
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T cells). Kinetics of IL-2 secretion by IL-15 + IL-21 T cells
were similar but somewhat delayed when compared to
IFN� secretion (Fig. 5a, b: 4% of maximum IL-2 level as
measured at t = 20 h was secreted after 4 h compared to
23% for IFN�), whereas kinetics of IL-10 secretion were
accelerated when compared to IFN� or IL-2 (Fig. 5c: 78%
of maximum IL-10 level was secreted after 4 h of stimula-
tion).

The combination of IL-15 and IL-21 enhances 
antigen-speciWc Ifng gene expression in T cells

Studying mRNA expression, we observed that IL-2 and IL-
15 cultured T cells show low levels of Ifng gene expression
in response to B16gp100/A2 target cell stimulation
(Fig. 6a). IL-21 cultured T cells expressed signiWcantly
higher levels of Ifng (Fig. 6a: 2031 vs. 650 relative gene

expression units for IL-21 and IL-2 cultured T cells, respec-
tively, p < 0.05). In line with IFN� protein levels, highest
Ifng gene expression levels were observed for IL-15 + IL-
21 T cells (Fig. 6a: 6461 relative gene expression units,
p < 0.05 when compared to IL-2). No diVerences were
found in Il2 and Il10 gene expression levels for T cells cul-
tured in the presence of diVerent common-� cytokines
(Fig. 6b, c).

EVector memory T cells are the major source of enhanced 
antigen-speciWc IFN� protein production upon combined 
treatment with IL-15 and IL-21

To determine the cell type responsible for IFN� production,
especially relevant in the context of IL-15 and IL-21’s
reported inhibitory actions on T-cell diVerentiation, we
performed intracellular cytokine stainings in combination

Fig. 5 Antigen-speciWc secre-
tion of IFN� and IL-2, but not 
IL-10, shows accelerated kinet-
ics upon combined treatment 
with IL-15 and IL-21. Murine 
splenocytes were gp100/A2 
TCR-transduced and cultured 
with cytokines as described in 
legend to Fig. 1. Cytokine cul-
tured T cells were stimulated 
with B16gp100/A2 and B16 
cells for 1, 4 or 20 h, and ana-
lysed by commercial ELISA for 
the secretion of IFN� (a), IL-2 
(b) or IL-10 (c). Mock-trans-
duced T cells showed no cyto-
kine secretion at any time-point 
tested (data not shown). Time 
points following target cell stim-
ulations are indicated at the 
X-axes. Absolute levels of cyto-
kines present in supernatants 
are indicated at the Y-axes 
(mean § SEM, n = 3, 
*,#p < 0.05 compared to IL-2 
for B16gp100/A2 and B16, 
respectively)
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with stainings for T-cell diVerentiation markers. The num-
ber of IFN� + T cells after stimulation with B16gp100/A2
target cells was enhanced in IL-21 T-cell cultures,
although not to a statistically signiWcant extent, and highest
in IL-15 + IL-21 T-cell cultures, which corroborated the
secretion data (see Supplementary Fig S1a, p < 0.005 when
compared to IL-2 T-cell cultures). See Fig. 7a for a repre-
sentative dot plot example. No signiWcant diVerences could
be found with respect to IL-2 or IL-10 + T cells after
stimulation with B16gp100/A2 target cells (see Supple-
mentary Fig S1b and S1c). CD62L/CD44/IFN� triple
stainings revealed that CD62L¡/CD44+ eVector mem-
ory T cells were the major source of antigen-induced IFN�

(Fig. 7b). Antigen-negative B16 stimulation resulted in low
numbers of intracellular cytokine-positive T cells (see Sup-
plementary Fig S1), and mock-transduced T cells showed
no cytokine production in any condition tested (data not
shown).

Discussion

In the present paper we studied molecular mechanisms
behind tumour-speciWc responses of primary murine T cells
treated with IL-2, IL-15, IL-21 or a combination of IL-15
and IL-21 in the setting of TCR gene transfer. Combined

Fig. 6 The combination of IL-15 and IL-21 enhances antigen-speciWc
Ifng gene expression in T cells. Murine splenocytes were gp100/A2
TCR-transduced, cultured with cytokines as described in legend to
Fig. 1. Five days after start of culture, T cells were stimulated with
B16gp100/A2 or B16 cells for 20 h. Stimulated T cells were analysed
by micro-array for gene expression of IFN� (a), IL-2 (b) or IL-10 (c).
See “Materials and methods” for details about micro-array proce-
dures. Y-axes show relative gene expression for cytokine cultures
compared to a common reference. Two independent experiments
(starting from T-cell cultures) gave similar results (mean § SD,
*p < 0.05 compared to IL-2)
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Fig. 7 IL-15 + IL-21-induced IFN� production is restricted to
CD62L+/CD44¡ eVector memory T cells. Murine splenocytes were
gp100/A2 TCR-transduced and cultured with cytokines as described
in legend to Fig. 1. Five days after start of culture, T cells were stimu-
lated with medium, Con A (10 ng/ml) or B16gp100/A2 cells, and ana-
lysed by Xow cytometry for the expression of IFN� (a). In (b) IFN�
staining was combined with the T-cell diVerentiation markers CD62L
and CD44. In the latter case, T cells were Wrst stained with anti-CD62L
mAbFITC and anti-CD44 mAbAPC, followed by intracellular staining
with anti-IFN� mAbPE. Cells were FSC/SSC gated on viable lympho-
cytes and percentages of IFN�+ T cells (in red) were determined. The
results for IL-2 and IL-15 + IL-21 cultures are shown. Results are
from a representative experiment out of 3 independent experiments
with similar results
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treatment with IL-15 and IL-21 of primary TCR-engineered
T cells resulted in enhanced tumour-speciWc responsiveness
at the following levels. First, cytotoxicity and the expres-
sion of lytic eVector molecules were increased. Second,
levels of secreted IL-2 and IFN� were enhanced, likely reg-
ulated at the post-transcriptional and transcriptional level,
respectively. Intriguingly, IL-15 and IL-21 inhibit T-cell
diVerentiation, yet they acted most profoundly on IFN� pro-
duction by eVector memory T cells.

Analysis of TCR transgene expression in TCR-engi-
neered T cells revealed that diVerences upon short-term
culture with various cytokines were small, yet IL-15
decreased percentages and IL-21 increased MFIs of TCR
transgene-positive T cells (Fig. 1). Currently, we cannot
rule out whether IL-15 and IL-21 as single cytokines act
directly on TCR surface expression or indirectly via their
eVects on T-cell growth (IL-15 enhances T-cell growth,
whereas IL-21 does not support T-cell growth when com-
pared to IL-2, data not shown). Importantly, IL-15 + IL-21,
a combination of cytokines with signiWcant consequences
for TCR-mediated functions (see below), did not alter
transduction eYciencies. This indicates that the eVects of
IL-15 + IL-21 on T-cell function must be related to T-cell
properties rather than TCR surface expression levels. More-
over, IL-15 + IL-21 results in similar T-cell numbers at the
day of phenotypical and functional analyses when com-
pared to IL-2 (data not shown). It is of interest to note that
the potentially beneWcial eVect of IL-21 on T-cell diVerenti-
ation [12], in particular the enrichment of T cells with a
CD62L+/CD44¡ naive T-cell phenotype, is independent of
prior exposure to IL-2 (inherent to our transduction proto-
col) and genetic introduction of TCR transgenes (see Sup-
plementary Fig S2). The same holds true for IL-15 + IL-21
treatment of T cells, which results in an enrichment of
CD62L+/CD44¡ T cells, although to a lesser extent when
compared to IL-21, that is not compromised following TCR
gene transfer (Fig. 7b, and described in more detail in Pouw
et al., manuscript submitted).

T cells cultured in the presence of IL-21, but not IL-2
or IL-15, clearly lysed hgp100/HLA-A2-expressing B16
melanoma cells (Fig. 2). Antigen-speciWc cytotoxicity
observed for IL-21 T-cell cultures is in line with Wndings by
Casey et al. [27] showing that IL-21, in contrast to IL-2,
enhances T-cell cytotoxicity. In addition, we noted that
IL-21 up-regulated perforin 1 gene expression (Fig. 3c:
p < 0.05 B16gp100/A2 when compared to B16), which is in
agreement with a report by Ebert et al. [28] demonstrating
up-regulated perforin-mediated cytotoxic activity of human
intra-epithelial lymphocytes after exposure to IL-21. The
enhanced cytotoxicity was even more pronounced when T
cells were cultured in the presence of IL-15 + IL-21
(Fig. 2). Enhanced cytotoxic killing of IL-15 + IL-21 T

cells coincided with signiWcantly increased gene expression
of the eVector molecules granzymes A, B and perforin 1
(Fig. 3). Both IL-15 and IL-21 have been shown to up-reg-
ulate intracellular granzyme B and perforin expression [12,
28–31]. Zeng et al. [26] demonstrated that granzyme B
gene expression was higher in freshly isolated human T
cells cultured in IL-15 plus IL-21, than in T cells cultured
with either cytokine alone. To our knowledge, our report is
the Wrst to demonstrate up-regulated gene expression of
three cytotoxic molecules (granzyme A, granzyme B and
perforin 1) after antigen-speciWc stimulation of T cells cul-
tured in IL-15 plus IL-21.

In addition, T cells cultured in the presence of both IL-
15 and IL-21 showed the highest levels and accelerated
kinetics of secreted IFN� in response to B16gp100/A2 mel-
anoma cells (Figs. 4a, 5a). The eVect of IL-15 + IL-21 on
IFN� secretion is of a synergistic nature and is most likely
explained by enhanced Ifng gene expression (Fig. 6a).
Interestingly, T cells cultured in the presence of IL-21 only,
also showed increased Ifng gene expression, yet the gene
expression level appeared to have been insuYcient to result
in signiWcantly enhanced IFN� protein production or
release (see Supplementary Fig S1a and Fig. 4a, respec-
tively). Since IL-15 and IL-21 aVect T-cell diVerentiation,
we studied the eVect of IL-15 + IL-21 on IFN� production
via triple Xow cytometry stainings, and identiWed CD62L¡/
CD44+ eVector memory T cells as the major source for
IFN� (Fig. 7b). Currently, we cannot exclude the contribu-
tion of NK and NKT cells towards the observed IFN� pro-
duction. In fact, IL-15 increased percentages of NK1.1 cells
and CD8 T cells and decreased those of CD4 T and CD19 B
cells, whereas IL-21 minimally but signiWcantly decreased
percentages of CD3 T cells (see Supplementary Fig S3, and
in agreement with [32–37]). The IL-15-induced increase in
NK1.1+ cells was found both in the CD3¡ and in the CD3+
subsets, indicating an increase both in NK and in NKT
cells. Notably, both these cell types express CD44, and IL-
15 has been shown to up-regulate expression and activation
of CD44 on NK cells, which in turn regulates the expres-
sion of IFN� [38].

With respect to IL-2 and IL-10 production, the IL-21-
induced IL-2 secretion that we observed is in line with pre-
vious reports related to IL-21’s suppressive eVect on T-cell
diVerentiation [11, 12, 39]. IL-15 + IL-21 also increased
levels and accelerated kinetics of T-cell secreted IL-2, but
not IL-10, following tumour cell stimulation (Figs. 4, 5).
Enhanced antigen-speciWc IL-2 secretion did not correlate with
increased levels of IL-2 mRNA and cytosolic protein, sug-
gesting that enhanced secretion was not caused by enhanced
gene transcription. Antigen-speciWc IL-10 gene expression,
intracellular protein and secretion were not diVerentially
regulated in the diVerent cytokine cultures (Figs. 4, 5, 6).
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IL-15 and IL-21, when combined, resulted in predomi-
nantly CD8 T cells (see Supplementary Fig S3) with potent
T-cell eVector functions. The cooperative eVects of IL-15
and IL-21 with respect to cytotoxicity, IFN� and IL-2 secre-
tion may be explained as follows. First and with respect to
cytokine production, activation of distinct downstream
mediators of IL-15 and IL-21 may amplify production of
IL-2 and IFN�. For example, IL-21 signals predominantly
through Jak3, STAT1 and STAT3, whereas IL-15 signals
predominantly through STAT5 and ERK1/2 [40]. In fact,
regulatory sites in the IFN� promoter are responsive to both
STAT- and ERK-dependent transcription factors [41, 42].
Second and with respect to tumour cell killing, expression
of perforin in memory CD8 + T cells may be induced by
IL-21, whereas degranulation of CD8 + T cells and release
of perforin is triggered by IL-15 (Fig. 3c, and reference
[31]).

We postulate that enhanced IL-2 production of T cells
cultured with IL-15 + IL-21 may support in vivo T-cell
expansion, and that enhanced IFN� production and cyto-
toxicity may contribute to in vivo anti-melanoma activi-
ties. This would provide a molecular basis to explain the
Wndings by Zeng et al. [26], who reported enhanced
CD8 + T-cell expansion and anti-melanoma responses
upon in vivo administration of both IL-15 and IL-21.
Although diVerences between murine and human IL-15
and IL-21 cannot be excluded, we argue that our Wndings
may be well translated to the human setting. First, the
combination of IL-15 and IL-21 has been reported to
improve the proliferation of human eVector T cells [44],
which may be of importance to adoptive T-cell therapy tri-
als. In fact, this combination of cytokines may promote
proliferation of human T cells better than murine T cells
since we observed no beneWcial eVect of IL-15 + IL-21 on
murine T-cell growth when compared to IL-2 (data not
shown). Second, IL-15 combined with IL-21 reverses IL-
15-induced down-regulation of CD28 and results in
enhanced IL-2 and IFN� production upon TCR and CD28
triggering [43]. Moreover, a combination of IL-15 and
IL-21 has recently been shown to enhance cytotoxicity and
IFN� production by PBMC of melanoma patients [44],
which is in strict accordance with our Wndings using mouse
TCR-engineered T cells.

Taken together, we conclude that a combination of IL-15
and IL-21 provides T cells with two distinct properties,
both having a potential advantage in clinical T-cell therapy.
On the one hand, the combination of IL-15 and IL-21
results in enrichment of less diVerentiated T cells [11, 12],
which may improve persistence and anti-tumour activities
of adoptively transferred T cells [13, 15, 16, 45]. And on
the other hand, this combination of cytokines results in
functional potentiation of eVector T cells, which enables T
cells to directly act against a tumour. Our Wndings argue for

the combined ex vivo treatment of TCR-engineered T cells
prior to adoptive therapy with IL-15 and IL-21.

Materials and methods

Cells and reagents

The packaging cell lines 293T and Phoenix-amp, and the
melanoma cell lines B16 wild-type (B16), B16 transfected
with AAD DNA (human HLA-A2 containing the �3 loop
of murine H2-Kd, termed B16A2) and B16 transfected with
HLA-A2 and hgp100 DNA’s (B16gp100/A2) (kindly pro-
vided by dr. G. Adema, Nijmegen, The Netherlands) were
cultured as described elsewhere [46]. B16A2 was grown
under selection of 1 mg/ml G418, and B16gp100/A2 was
grown under selection of 1 mg/ml G418 and 0.5 mg/ml
Hygromycin B. Monoclonal Abs used in this study were:
PerCP-conjugated anti-CD3� (145-2C11), FITC-conju-
gated anti-CD4 (RM4-5), Allophycocyanin (APC)-conju-
gated anti-CD8� (53-6.7), APC-conjugated anti-CD11c
(HL3), PE-conjugated anti-CD19 (1D3), PE-conjugated
anti-NK1.1 (PK136), PE- or biotin-conjugated anti-CD27
(LG.3A10), APC-conjugated anti-CD44 (IM7), FITC- or
PE-conjugated anti-CD62L (MEL-14), PE-conjugated anti-
IFN� (XMG1.2), APC-conjugated anti-IL-2 (JES6-5H4),
APC-conjugated anti-IL-10 (JES5-16E3) (all from BD Bio-
sciences, Breda, the Netherlands), PE- or APC-conjugated
anti-CCR7 (4B12, eBiosciences, San Diego, CA), and PE-
conjugated anti-human TCR-V�14 (CAS1.1.3, Beckman
Coulter, Marseille, France). Other reagents used in this
study were human gp100 wild-type peptide (YLE-
PGPVTA) (4), Streptavidin (SaV)-FITC conjugate (BD
Biosciences), Concanavalin A (Con A, Sigma, St. Louis,
MS), human rIL-2 (Proleukin, Chiron, Amsterdam, The
Netherlands), human rIL-15 (Peprotech, Rocky Hill, NY)
and murine rIL-21 (R&D Systems).

TCR gene transfer and cytokine stimulation

Single cell suspensions of C57BL/6 mouse spleens (Eras-
mus MC animal housing facility, Rotterdam, The Nether-
lands) were obtained in compliance with a national animal
license. T cells were genetically modiWed with TCR��
genes prior to cytokine exposure as described elsewhere
[42]. In short, T cells were stimulated for 24 h with 2.5 �g/
ml Con A in the presence of 100 U/ml IL-2 (which is con-
sidered the start of culture, t = day 0). Subsequently, T cells
were retrovirally transduced via retronectin-mediated virus
supernatant centrifugations with transgenes encoding a
human TCR�� speciWc for gp100280–288/HLA-A2 (gp100/
A2) that had previously been murinized for TCR-C� and
C�. Mock-transduced T cells were exposed to the same
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procedure except for the use of virus-free instead of
virus-containing supernatant, and were used as experimental
controls for TCR-transduced T cells. Following T-cell acti-
vation and gene transfer (at t = day 2), T cells were cultured
at 0.15–1 £ 106 cells/ml in 24-well plates in medium [46]
supplemented with 100 U/ml rIL-2, 50 ng/ml IL-15, 50 ng/ml
IL-21 or 50 ng/ml IL-21 + 50 ng/ml IL-15. Concentrations
of the diVerent cytokines were pre-determined by titra-
tion experiments (ranging from 10–100 ng/ml, data not
shown). T-cell exposure times to cytokines are indicated
in the various Wgures. Cytokines were refreshed every
2–3 days.

Cytotoxicity and cytokine secretion

Cytotoxic activity of TCR-transduced T cells was measured
in a standard 4–6 h 51Cr-release assay, principally as
described [46, 47]. B16F10, B16gp100/A2 and B16A2
cells were used as target cells, and in some experiments
B16A2 cells were pulsed with human gp100 peptide (Wnal
concentration: 10 �M) for 15 min at 37°C and 5% CO2

prior to co-cultivation with eVector T cells. Cytokine secre-
tion in response to the above-mentioned B16 target cells,
and Con A and medium as controls, was measured in super-
natants from 20 h co-cultivations (6 £ 104 T cells and
2 £ 104 target cells per well in 96-well plates) by mouse
IFN� ELISA (U-CyTech, Utrecht, The Netherlands),
mouse IL-2 ELISA (Endogen, Pierce Biotechnology, Rock-
ford, IL) and mouse IL-10 ELISA (U-CyTech). During tar-
get cell stimulations no exogenous cytokines were added to
the T-cell cultures.

Flow cytometry and FACSort

Immune monitoring comprised detection of leucocyte
markers, T-cell diVerentiation markers, TCR transgene
expression and intracellular cytokines by Xow cytometry
using a FACSCalibur (BD Biosciences). To analyse surface
expression of leucocyte or T-cell markers as well as the
introduced human gp100/A2 TCR��, 0.1–0.5 £ 106 T cells
were washed with PBS, incubated for 30 min at 4°C (or
37°C for CCR7 detection) with 10 �l of mAb (or 5 �l of the
TCR-V�14 mAb) added to a cell pellet, washed again, and
Wxed with 1% paraformaldehyde prior to Xow cytometry.
For intracellular detection of IFN�, IL-2 and IL-10, T cells
were stimulated with target cells in the presence of brefel-
din A (1 mg/ml) for 20 h and subsequently stained using
the CytoWx/Cytoperm kit (BD Biosciences) in 96-well
plates according to the manufacturer’s protocol. Medium
and Con A (10 �g/ml) were used as negative and positive
stimulation controls, respectively. Conjugated and matched
isotype control mAbs were used to determine non-speciWc
intracellular stainings. In some experiments, T cells were

incubated with CD62L and CD44 mAbs for 30 min at 4°C
prior to intracellular IFN� staining. Flow cytometry analy-
sis was performed using CellQuest Pro software 5.2.1. Data
are presented either as absolute numbers of cells present in
a Wxed volume that were positive for a certain cytokine (see
Supplementary Figure S1) or as dot plots of IFN�-stained
cells with quadrants set at IL-2 T cells that were stimulated
with medium (Fig. 7).

Micro array analysis

TCR-transduced T cells were cultured in the presence of
IL-2, IL-15, IL-21 or IL-15 + IL-21 for 3 days, washed and
co-cultured with B16 or B16gp100/A2 cells (2 £ 106 T
cells and 0.5 £ 106 target cells in 2 ml medium) for
another 18 h without exogenous cytokines. Cellular RNA
was extracted by the Rneasy Mini kit following RNase-
Free DNase treatment (Qiagen, Valencia, CA). Concentra-
tion was measured on a nanodrop ND-100 (NanoDrop
Technologies Inc., Wilmington, DE), and quality was
checked (RNA integrity number >7) on an Agilent 2100
BioAnalyzer (Agilent Technologies, Palo Alto, CA). A
1 �g of RNA was labelled with cyanine 3 (test samples)
and cyanine 5 (common reference) by the Low NA input
Linear AmpliWcation kit (Agilent). A common reference
was generated by labelling 1 �g portions of a pool com-
prising 1 �g of each test RNA, and mixing the labelled por-
tions afterwards. Mouse Genome 4 £ 44 K micro arrays
were hybridized overnight at 65°C, scanned with a DNA
Micro Array Scanner, and analysed with Feature Extrac-
tion software 9.5.1 (Agilent). To process data, outlier
removed median signals were used in the R 2.5.0 and Bio-
conductor 2.0 MAANOVA packages. All slides were sub-
jected to a set of quality control checks and, after log2
transformations, data were normalized by a spacial Lowess
smoothing procedure and analysed using a two-stage
mixed linear model [48, 49]. Analyses were performed
using full factorial design with a group-means-parameter-
ized linear model quantifying Array (random), Slide (ran-
dom) and Batch (random) eVects in addition to the
reference and the experimental eVects. For each analysis
the mixed model was re-parameterized with three diVerent
contrast matrices to test the hypotheses of interest. For
hypothesis testing an Empirical Bayes Fs test was used and
its null distribution was estimated from a mixed distribu-
tion based on pooling the statistics from a limited number
(40) of permutations [50, 51].

Statistical analyses

Statistical analyses of T-cell phenotype and function were
performed with two-tailored the Student’s t tests for paired
samples. p < 0.05 was considered statistically signiWcant.
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