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Abstract
Introduction We hypothesize that adenosine and PGE2

could have a complementary immunosuppressive eVect that
is mediated via common cAMP-PKA signaling.
Materials and methods To test this hypothesis, the eVect
of adenosine and PGE2 on the cytotoxic activity and cyto-
kine production of lymphokine activated killer (LAK) cells
was investigated.
Results PGE2 and adenosine inhibited LAK cells
cytotoxic activity and production of INF-�, GM-CSF and
TNF-�. In combination they showed substantially higher
inhibition than each modality used alone. Using agonists
and antagonists speciWc for PGE2 and adenosine receptors
we found that cooperation of PGE2 and adenosine in their
inhibitory eVects are mediated via EP2 and A2A receptors,
respectively. LAK cells have 35-fold higher expression of
EP2 than A2A. Combined PGE2 and adenosine treatment
resulted in augmentation of cAMP production, PKA activ-
ity, CREB phosphorylation and inhibition of Akt phosphor-
ylation. Wortmannin and LY294002 enhanced the
suppressive eVects of adenosine and PGE2. In contrast, Rp-
8-Br-cAMPS, an inhibitor of PKA type I blocked their

immunosuppressive eVects, suggesting that the inhibitory
eVects of PGE2 and adenosine are mediated via common
pathway with activation of cAMP-PKA and inhibition of
Akt.
Conclusion In comparison to other immunosuppressive
molecules (TGF-� and IL-10), adenosine and PGE2 are
unique in their ability to inhibit the executive function of
highly cytotoxic cells. High intratumor levels of adenosine
and PGE2 could protect tumor from immune-mediated
destruction by inactivation of the tumor inWltrating func-
tionally active immune cells.

Keywords PGE2 · Adenosine · Immunosuppression · 
Cytotoxicity · Cytokine production

Introduction

 Prostaglandin E2 (PGE2 ) is a major product of cyclooxy-
genases (COX-1 and COX-2) and plays an important role
in regulating inXammation, as well as various other biolog-
ical processes. PGE2 exerts biological eVects by binding to
four receptors, termed EP1, EP2, EP3 and EP4 that belong to
the family of G protein-coupled receptors and are diVeren-
tially expressed on divergent types of cells [1]. EP2 and EP4

receptors are coupled to Gs, and PGE2 binding to these
receptors therefore results in stimulation of cAMP produc-
tion. In addition, some evidence suggests that EP4 signaling
also activates the PI3K pathway [2]. Signaling via the EP1

receptor leads to increases in intracellular calcium. EP3

receptor-eVector coupling is more complex and involves
multiple splice variants, some of which could inhibit or
stimulate cAMP production and increase IP3 generation [1].

Emerging evidence indicates that PGE2 plays an impor-
tant role in malignant processes. Over-expression of COX-2
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and elevated levels of PGE2 are found in various types of
human malignancies and are often associated with a poor
prognosis [3–5]. Moreover, selective and nonselective
COX-2 inhibitors appear to be beneWcial in cancer patients
and inhibit tumor development in experimental animals [3,
6–10]. Numerous studies indicate that COX-2 and its prod-
ucts are directly involved in primary carcinogenesis. For
example, pharmacological or genetic ablation of COX-2
inhibits skin carcinogenesis, development of intestinal pol-
yps in APCMin mice and colonic polyps in APC716 mice [11,
12]. Conversely, over-expression of COX-2 in mammary
glands results in increased breast cancer formation [13].
PGE2 aVects carcinogenesis via diVerent cognate EP recep-
tors [14–16]. Several mechanisms participate in PGE2-
mediated stimulation of tumor growth and metastasis.
PGE2 directly stimulates tumor cell proliferation, migration
and invasiveness [17], stimulates production of VEGF and
angiogenesis [18–20] and inhibits functional activity of
immune cells, thereby aiding the escape of tumor cells from
immune-mediated destruction [1, 21].

Adenosine is another endogenous molecule that is over-
produced during inXammation in normal and malignant tis-
sues. Adenosine is a nucleoside generated from metabolism
of purine precursors and mediates a broad range of biologi-
cal functions via four speciWc G protein-coupled receptors
(termed A1, A2A, A2B and A3) [22]. Numerous studies dem-
onstrate that adenosine has potent anti-inXammatory eVects
and provides a “stop” signal to inXammatory cells and thus
prevents normal tissue from excessive damage during
inXammation [22–26]. Therefore, it is conceivable that, like
PGE2, adenosine protects malignant tissue from immune-
mediated destruction [25, 26]. In support of this concept,
pharmacological or genetic blocking of A2A receptors
results in a more eYcient immune response with inhibition
of tumor growth and metastasis formation, indicating that
adenosine produced within the tumor suppresses the host-
mediated immune response via A2A-receptor signaling [27].
Consistent with this conclusion, our previous studies dem-
onstrate that adenosine substantially inhibits the cytotoxic
activity and cytokine production of murine and human
LAK cells and show that these inhibitory eVects are medi-
ated via adenosine A2A receptors, leading to activation of
cAMP and PKA type I signaling [28–30] We also found
that adenosine is able to inhibit the cytotoxic activity and
cytokine production of human anti-melanoma speciWc
CD8+ and CD4+ T cells [31].

Malignant cells, as well as stromal cells (macrophages,
Wbroblasts, endothelial cells), are able to produce adenosine
and PGE2, resulting in high levels of these substances in the
tumor microenvironment. PGE2 can activate cAMP signal-
ing via either EP2 or EP4 receptors [1, 2], and adenosine
also stimulates cAMP production via A2A and A2B recep-
tors [22–26]. cAMP provides inhibitory signaling that

could be proportional to the amount of produced cAMP.
Because both adenosine and PGE2 can activate cAMP sig-
naling, we postulate that adenosine and PGE2 cooperate
and cause additive inhibitory eVects on the cytotoxic activ-
ity of immune cells. We further hypothesize that this coop-
eration is mediated via cAMP-elevating receptors triggered
by adenosine and PGE2, resulting in more profound
increases in cAMP production and enhanced activation of
PKA. In the present study we tested our hypothesis by ana-
lyzing the combined eVects of adenosine and PGE2 on the
cytotoxic activity of LAK cells. The ability of other immu-
nosuppressive molecules, such as TGF-� and IL-10 to
potentiate the inhibitory eVects of adenosine and PGE2 was
also evaluated.

Materials and methods

Mice

C57BL/6 and BALB/c (6–8 weeks old) females were pur-
chased from the Jackson Laboratory (Bar Harbor, Maine).
Experiments were performed in accordance with the
approved institutional protocol and guidelines of the Insti-
tutional Animal Care and use Committee.

Reagents

Adenosine, 2-chloroadenosine (CADO), erythro-9-(2-
hydroxy-3-nonyl) adenine (EHNA), Rolaprim, CGS21680,
sulprostone, butaprost, AH23848, SC19220, H89 and
myristoylated PKI14–22 peptide were purchased from
Sigma-Aldrich (St Louis, MO). AH6809 was purchased
from Cayman Chemicals (Ann Arbor, MI) and Rp-8-Br-
cAMPS was from Alexis Biochemicals (San Diego, CA).
TGF-�1 and IL-10 were from PeproTech (Rocky Hill, NJ).
When DMSO was used as a solvent for various chemicals it
was added to LAK cells as an additional control. In all
experiments DMSO at used concentrations showed no
eVects on LAK cells functional activity.

LAK cell generation

LAK cells were generated from spleens of C57BL/6 or
BALB/c mice by incubation with IL-2 (6,000 IU/ml) and
puriWed for their increased adhesion to plastic as previously
described [28, 31]. BrieXy, a single cell suspension of
spleen cells (50 £ 106) was cultured in T-75 Xasks for
3 days in the presence of IL-2 (6,000 IU/ml), and non-
adherent spleen cells were removed. The Xasks were
washed with pre-warmed (37°C) complete medium to
remove those cells that were not Wrmly attached to the
plastic. Plastic-adherent cells were cultured for an additional
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3–8 days and were transferred to another Xask for further
expansion. This approach generated large numbers of puri-
Wed highly cytotoxic LAK cells [28, 32].

Cytotoxic activity of LAK cells

The cytotoxic activity of LAK cells was tested against 51Cr-
labeled 3LL Lewis lung carcinoma cells. LAK cells were
distributed into V-bottom 96-well plates with and without
test agents, and 30 min. later 51Cr-labeled 3LL tumor cells
(5 £ 103/well) were added. LAK cell cytotoxicity was
determined in triplicate at the various eVector:target (E:T)
ratios. After 4 h of incubation at 37°C, supernatants (25 �l)
were transferred into yttrium silicate scintillator-coated
white microplates (LumaPlateTM-96, PerkinElmer, Boston,
MA) and the level of �-emission released by 51Cr was mea-
sured in a �-counter. The percentage of cytotoxicity was
calculated [29]. Data presented as mean § SD. All experi-
ments were repeated 2–3 times.

Cytokine production

LAK cells from C57BL/6 mice were stimulated with anti-
Ly49D mAb as described [28, 33]. Anti-Ly49D mAb was a
gift from Dr. John Ortaldo (NCI, NIH, Frederic, MD). Cos-
tar 96-well plates were precoated with rabbit anti-rat IgG
(2 �g/well) and blocked with RPMI 1640 medium contain-
ing 10% FCS. LAK cells were washed and rested for 2 h in
the absence of IL-2. LAK cells were incubated with anti-
Ly49D rat mAb and seeded into 96-well plates precoated
with rabbit anti-rat IgG (0.5 £ 106 LAK cells/well) in the
presence or absence of tested chemicals. In some experi-
ments LAK cells were stimulated with immobilized NK1.1.
mAb. After 16 h of incubation at 37°C, supernatants
(0.1 ml) were collected and concentrations of various cyto-
kines were analyzed using Luminex LabMAP technology.

Multiplex bead-based cytokine analysis

We used murine multiplex antibody bead kit (Biosource
International, Camarillo, CA) for Luminex xMAP analysis
that allows simultaneous testing of IFN-�, GM-CSF and
TNF-�. The multiplexed assay was performed at the Univer-
sity of Pittsburgh Cancer Institute Luminex Core Facility as
described [28, 34]. Data are expressed as mean § SD pg/ml.

Analysis of cAMP production

LAK cells (0.5 £ 106 cells/0.5 ml/tube) were incubated
with CADO or PGE2 for 10 min. Culture medium was
removed and 1 ml of ice-cold 1-propanol was added to
cells. cAMP levels in the cellular extracts were analyzed
using a ThermoFinnigan high-pressure liquid chromato-

graphic system coupled to a ThermoFinnigan LCQ Duo ion
trap mass spectrometer equipped with an electrospray ioni-
zation source (Thermo Electron Corporation, Walthan,
MA) by adapting a method recently described for purines
[35]. All experiments were repeated 2–3 times.

Western blot analysis

LAK cells were incubated with CADO(5 �M) and PGE2

(100 nM) for 30 min. Cells were lysed with RIPA buVer
supplemented with 1 mM PMSF and 1% CLAP cocktail
(anti-pain, leupeptin, pepstatin and chymostatin). Protein
extracts (50 �g) were resolved using 10% SDS-PAGE and
transferred to PVDF membranes. The membranes were
blocked and incubated with antibodies against phosphory-
lated CREB (anti-phospho S129 + S133; 1:1,000, Abcam,
England) or anti-total CREB (1:2,000, Abcam) and then
with horseradish peroxidase-labeled secondary antibody
(Santa Cruz Biotechnology, Santa Cruz, CA).

To assess Akt phosphorylation, LAK cells were rested
overnight in the absence of IL-2 and then were stimulated
with IL-2 in the presence of CADO (25 �M) and/or PGE2

(500 nM) for 30 min. Prepared protein extracts were
resolved using 10% SDS-PAGE and transferred to PVDF
membranes. The membranes were also incubated with
phospho-AKT(Ser473), dilution 1:100 or antibody for total
AKT, dilution 1:500 (Cell Signaling, Billerica, MA) then
with horseradish peroxidase-labeled secondary antibody
(Santa Cruz). Films were scanned and analyzed by Image-
QuanT data analysis software (Molecular Dynamics).

Analysis of EP receptors by LAK cells

LAK cells lysates were prepared as described above and
Western blot analysis of protein was performed using 10%
SDS-PAGE. After transfer, membranes were incubated
with anti-EP1, anti-EP2, anti-EP3 or anti-EP4 rabbit poly-
clonal antibodies (Cayman Chemicals, Ann Arbor, MI),
followed by horseradish peroxidase-labeled secondary anti-
body. Western blot analysis was repeated using LAK cells
from C57Bl/6 and BALB/c mice with similar results.

Quantative real-time RT-PCR

Mouse LAK cell RNA was prepared using the Qiagen
RNeasy Mini Kit (Qiagen, Valencia, CA). cDNA was pro-
duced from 2 �g of RNA using the SuperArray Reaction-
Ready First Strand cDNA Synthesis kit (SuperArray
Bioscience, Frederick, MD). Real-time PCR was carried
out using the SuperArray RT2 Real-Time TM SYBR Green
PCR Master Mix (SuperArray Bioscience) and was
performed on the ABI PrismTM 7700 sequence detector
real-time PCR system (AB Applied Biosystems). PCR
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conditions were as follows: denaturation at 95°C for
10 min, 40 cycles at 95°C for 15 s, and 60°C for 1 min.
Primers for A2A, forward: 5�-gtgactctcccctccacaccc-3�;
reverse: 5�-catagtttctgtcttccagccc-3�; for EP2, forward: 5�-a
gcaggacctctatctccttg-3�; reverse: 5�-ccaccagggtctggtttcttg-3�.
Standard curves were generated from Wve 10-fold serial
dilutions of LAK cDNA, and no product could be seen in
the no-template control. The cycle threshold (Ct) value for
A2A and EP2 expression was deWned as the number of PCR
cycles required for the Xuorescence signal to exceed the
detection threshold value (background noise). DiVerences
in gene expression were calculated using the ��Ct method
according to the manual from SuperArray Bioscience.

Statistics

Statistical analysis of the data was performed using the Stu-
dent’s t test. The signiWcance level was set up at P < 0.05.

Results

Inhibitory eVects of PGE2 and adenosine on the cytotoxic 
activity of LAK cells

In the Wrst set of experiments, we compared the ability of
PGE2, adenosine and its stable analog 2-chloroadenosine
(CADO) to inhibit the cytotoxic activity of LAK cells.
LAK cells were incubated with 51Cr labeled 3LL tumor
cells for 4 h in the absence or presence of CADO (0.125–
2 �M). SigniWcant (P < 0.05) inhibition of LAK cell cyto-
toxicity was observed at 0.5 �M CADO, and the level of
inhibition was further increased at 2 �M (Fig. 1a).

Unlike CADO, adenosine is rapidly metabolized by
adenosine deaminase (ADA), which is produced by tumor
cells and LAK cells. Therefore, the eVect of adenosine on
LAK cell cytotoxicity was analyzed in the presence of
EHNA, an inhibitor of ADA. LAK cells killed 61.8% of
tumor cells at the eVector-to-target ratio of 30:1. In the
presence of 2, 10 and 50 �M of adenosine, the cytotoxic
activity of LAK cells reduced to 34.8, 19.1 and 15.6%,
respectively (data not shown).

Whereas adenosine and CADO exerted inhibitory eVects at
micromolar concentrations, PGE2 profoundly inhibited LAK
cell cytotoxicity at nanomolar concentrations (Fig. 1a). Even
at 6 nM, PGE2 signiWcantly (P < 0.05) inhibited LAK cell
cytotoxicity, and the level of inhibition further increased with
higher PGE2 concentrations. PGE2 at 1–2 �M almost com-
pletely inhibited the cytotoxic activity of LAK cells (Fig. 1a).

Next we analyzed the combined eVects of adenosine
(ADO) and PGE2. In the presence of adenosine (2 �M) or
PGE2 (6 nM), LAK cell cytotoxicity was reduced from 63.9
to 34.8 and 38.1%, respectively (Fig. 1b). In combination,

ADO (2 �M) plus PGE2 (6 nM) reduced cytotoxicity to
18.4%, a response that was similar to that observed with
PGE2 alone at a concentration of 240 nM (15.2%). A com-
bination of 2 �M of ADO plus 240 nM of PGE2 caused
even more severe inhibition of the cytotoxic activity of
LAK cells (4.1%) (Fig. 1b). These results indicate that
adenosine and PGE2 could be potent factors limiting the
eYcacy of LAK cells.

Analysis of PGE2 and adenosine receptors involved 
in the inhibition of LAK cells functional activity

PGE2 mediates its biological eVects by binding to four
receptors (EP1, EP2, EP3 and EP4). To address which recep-

Fig. 1 a The inhibitory eVects of 2-chloroadenosine (CADO) and
PGE2 on LAK cell cytotoxicity. The cytotoxic activity of LAK cells
was tested against 51Cr-labeled 3LL tumor cells at the eVector-to-target
ratio of 30:1 in the presence of CADO (0.125–2 �M) or PGE2 (0.006–
2 �M). b Combined inhibitory eVect of adenosine (ADO) and PGE2 on
LAK cell cytotoxicity. LAK cell cytotoxicity was tested in the pres-
ence of adenosine (ADO) (2 �M) plus an inhibitor of adenosine deam-
inasae (EHNA; 30 �M) and/or PGE2 (6–240 nM). PGE2 as well as
ADO plus EHNA signiWcantly (P < 0.05) inhibited LAK cell cytotox-
icity. EHNA used alone did not show signiWcant eVects on LAK cell
cytotoxicity (data not shown). The combined inhibitory eVect of ADO
and PGE2 was signiWcantly (P < 0.05) higher than when each modality
was used alone
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tor subtypes of PGE2 were involved in the imunosuppres-
sive eVects of PGE2, we tested the ability of various
agonists and antagonists of EP receptors to aVect the cyto-
toxicity of LAK cells. Suprostone, an agonist of EP1 and
EP3 receptors, did not aVect the cytotoxic activity of LAK
cells (Table 1). Butaprost is a speciWc agonist of EP2 recep-
tors, although it has an aYnity ten times lower than that for
PGE2 [36]. Butaprost at 5 �M signiWcantly inhibited LAK
cell activity, suggesting involvement of EP2 receptors in the
inhibitory signaling (Table 1). PGE2 at 50 nM showed a
substantial inhibitory eVect that was not blocked by
SC19220, an antagonist of EP1 receptors. Similarly, an
antagonist of EP4 receptors AH2384 failed to block the
inhibitory eVect of PGE2. In contrast, A6809, an antagonist
of EP2 receptors, signiWcantly (P < 0.05) blocked the inhib-
itory eVect of PGE2 on LAK cells (Table 1). Thus, these
results indicate that PGE2 inhibits LAK cell cytotoxic activ-
ity via EP2-receptor signaling.

We next analyzed what receptors are involved in
enhancement of the immunosuppressive signals mediated
by adenosine and PGE2. Previously we showed that adeno-
sine inhibits LAK cell activity via A2A receptors [29].
Therefore, we tested whether CGS21680 (CGS) (a selective
agonist of A2A receptors) could work in concert and poten-
tiate the inhibitory eVects of butaprost (a selective agonist
of EP2 receptors). Both CGS and butaprost signiWcantly
(P < 0.05) inhibited the cytotoxic activity of LAK cells
(Fig. 2a). A combination of butaprost with CGS manifested

a more eYcacious inhibitory eVect than each modality used
alone. A combination of butaprost, with CADO or CGS
with PGE2 also had a complementary inhibitory eVect
(Fig. 2a). In contrast, sulprostone, an agonist of EP1 and
EP3 receptors, at all tested concentrations (0.05–5 �M) did
not aVect the cytotoxic activity of LAK cells and did not
potentiate the inhibitory eVects of CADO (data not shown).
These results indicate that simultaneous signaling via aden-
osine A2A and EP2 receptors resulted in augmented sup-
pression of LAK cell cytotoxic activity.

In all our experiments, PGE2 inhibited LAK cell cyto-
toxic activity at nanomolar concentrations, whereas adeno-
sine and CADO inhibited at micromolar concentrations.
These diVerences may result from diVerences in expression
of EP2 and A2A receptors. We analyzed expression of PGE2

receptors by LAK cells. Our western blot analysis revealed
that LAK cells express all four EP receptors with high
expression of EP2 and EP4 receptors and low expression of
EP1. EP3 receptor, as previously reported [1] had several
splice variants (Fig. 2b).

Our western blot analysis failed to detect adenosine A2A

receptors using antibodies from diVerent commercial
sources, suggesting lower levels of A2A expression.

To evaluate EP2 and A2A expression by LAK cells, we
compared the levels of their mRNA using real-time quanti-
tative RT-PCR. The diVerence between the cycle threshold
(Ct) values for A2A and EP2 was 5.14 cycles. Relative quan-
titative expression of adenosine A2A and EP2 receptors was
calculated by the ��Ct method. The results of this calcula-
tion indicate that in murine LAK cells, EP2 mRNA expres-
sion was higher than A2A mRNA by 35.3 § 2.76 fold
(Fig. 2c). Thus, higher levels of EP2 receptors expression
are most likely responsible for the observed greater ability
of PGE2 versus adenosine to inhibit the cytotoxic activity of
LAK cells.

EVect of CADO and PGE2 on cytokine production 
by LAK cells

Previously we demonstrated that adenosine and CADO are
able dramatically inhibit production of various cytokines
and chemokines by LAK cells [28]. Now we investigated
whether this inhibitory eVect can be augmented by PGE2.
Rested LAK cells were stimulated with immobilized
Ly49D mAb for 16 h in the presence of CADO and/or
PGE2. Analysis of cytokine concentrations in culture media
revealed that CADO at 5 �M substantially inhibited pro-
duction of IFN-�, GM-CSF and TNF-� (Table 2). PGE2 at
nanomolar concentrations showed a very profound dose
dependent inhibition of cytokine production (Table 2).
When LAK cells were treated by combination of CADO
(5 �M) and PGE2 (6 nM) a higher inhibitory eVect was
observed. CADO (5 �M) further potentiated already strong

Table 1 EVect of agonists and antagonists of EP receptors on the
cytotoxic activity of LAK cells

* Agonists that signiWcantly (P < 0.01) inhibited LAK cell cytotoxicity

** Antagonist that signiWcantly (P < 0.05) blocked the inhibitory eVect
of PGE2
a LAK cells were mixed with 51Cr-labeled 3LL tumor cells at E:T ratio
30:1 and their cytotoxic activity was tested in the presence or absence
of agonists of EP receptors in the 4 h cytotoxicity assay. In some
groups, LAK cells were incubated with the antagonists of EP receptors
for 30 min before agonists were added

Group 
No.

Treatmentsa Pharmacology Cytotoxicity 
(%)

1 Control 41.6 § 4.8

2 Control, DMSO 43.2 § 4.9

3 PGE2 (50 nM) 16.1 § 1.7*

4 Sulprostone (5 �M) Agonist of EP1/EP3 38.4 § 4.1

5 Butaprost (5 �M) Agonist of EP2 26.0 § 1.9*

6 SC19220 (3 �M) Antagonist of EP1 35.6 § 3.8

7 SC19220 + PGE2 10.7 § 1.7

8 AH6809 (3 �M) Antagonist of EP2 38.5 § 3.1

9 AH6809 + PGE2 26.6 § 2.0**

10 AH23848 (3 �M) Antagonist of EP4 39.8 § 4.2

11 AH2384 + PGE2 18.7 § 2.3
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inhibitory eVects of PGE2 at higher concentrations
(Table 2). Thus, CADO and PGE2 are able to enhance their
inhibition of two major functions of activated NK cells:
cytotoxic activity and cytokine production.

AmpliWcation of cAMP–PKA signaling by PGE2 

and CADO

Because both A2A and EP2 receptors are positively coupled
to adenylyl cyclase, we hypothesized that the complemen-
tary eVect of adenosine and PGE2 on cytotoxicity is medi-
ated via increased production of cAMP. The results of our
analyses revealed that PGE2 at concentrations ranging from
6 to 100 nM inhibited cytotoxicity and increased cAMP
production by LAK cells in a concentration-dependent
manner (Fig. 3a, b). PGE2 at concentrations 25 and 100 nM
was more eYcient in the production of cAMP and inhibi-
tion of LAK cytotoxicity than CADO at 2 �M. When LAK
cells were treated with PGE2 in combination with CADO, a
more profound increase in cAMP production and inhibition
of cytotoxicity was observed (Fig. 3a, b).

To bring additional conWrmation that increased produc-
tion of cAMP is responsible for the increased inhibitory
eVects, we evaluated the eVect of phosphodiesterases
(PDE) inhibitor on the inhibitory eVects of CADO or PGE2.
Phosphodiesterases control the levels of cellular cAMP and

Fig. 2 a Combined inhibitory eVect of agonists of A2A and EP2 recep-
tors. LAK cell cytotoxicity was tested in the presence of CGS21680
(CGS, a selective agonist of adenosine A2A receptors; 50 �M), buta-
prost (a selective agonist of EP2 receptors; 0.5 �M), CADO (2 �M) or
PGE2 (6 nM). In some groups, LAK cell cytotoxicity was tested in the
presence of a combination of agonists. In all groups, the combined
inhibitory eVects were signiWcantly (P < 0.05) higher than when each
agent was tested separately. b Western blot analysis of EP receptor
expression by LAK cells. LAK-cell lysates were prepared and western
blot analysis of protein was performed using 10% SDS-PAGE. After
transfer, membranes were incubated with anti-EP1, anti-EP2, anti-EP3
or anti-EP4 rabbit polyclonal antibodies (Cayman Chemicals),
followed by horseradish peroxidase-labeled secondary antibody.
c Real-time PCR of A2A and EP2 gene expression in murine LAK cells.
Real-time PCR was carried out using the SuperArray RT2 Real-Time
TM SYBR Green PCR Master Mix (SuperArray Bioscience) and was
performed on the ABI Prism TM 7700 sequence detector real-time PCR
system. Standard curves were generated from Wve [5] 10-fold serial
dilutions of LAK cDNA. The cycle threshold (Ct) value for A2A and
EP2 expression was deWned as the number of PCR cycles required for
the Xuorescence signal to exceed the detection threshold value (back-
ground noise). DiVerences in gene expression were calculated using
the ��Ct method
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Table 2 Inhibitory eVects of CADO and PGE2 on cytokine produc-
tion by LAK cells

* Combined treatment with CADO plus PGE2 signiWcantly (P < 0.05)
diVer from separate CADO or PGE2 treatments
a LAK cells (1 £ 105) of C57BL/6 mice were stimulated with immo-
bilized anti-Ly49D mAb in the presence of CADO and/or PGE2. After
16 h of incubation, supernatants were collected and concentrations of
IFN-�, GM-CSF and TNF-� were determined using multiplex kit. All
groups treated with CADO and/or PGE2 signiWcantly (P < 0.01–
P < 0.001) diVer from the control group

Treatmentsa Cytokines (pg/ml)

IFN-� GM-CSF TNF-�

Control 1,488 § 138 2,566 § 212 220 § 18

Control, DMSO 1,537 § 112 2,499 § 198 245 § 21

CADO, 5 �M 546 § 39 741 § 78 92 § 6

CADO, 25 �M 383 § 29 454 § 37 66 § 4

PGE2, 400 nM 329 § 23 439 § 36 59 § 4

PGE2, 100 nM 359 § 27 489 § 53 61 §  6

PGE2, 25 nM 430 § 31 634 § 57 77 § 5

PGE2, 6 nM 637 § 49 904 § 76 105 § 11

CADO, 5 �M + PGE2, 6 nM 392 § 29* 480 § 40* 68 § 4*

CADO, 5 �M + PGE2, 25 nM 318 § 22* 395 § 29* 56 § 4*

CADO, 5 �M + PGE2, 100 nM 285 § 29 375 § 30 51 § 3

CADO, 5 �M + PGE2, 400 nM 292 § 48 401 § 57 55 § 3
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quickly metabolize cAMP terminating the cyclic nucleotide
secondary message signaling [37]. PDE4 is a major form
operating in lymphocytes and can be inhibited by the spe-
ciWc inhibitor rolaprim [37]. PDE4 by metabolization of
cAMP induced by CADO and PGE2 could restrict their
inhibitory eVects. If so, inhibition of PDE4 by rolaprim
could increase the inhibitory eVects of CADO and PGE2.
To test this prediction, the cytotoxic activity of LAK cells

was tested in presence of CADO, PGE2 and rolaprim
(Fig. 3c). Our titration experiments revealed that rolaprim
at 25 �M signiWcantly (P < 0.05) inhibited the cytotoxic
activity of LAK cells as a result of accumulation of the
spontaneously generated cAMP. When rolaprim was used
in combination with CADO or PGE2 their inhibitory eVects
on LAK cytotoxicity was substantially augmented
(Fig. 3c). These data indicate that PGE4 is a potent regula-
tor of LAK cytotoxicity as well as the activity of adenosine
and PGE2.

cAMP induced by adenosine or PGE2 could activate
PKA that could phosphorylate serine and threonine resi-
dues on speciWc substrate proteins, including cAMP
responding element-binding protein (CREB) [38]. Western
blot analysis (Fig. 4a) showed that treatment of LAK cells
with CADO or PGE2 increased CREB phosphorylation.
When LAK cells were treated with a combination of
CADO and PGE2, the level of CREB phosphorylation was
further increased (Fig. 4a).

It was shown that activation of Akt is triggered by NK
cells interaction with the target cells and it is essential for
NK lysis of tumor cells. Inhibition of AKT phosphorylation
by wortmannin or LY294002 results in inhibition of NK
cell cytotoxicity [39]. We next tested whether CADO and
PGE2 are able to aVect Akt phosphorylation in NK cells.
LAK cells were rested overnight and incubated with IL-2 in
the presence of CADO and PGE2. After 30 min the levels
of Akt phosphorylation was evaluated using Western blot
analysis (Fig. 4b). High level of Akt phosphorylation was
induced by restimulation of resting LAK cells with IL-2.
CADO and PGE2 substantially inhibited Akt phosphoryla-
tion. This inhibition further increased when LAK cells were
treated with combination of CADO and PGE2 (Fig. 4b).
Thus, these data indicate that CADO and PGE2 inhibit NK
cells activity via c-AMP mediated activation of PKA and
inhibition of Akt activation.

Next we tested whether wortmannin that inhibit Akt acti-
vation are able to potentiate the inhibitory eVects of CADO
and PGE2 on IFN-� production. LAK cells of C57BL/6
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diestyerase 4 (PDE4) potentiates the inhibitory eVects of CADO and
PGE2. The cytotoxic activity of LAK cells against 3LL tumor cells
(E:T ratio 30:1) was tested in the presence of CADO (5 �M), PGE2
(6 nM) and/or rolaprim (25 �M). All groups signiWcantly (P < 0.01)
diVer from control. The combined inhibitory eVects in all groups were
signiWcantly (P < 0.05) higher than each agent tested separately
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mice were rested for 2 h and were restimulated with immo-
bilized NK1.1 mAb overnight in the presence of CADO,
PGE2 and wortmannin (Fig. 4c). CADO and PGE2 substan-

tially inhibited IFN-� production. Our titration experiments
determined that 25 nM is the lowest concentrations of wort-
mannin causing a signiWcant inhibition of INF-� production
by LAK cells. With increase concentrations of these inhibi-
tors the levels of inhibition increased (data not shown).
When LAK cells were treated with wortmanin in combina-
tion with CADO or PGE2 the levels of inhibition of INF-�
production was further signiWcantly (P < 0.05) increased.
The level of inhibition was similar to those induced by the
combination of CADO and PGE2 (Fig. 4c). Experiments
with LY294002 showed similar results (data not shown).
Wortmannin and LY294002 also potentiated the inhibitory
eVects of CADO and PGE2 on LAK cell cytotoxicity (data
not shown).

Blocking the inhibitory eVects of CADO and PGE2 by PKA 
inhibitors

Activation of PKA is probably essential for the inhibitory
eVects of adenosine and PGE2. Therefore, it was of interest
to investigate the ability of PKA inhibitors to block the sup-
pressive eVects of PGE2 and CADO. There are two types of
PKA. We previously showed that PKA type I, but not type
II, is involved in the inhibitory eVects of adenosine on LAK
cells [28]. PKA consist of a tetrameric structure including
two regulatory (R) and two catalytic (C) subunits [40, 41].
PKA type I and II diVer in their regulatory subunits but not
catalytic subunits. Activity of PKA type I and II can be
inhibited by H89 or myristoylated peptide PKI14–22, that
inactivate the released catalytic subunits [40, 41]. Alterna-
tively, PKA activity can be inhibited by blocking the
binding of cAMP to R subunits by the speciWc antagonists.
Rp-8-Br-cAMPs speciWcally blocks binding of cAMP to
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regulatory subunits of PKA type I and prevents the dissoci-
ation of the PKAI holozyme and the release of catalytic
subunits [42]. To assess the ability of PKA inhibitors to
block the suppressive eVects of PGE2, LAK cells were pre-
incubated with H89, myristoylated peptide PKI14–22 or
Rp-8-Br-cAMPS and their cytotoxic activity was tested
against 3LL tumor cells. The PKA inhibitor H89 alone at
10–2.5 �M severely inhibited LAK cell cytotoxicity. When
it was applied in combination with CADO or PGE2, H89
ampliWed their inhibitory eVects (data not shown). PKI14–22

protein alone did not aVect LAK cell cytotoxicity and failed
to block the inhibitory eVects of CADO or PGE2 (Fig. 5a).
In contrast, Rp-8-Br-cAMPS completely prevented the
inhibitory eVects of CADO and PGE2. CADO in combina-
tion with PGE2 had more profound inhibitory eVects on
LAK cell cytotoxicity than each agent used separately
(Fig. 5a). Pre-incubation of LAK cells with Rp-8-Br-
cAMPS, but not with PKI14–22 peptide, signiWcantly
(P < 0.05) attenuated the combined inhibitory eVect of
CADO and PGE2 (Fig. 5a). This blocking eVect was partial,
most likely because of the very high production of cAMP
that was incompletely antagonized by Rp-8-Br-cAMPS.

We next tested the ability of PKA inhibitors to protect
IFN-� production by LAK cells incubated with CADO and
PGE2. PKI14–22 peptide failed to abrogate the inhibitory
eVects of CADO and PGE2 (Fig. 5b). Pretreatment of LAK
cells with Rp-8-Br-cAMPS signiWcantly (P < 0.05) blocked
the inhibitory eVects of CADO and PGE2 on the IFN-� pro-
duction, although these blocking eVects were partial.

Comparison of the inhibitory eVects of CADO, PGE2, 

TGF-� and IL-10

TGF-� and IL-10 are considered as the major immunosup-
pressive factors in tumor microenvironment capable of
inhibiting antitumor immune response [43, 44]. It was of
interest to compare their immunosuppressive ability with
adenosine or PGE2. We tested whether TGF-� and IL-10
are able to inhibit the cytotoxic activity and cytokine pro-
duction of LAK cells and whether they could enhance the
inhibitory eVects of CADO and PGE2.

As it was shown above and conWrm in this experiment,
CADO or PGE2 alone inhibited the cytotoxic activity of
LAK cells and this inhibition was further increased by com-
bination of CADO and PGE2 (Fig. 6a). In contrast, the cyto-
toxicity of LAK cells was not impaired by TGF-� or IL-10
and they did not potentiate the inhibitory eVects of CADO
or PGE2 (Fig. 6a).

Next we tested whether TGF-� and IL-10 are able
to inhibit LAK cells cytokine production. Rested LAK
cells were stimulated for 16 h with the surface bound
NK1.1 mAb in the absence or presence of tested molecules

Fig. 5 Blocking the inhibitor eVects of CADO and PGE2 with Rp-8-
Br-cAMP, an antagonist of regulatory (RI) subunits of PKA type I. a
LAK cells were pre-incubated with Rp-8-Br-cAMPS (1 mM; antago-
nist of RI subunits of PKA type 1) or myristoylated PKI14–22 peptide
(20 �M; inhibitor of catalytic subunits of PKA type 1) for 30 min be-
fore CADO (2 �M ) and/or PGE2 (25 nM) were added. The cytotoxic
activity of LAK cells against 3LL tumor cells (E:T ratio 30:1) was test-
ed in the 4 h 51Cr release assay. Rp-8-Br-cAMP signiWcantly
(P < 0.05) blocked the inhibitory eVects of CADO, PGE2 and CADO
plus PGE2. PKA inhibitors PKI14–22 or Rp-8-Br-cAMPS used alone did
not aVect LAK cell cytotoxiocity (data not shown). b LAK cells of
C57BL/6 mice were rested for 2 h without IL-2 and then they were
seeded into 96-well plate (2 £ 105 cells/well) with immobilized
Ly49D mAb. Cells were pre-incubated with Rp-8-Br-cAMPS (1 mM;
antagonist of RI subunits of PKA type 1) or myristoylated PKI14–22
peptide (20 �M; inhibitor of catalytic subunits of PKA type 1) for
30 min before CADO (2 �M) and/or PGE2 (25 nM) were added.
Supernatants were collected after 16 h of culture and concentration of
IFN-�, GM-CSF and TNF-� were analyzed using a multiplex kit. Only
values of IFN-� are presented. Rp-8-Br-cAMP signiWcantly (P < 0.05)
blocked the inhibitory eVects of CADO, PGE2 and CADO plus PGE2.
PKA inhibitors PKI14–22 or Rp-8-Br-cAMPS used alone did not aVect
LAK cell cytokine production (data not shown)
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and concentration of IFN-� in the collected media was ana-
lyzed. CADO and PGE2 strongly inhibited IFN-� produc-
tion by LAK cells and this inhibition further increased
when these molecules were used in combination. In con-
trast, TGF-� (30 ng/ml) signiWcantly increased production

of IFN-� (Fig. 5b). CADO or PGE2 just blocked TGF-�-
induced stimulation and amount of produced IFN-� was
similar to the control level. Only combination of CADO
and PGE2 is able to antagonize the eVect of TGF-� and
reduce IFN-� below the control levels. Thus, TGF-� coun-
terbalances the inhibitory eVects of CADO and PGE2 on
IFN-� production. The same eVects were observed with
TGF-� at lower concentration (10 ng/ml) (facts not shown).

IL-10 did not aVect production of IFN-�. When IL-10
was used in combination with CADO and/or PGE2 it did
not change the inhibitory eVects of CADO and PGE2

(Fig. 6b). The same eVects were observed with IL-10 used
at lower concentration (10 ng/ml). These data indicate that
CADO and PGE2, in contrast to TGF-� or IL-10 have
unique ability to quickly inhibit LAK cells cytotoxic activ-
ity and cytokine production.

Discussion

Our data demonstrate that both adenosine and PGE2 impair
the ability of LAK cells to kill tumor cells and produce
cytokines. Combined treatment with adenosine and PGE2

results in a substantial augmentation of their ability to
inhibit LAK cell functional activity. Previous studies
suggest that cAMP is a mediator of PGE2-induced suppres-
sion of NK cell activity [42]. Consistent with this concept,
the present study demonstrates that activation of A2A and
EP2 receptors by their ligands results in cAMP production
and PKA mediated phosphorylation of CREB proportion-
ally to the level of inhibition of LAK cell activity.

One goal of the present study was to elucidate the recep-
tor subtypes mediating inhibition by PGE2. In this regard,
our western blot analysis show that LAK cells express all
four PGE2 receptor subtypes. Moreover, experiments with
agonists and antagonists of EP receptors indicate that the
PGE2 inhibitory signal is mediated via EP2 receptors that
are positively coupled with adenylyl cyclase and are able to
stimulate cAMP production.

Because EP4 receptors are also positively coupled with
adenylyl cyclase [1] and are expressed by LAK cells, it is
surprising that EP4 receptors are not involved in PGE2-
mediated inhibition of LAK cell cytotoxicity. There are
at least three non-mutually exclusive explanations for this
enigma. First, EP2 receptors more eYciently stimulate
cAMP production than do EP4 receptors [2]. Second, EP4

receptors internalize very quickly following PGE2 binding,
whereas EP2 receptors do not internalize [45]. Third, stimu-
lation of EP4, but not EP2, receptors results in the activation
of the PI3K signaling pathway that could inhibit the activity
of PKA [2, 46].

The experiments with butaprost (speciWc agonist of EP2

receptors) and CGS (speciWc agonist of adenosine A2A

Fig. 6 Failure of TGF-� and IL-10 to inhibit LAK cells cytotoxicity
(a) and IFN-� production (b) and potentiate the inhibitory eVects of
CADO or PGE2. a The cytotoxic activity of LAK cells was tested
against 3LL tumor cells (E:T ratio 30;1) in the presence of CADO
(5 �M) and/or PGE2 (5 nM), TGF-� (30 ng/ml) or IL-10 (30 ng/ml). In
some groups TGF-� or IL-10 were tested in combination with CADO
or PGE2. TGF-� or IL-10 alone or in combination with CADO or PGE2
did not signiWcantly (P > 0.05) aVected LAK cell cytotoxicty. b LAK
cells were rested for 2 h without IL-2 and stimulated with the immobi-
lized NK1.1 mAb for overnight in the presence of CADO (5 �M) and/
or PGE2 (5 nM), TGF-� (30 ng/ml) or IL-10 (30 ng/ml). Concentra-
tions of IFN-� in the supernatants were analyzed. TGF-� signiWcantly
(P < 0.05) increased IFN-� production. Only combination of CADO
and PGE2 signiWcantly (P < 0.05) blocked the stimulatory eVect of
TGF-�. IL-10 had no signiWcant (P > 0.05) eVects of CADO and/or
PGE2 on IFN-� production
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receptors) indicate that the suppressive eVects of PGE2 and
adenosine are mediated via EP2 and A2A receptors signal-
ing, respectively. Importantly, nanomolar concentrations of
PGE2 inhibit LAK cell activity, whereas signiWcant inhibi-
tion with adenosine requires micromolar concentrations.
Greater LAK cell inhibition by PGE2 is consistent with a
higher level of cAMP induction by PGE2. Because adeno-
sine A2A receptors and EP2 receptors have only slight
diVerences in aYnity for their respective ligands [42, 45], it
is conceivable that the diVerences between adenosine and
PGE2 with regard to potency and eYcacy for cAMP
production and inhibition of LAK cell activity is mostly
due to a higher density of EP2, compared with A2A receptor
expression on LAK cells. In corroboration of this hypothe-
sis, real-time PCR demonstrates that EP2 gene expression
by LAK cells is 35.3 times higher than A2A receptor expres-
sion. Lower number of receptors might require higher
proportion of them to be activated and for this higher
concentration of ligand is considered necessary in order to
provide suYcient signal. Indeed, it was shown that
decreased number of adenosine receptors in A1+/¡ mice
requires twice more adenosine to signal [47].

Our previous studies showed that speciWc agonists of
PKA type I, but not PKA type II, inhibit activity of human
and murine LAK cells [28, 30], suggesting that PKA type I
is involved in the inhibitory eVects of adenosine and PGE2.
In support of this hypothesis, we show in the present study
that the inhibitory eVects of CADO and PGE2 are blocked
by Rp-8-Br-cAMPS that prevents binding of cAMP to A
and B sites of regulatory I subunits of PKA type I. In con-
trast, inhibitors of catalytic subunits of PKA (H89 or myri-
stoylated PKI14–22 peptide) fail to block the inhibitory
eVects of PGE2 and CADO. The ability of Rp-8-Br-cAMPS
to block the inhibitory eVects depends on the levels of inhi-
bition induced by CADO and PGE2. More profound inhibi-
tion of LAK cytotoxicity induced by combine treatment
with CADO and PGE2 that is due to higher level of cAMP
production was only partially blocked by Rp-8-Br-cAMPS.
In general, cytokine production in comparison to the cyto-
toxic activity of LAK cells was more sensitive to the inhib-
itory eVects of CADO and PGE2. Overall, CADO at 5 �M
and PGE2 at 6 nM inhibited LAK cells cytotoxicity by 30–
40%, whereas cytokine production of IFN-� was inhibited
by 50–70%, suggesting that cytokine production in compar-
ison to cytotoxic activity has lower threshold sensitivity to
cAMP-mediated inhibitory signaling in LAK cells. There-
fore, Rp-8-Br-cAMPS was less eYcient in blocking CADO
and PGE2-mediated inhibition of cytokine production than
cytotoxic activity.

It remains unclear why PKI14–22 peptide that inhibit the
activity of catalytic subunits of PKA do not abrogate the
inhibitory eVects of CADO and PGE2. Rp-8-Br-cAMPS
and PKI14–22 peptide at the tested concentrations show sim-

ilar ability to inhibit PKA activity as measured by the
StressXpress non-radiactive PKA activity kit (Stressgen
Bioreagents, Victoria, BC, Canada). Although cAMP acti-
vates both PKA type I and II, causing the release of cata-
lytic subunits capable of phosphorylating CREB, only
blocking cAMP binding to RI subunits of PKA I with Rp-8-
Br-cAMPS abrogates the inhibitory eVects of adenosine as
well as PGE2. It is possible that regulatory subunits type I
has independent functional activity and could take part in
the inhibitory eVects mediated by adenosine and PGE2.
Some studies using mice with knock out regulatory sub-
units of PKA I or type II showed diVerent and multiple phe-
notypic changes, suggesting that regulatory subunits of
PKA could participate in regulation of various biological
processes [40, 41].

Numerous experimental data indicate that various immu-
nosuppressive molecules, such as IL-10, TGF-�, VEGF,
and indoleamine 2,3-dioxygenase (IDO) could help tumor
to escape the immune destruction [43, 48]. Comparative
analysis of their ability to inhibit the functional activity of
immune cells was not performed. Although it was shown
that TGF-� inhibits the induction of the cytolytic machin-
ery by preventing expression of Wve cytolytic products,
such as perforin, granzyme A and B, FasL and IFN-� in
murine T cells stimulated by anti-CD3 and anti-CD28 anti-
bodies [49], TGF-� as well as IL-10 failed to inhibit the
cytotolytic activity of CTLs in the cytotoxicity assay [50].
In our experiments TGF-� and IL-10, in contrast to adeno-
sine and PGE2, failed to inhibit the cytotoxic activity and
cytokine production by LAK cells. Furthermore, IL-10 and
TGF-� failed to potentiate the inhibitory eVects of CADO
or PGE2.

Analysis of the eVects of TGF-� and IL-10 on IFN-�
production revealed that TGF-� increased production of
IFN-� by NK1.1 stimulated LAK cells and antagonized the
inhibitory eVects of CADO and PGE2. Although TGF-� is a
potent inhibitor of IFN-� production, the ability of TGF-�
to enhance IFN-� production by murine T cells was also
observed [51]. IL-10 did not aVect IFN-� production and
the inhibitory eVects of CADO and PGE2. These studies
demonstrate that PGE2 and adenosine are unique in their
ability to quickly inhibit the execution phase of already
cytotoxic cells.

In summary, the present study reveals several novel Wnd-
ings with important implications. This work demonstrates
for the Wrst time that PGE2 and adenosine act in concert
such that the immunosuppressive eVects of PGE2 plus
adenosine are greater than the inhibitory eVects of PGE2

alone or adenosine alone. This additivity of eVects applies
to both inhibition of cytotoxic activity and inhibition of
cytokine production by IL-2 activated NK cells.

Over-expression of COX-2 and increased production of
PGE2 are essential properties of various malignancies [3].
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Tumors also contain high levels of adenosine as a result of
hypoxia and inXammation [26, 28, 52]. It is possible that
tumor produced PGE2 and adenosine could inhibit the
eYcacy of adoptive transfer of cytotoxic LAK cells and
could be contributing factors responsible for the failure of
adoptive immunotherapy using LAK cells as well as active
antitumor vaccinations. Indeed, pharmacological blockade
or genetic disruption of adenosine A2A receptors prevents
the immunosuppressive eVects of adenosine and inhibits
tumor growth and metastasis formation [27]. Some studies
demonstrate that nonselective or selective inhibitors of
COX-2 improve the eYcacy of NK cell- or T cell-mediated
immunity and inhibit local or metastatic growth [8–10].
Our Wndings indicate that inhibition of PGE2 production
(even by 90% or more) following administration of COX
inhibitors might not lead to a complete blockade of PGE2-
mediated immunosuppression because the reduced amounts
of PGE2 could combine with adenosine to maintain a strong
immunosuppressive tumor environment.

Blocking regulatory subunits of PKA type I with Rp-8-
Br-cAMPS attenuates the inhibitory eVects of both PGE2

and adenosine. These results indicate that the immunosup-
pressive eVects of PGE2 and adenosine are mediated via a
common signal transduction pathway involving increased
production of cAMP and activation of PKA. The implica-
tion of this concept is that inhibition of PKA type I in
immune cells before their adoptive transfer might be a
novel therapeutic approach to enhance the eVectiveness of
cancer immunotherapy.

This report represents the Wrst comparative analysis of
the immunosuppressive eVects of four diVerent immuno-
suppressive molecules (PGE2, adenosine, TGF-� and IL-
10). Our data indicate that PGE2 and adenosine are unique
in their ability to rapidly inactivate the eVector function of
highly cytotoxic LAK cells. Similar data were obtained
when human anti-melanoma speciWc CD8+ T cells were
used (unpublished observations). Over-expression of COX-
2 and increased production of PGE2 are essential properties
of various malignancies. Moreover, intratumor hypoxia and
inXammation are the most potent stimuli of adenosine pro-
duction. Therefore, blocking the immunosuppressive prop-
erties of both PGE2 and adenosine, either at the receptor
level or in the downstream signaling pathway, may be
essential for improving cancer immunotherapy.
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