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Abstract Over the past decade, there has been an
accelerated understanding of immune regulatory
mechanisms. Peripheral immune regulation is linked
to a collection of specialized regulatory cells of the
CD4+ T cell lineage (i.e., CD4+ Tregs). This collection
consists of Tregs that are either thymically derived
(i.e., natural) or peripherally induced. Tregs are impor-
tant for controlling potentially autoreactive immune
eVectors and immunity to foreign organisms and mole-
cules. Their importance in maintaining immune
homeostasis and the overall health of an organism is
clear. However, Tregs may also be involved in the
pathogenesis of malignancies as now compelling evi-
dence shows that tumors induce or recruit CD4+ Tregs
to block immune priming and antitumor eVectors.
EVorts are underway to develop approaches that spe-
ciWcally inhibit the function of tumor-associated Tregs
which could lead to an increased capability of the
body’s immune system to respond to tumors but with-
out oV-target immune-related pathologies (i.e., auto-
immune disease). In this review, the biology of human
CD4+ Tregs is discussed along with their involvement
in malignancies and emerging strategies to block their
function.
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Introduction

The complex immune system is responsible for main-
taining overall health of humans by eliminating non-
conforming tissues, cells, and molecules derived from a
number of diVerent sources including malignancy, viral
infection, etc. Furthermore, the immune system is
extraordinarily powerful but simultaneously very spe-
ciWc relying on keen decision-making capabilities
regarding when and how to tolerate cells or antigens
derived from the host organism or other organisms
when the need for tolerance is deemed important. The
decision-making capability of the immune system is
mediated by two broad mechanisms, central and
peripheral tolerance. Central tolerance shapes the T
cell repertoire in the thymus using several mechanisms
to delete or preserve eVector T cells with the ultimate
outcome being the selection of a repertoire of T cells
that is capable of recognizing self-antigens, with mild
to moderate aYnity, bound to major histocompatabil-
ity complex (MHC) class I or class II molecules [1]. T
cells that fail to bind to MHC bound peptide epitope
die by a process called “death by neglect” and T cells
that have high aYnity recognition of self-antigen
bound to MHC molecule are deleted by clonal dele-
tion or “negative selection” to avoid pathologic attack
on self-tissues. Those T cells which recognize self-anti-
gen bound to MHC molecule with low to moderate
aYnity are preserved (i.e., positive selection) and
constitute the bulk of T cells that can react to either
foreign- or self-antigens in the periphery. These
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potentially autoreactive T cells that migrate into the
periphery are controlled by a number of peripheral
tolerization mechanisms [2, 3]. T cells circulating in the
periphery must acquire at least two signals to become
activated. The Wrst is mediated by the peptide:MHC
complex and the second by co-stimulatory molecules
(e.g., B7, GITR, and CD40). Without co-stimulation or
in the presence of chronic antigen presentation by tol-
erigenic DC, T cells may undergo either anergy induc-
tion or peripheral deletion depending on the strength
of the antigenic signal [3]. An alternative mechanism
of maintaining tolerance in the periphery is mediated
by the regulatory T cells (Treg cells), which comprise a
group of either thymically derived or peripherally
induced, suppressor CD4+ T cells that control periph-
eral activation and function of both self- and foreign-
antigen reactive T cells [2, 4–9, 10]. While Tregs, in
general beneWt the host, recently it has become clear
that they can be involved in pathogenesis by providing
tumors with a mechanism to evade immune detection
and destruction. In this review CD4+ Treg cells and
their relationship to cancer pathogenesis are discussed
along with emerging ideas on how to manipulate them
to improve either endogenous or vaccine-induced anti-
tumor immune responses.

Human CD4+ regulatory T cells: subtypes, 
development and mechanisms of immune suppression 
and motility

Are there subtypes of human CD4 Tregs?

CD4+ Treg cells refers to a collection of diVerent
phenotypes of CD4+ T lineage cells whose primary
function is regulating the activity of the immune sys-
tem, in the periphery, against self- and foreign-anti-
gens. In 2005 several hundred research articles and
greater than 30 reviews dedicated to Treg cells
appeared in the literature making them one of the most
well-studied cells in biology in recent years (http://
www.pubmed.gov). This is not to say however that
Tregs are a newly discovered subset of T cells. In fact,
the Tregs may be just a new name for the suppressor T
cells that were studied extensively in the 1970s and
1980s. The study of suppressor T cells diminished in
popularity in the late 1980s following the repeated fail-
ure to identify markers that could be used to isolate
and study these cells. Notably, the failure to Wnd the
suppressor T cell-speciWc I-J gene in the place where it
had been mapped led to the demise of suppressor T
cells until 1995 when Sakaguchi and colleagues
detected that T cell suppressor activity was conWned to

a minor subset of T cells that constitutively expressed
the alpha subunit (i.e., CD25) of the high aYnity IL-2
receptor [11, 12]. Reemergence led to adopting the new
designation of Tregs rather than suppressor T cells.

Currently, it is envisioned that there are at least
three groups of putative Tregs in humans which
include [1] CD4+CD25+(Foxp3+) Tregs [2], Tr1 Tregs,
and [3] Th3 Tregs, the Wrst of which may actually rep-
resent two groups potentially suggesting four subsets
(i.e., thymically derived and peripherally induced)
(Table 1). One the major issues that makes it diYcult
to study Tregs in humans is the lack of an exclusive
marker or set of markers. Much of what we understand
about Tregs is extrapolation from mouse, which has
not always held up to scrutiny. In fact, as will be
alluded to throughout this section the concept of Treg
subsets may be somewhat artiWcial and as technologic
improvements continue to accrue our classiWcation
systems for Tregs will likely change. In mice,
CD4+CD25+Foxp3+ T cells are called “natural” Tregs
because they are exclusively derived as a T cell lineage
in the thymus [9, 13]. Data demonstrating the existence
of a similar population in humans is not yet compelling
but, as discussed below, the CD4+CD25+Foxp3+ pheno-
type may represent CD4+ Tregs derived from the thy-
mus and induced in the periphery [14]. Before the
discovery of Foxp3, CD4+CD25+Foxp3+ Tregs were
initially characterized as CD4+ T cells that constitu-
tively co-expressed CD25. As in mouse studies, CD25
(the high aYnity IL-2 receptor alpha subunit) marks a
peripheral population of T cells that possess immuno-
suppressive properties in vitro. Indeed, CD25 has been
very useful for isolating and studying Tregs function.
Initial studies, examining all CD4+CD25+ T cells (and
assuming them all to be Tregs), suggested that Tregs
may represent a sizable fraction (e.g., 6–17%) of CD4+

T cells [15–2021]. However, this Wgure has been sub-
stantially revised based on the studies by Baecher-
Allan et al. whose work suggested that human CD4+

Tregs could be distinguished from other non-Treg
CD4+ T cells based on the intensity of expression of
CD25 [22]. In that study, those CD4+ T cells with inter-
mediate to low levels of CD25 expression failed to
block T cell proliferation in vitro and thus were
excluded from the estimates (»1–2%) of circulating
CD4+ Tregs. Newer investigations using the criteria of
CD25high conWrm that the levels of CD4+ Tregs in nor-
mal healthy individuals ranges between 1 and 2% in
peripheral blood rather than the 6–17% as previously
estimated [22–24, 25]. The high expression of CD25
may be due to a requirement for IL-2 signaling but this
remains unclear. It is known that in mouse models,
IL-2 signaling is required for Treg homeostasis but it is
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only ambiguously connected to suppression of T cell
proliferation [26, 27]. Despite the improvement that
high CD25 expression marks human regulatory T cells,
the use of CD25 as a speciWc Treg marker is limited
because it is also upregulated on activated eVector T
cells. Thus, there have been continued investigations in
recent years into understanding other markers for
improved detection and isolation, of which Foxp3 is
the most notable [28, 29]. Foxp3 expression is detected,
nearly exclusively, in the CD25high subset of human
CD4+ T cells [30].

Although its cellular function remains obscure,
Foxp3, also called ScurWn, belongs to the Forkhead
family of winged-helix transcription factors [28] and its
gene, FOXP3, is located on the X chromosome [31].
The importance of Foxp3 in regulatory T cell function
is demonstrated in certain disease settings in both
humans and mice. In humans, loss of Foxp3 function
results in an X-linked disease called Immunodysregu-
lation, Polyendocrinopathy Enteropathy, X-linked
(IPEX) syndrome [32]. IPEX is a fatal disease, Wrst
described in 1982 as X-linked, that presents as multiple
autoimmune disorders such as hypothyroidism, enter-
opathy, Type I diabetes, and psoriasis [33]. Individuals
that are destined to develop IPEX usually present dur-
ing infancy and typically die within 2 years [13]. Subse-
quent studies traced the disease to the X chromosome
and eventually to mutations in Foxp3 [32, 34]. The dis-
ease is not traced to a single mutation but rather to
many mutations across the gene, some of which are
missence mutations [13, 35–39]. The loss of Foxp3 in
mice results in a similar X-linked syndrome, called
Scurfy, which is a lethal syndrome that is also charac-
terized by immune-mediated destruction of multiple
organs [40]. The study of the biology of Foxp3 has

revealed some important diVerences in Treg biology
between humans and mouse models (Table 2). In
humans, but not mice, there are two isoforms of Foxp3
(Foxp3 and Foxp3�2) of which the relevance is
unknown [41]. Foxp3�2 is a splicing variant that lacks
exon 2. Also in contrast to mice, studies from Allan
et al. revealed that the ectopic expression of either
Foxp3 or Foxp3�2 failed to convert naïve T cells to
Tregs but rather imparted an anergic phenotype to the
T cell (e.g., hyporesponsiveness and suppression of IL-
2 production) [41]. Thus, it was concluded from this
study that Foxp3 expression is not suYcient to confer a
Treg phenotype suggesting that other cellular mole-
cules that are coordinately expressed, work together to
convey the regulatory phenotype. Another distinction
between mouse and human is that Foxp3 can be natu-
rally induced in human T cells following activation and
its induction is associated with the acquisition of Treg
activity [42]. In mice, however, there have been no con-
clusive reports that Foxp3 can be induced in Foxp3- T
cells. The diVerences between Foxp3 expression and
function between human and mouse, as well as its
intracellular localization has made it diYcult to exploit
it as a marker to study the function of human Tregs.

Table 1 Putative subtypes of CD4+ Tregs

a Thymically derived Tregs and inducible CD4+CD25+Foxp3+ Tregs may be indistinguishable

Thymically derived Tregs Inducible Tregs

Tr1 Th3 CD4+CD25+Foxp3+

Induction Lineage commitment
in thymus

Peripheral Peripheral Peripheral

Identity Foxp3+/CD25+, suppressive
function

IL-10+/CD25- 
suppressive function

Foxp3+/TGF-�+CD25?+ 
suppressive function

Foxp3+/CD25+, 
suppressive function

Distribution Systemic Localized? Localized? Localized?
Mechanism 

of suppression
Contact (CTLA-4, membrane
bound TGF-�)

Soluble mediators 
(IL-10 and possibly
TGF-�)

Contact (CTLA-4?) and 
soluble mediators 
(TGF-�), both required

?

Role in cancer Yes Yes ? Yes
Diverse TCRs Yesa ? ? Yesa

Potential depleting/
blocking drugs 
and antibodies

Cyclophosphamide, GITR mAb, 
CD25 mAb, CTLA-4 mAb, 
Denileukin Diftitox

IL-10 mAb, TGF-� mAb,
cyclophosphamide(?)

TGF-� mAb, 
CTLA-4 mAb(?), 
cyclophosphamide(?)

Cyclophosphamide(?), 
CD25 mAb, CTLA-4 
mAb(?), Denileukin
Diftitox

Table 2 Notable diVerences in Foxp3 and Treg biology between
human and mouse

Humans have two Foxp3 isoforms while mice appear to have only 
one

Foxp3 expression is conWned only to CD25high cells in humans 
whereas expression of Foxp3 is distributed throughout the CD25 
staining population in mice

Foxp3 is inducible in human CD4+CD25- T cells but not in mice
Foxp3 transfection into mouse T cells confers a Treg phenotype 

while in humans it does not
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In fact, it could be suggested that Foxp3 plays at least
two roles in human T cell biology, anergy induction,
and T cell regulation. Furthermore, it is likely that the
T cells that are marked by Foxp3 in humans are a col-
lection of thymically derived Tregs, peripherally
induced Tregs, and possibly anergic T cells.

Lymphocyte activation gene-3 (LAG-3) is another
candidate Treg marker that has emerged in recent
years that may have the potential to further identify
Tregs in association with CD4 and CD25. LAG-3 is a
cell surface bound MHC class II ligand also referred to
as CD223 that was discovered by Triebel et al. in 1990
prior to the reemergence of Tregs in 1995 [43]. As the
name suggests, LAG-3 was originally found in acti-
vated T cells but not resting T cells [43]. Early studies
revealed that rather than augmenting the activation of
T cells, LAG-3 competes with CD4 in MHC class II
binding acting as a T cell activation suppressor [44]. A
recent study in mice by Huang et al. suggested that
LAG-3 might in fact be a speciWc marker of Tregs [45].
That study showed that LAG-3 was nearly exclusively
expressed on Foxp3+ thymically derived Tregs but not
on eVector T cells harvested from recently immunized
mice. In human, studies have shown that polyclonal
activation of peripheral lymphocytes leads to upregula-
tion of LAG-3 on nearly every cell, and more recent
studies showing expression on mouse B cells strongly
suggests that LAG-3 may not be useful for deWnitive
Treg identiWcation [46].

Several other markers have been examined in recent
years as potentially selective markers for Tregs but to
no avail. A key example is the glucocorticoid-induced
tumor necrosis factor receptor (GITR), which is
constitutively expressed on Tregs, but like CD25 and
CTLA-4, it is upregulated on activated T cells [47].
GITR ligation, with agonistic (i.e., non-depleting) anti-
body, directly blocks the immunosuppressive activity
of Tregs by as of yet unknown mechanisms. GITR, like
CD25, also acts as a costimulatory molecule for eVec-
tor T cells so that the net eVects of GITR ligation are
the simultaneous blockade of CD4+CD25+ Tregs and
activation of eVector T cells. The identiWcation of spe-
ciWc molecular markers of Tregs remains an important
goal in human immunology and will not only aid in the
elucidation of Tregs but also provide for a novel target
for immunotherapy as described below.

Adding to the complexity of human CD4+CD25+

(Foxp3+) Tregs is the emerging data that multiple
minor subsets exist and that a simple panel of cell sur-
face markers may fail to identify all Tregs. For exam-
ple, Valmori et al. demonstrated that there may be
both naïve and antigen-experienced subsets [48]. These
studies demonstrated that younger adults carry a naïve

population that is characterized as CD45RA+

CD45RO-, a subset that declines with age. In another
study, Stassen et al. reported that integrins �4�7 and
�4�1 may also distinguish CD4+ Tregs [49]. While the
signiWcance of these subsets are unclear, the intriguing
Wnding from this study was that the integrins described
unique Tregs that could each give rise to a unique pop-
ulation of induced Tregs (e.g., Tr1 and Th3), support-
ing an emerging concept of infectious tolerance
described by Jonuleit et al. [50].

The inducible Tr1 and Th3 cells represent other
Treg cells subsets that are much less understood. Tr1
Tregs are characterized by constitutive expression of
the immunosuppressive cytokine, IL-10 [2, 8, 10], and
are induced in the periphery by complement and regu-
latory cytokines. For example, complement C3b
dimers can bind to CD46 on T cells and lead to diVer-
entiation of naïve CD4 T cells into Tr1 cells [51]. Tr1
Tregs can also be induced by tolerigenic DC and other
innate eVectors by the action of IL-10 and possibly IL-4
[10]. Although this subset is thought to be devoid of
CD25 expression, a recent study suggests that there
may be inducible expression of this molecule [52].
Emerging evidence suggests that Tr1 Tregs play a cru-
cial role in maintaining tolerance to normal gut Xora
and protecting against autoimmune responses in the
skin [51, 53, 54]. While it is thought that Tr1 cells do
not typically express Foxp3, recent studies show that
desmoglein-speciWc Tr1 cells not only express the tran-
scription factor but that it also plays a role in confer-
ring some immunosuppressive activity and raising the
question as to whether peripherally induced
CD4+CD25+(Foxp3+) T cells are distinct from periph-
erally induced Tr1 cells [55]. Th3 Tregs, on the other
hand, are characterized by expression of TGF-�, but
only low to variable levels of CD25. In mice, Th3 Tregs
seem to be important for the induction and mainte-
nance of oral tolerance but little is known of their role
or activities in humans [56]. While the designation of
distinct subsets may be useful for continued research,
one caveat is that it should be kept in mind that our
classiWcation strategy is tentative and likely to be
dynamic in the coming years. Elements that remain to
be sorted out included whether the distinctions that
have been identiWed are in fact permanent or transient,
potentially reXective of the in vivo or in vitro environ-
ment in which they are measured.

Mechanisms of immune regulation

In vitro studies of human CD4+CD25+(Foxp3+) Tregs
show that they block a variety of both adaptive
and innate immune eVectors mainly by cell contact
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mechanisms, including dendritic cells, natural killer
cells, and activated T cells [9]. The T cell suppressive
activity of the thymically derived CD4+CD25+ Tregs
uses a combination of cell surface bound TGF-�1 and
CTLA-4 as shown by Annunziato et al. [14]. Mecha-
nistically, it appeared that the interactions of TGF-�1
and CTLA-4 with eVector T cell TGF-� receptors and
B7, respectively, led to blockade of upregulation of
the high aYnity IL-2 receptor on the eVector T cells
and therefore the ability to respond to the autocrine/
paracrine of IL-2. The role of TGF-�1 was corrobo-
rated by a recent study from Nakamura et al. who
showed that the recombinant latency-associated pep-
tide of TGF-�1 (rLAP), known to block the interac-
tions of TGF-�1 with its receptor, can block the
suppressive activity of peripheral CD4+CD25high Tregs
[57]. Furthermore, CD4+CD25- T cells that are
exposed to CD4+CD25high Tregs show evidence of
activation of the TGF-� signaling pathway as well as
upregulation of TGF-�-inducible genes [57]. In addi-
tion to signaling through either B7 or TGF�R, Tregs
may also induce apoptotic or necrotic T cell death with
either granzyme B, perforin, or both [58].

Human CD4+CD25+(Foxp3+) Tregs regulate not
only T cells but also other immune eVectors as well.
Houot et al. recently showed that maturation and cyto-
kine production of human myeloid dendritic cells with
toll-like receptor ligands were inhibited by Tregs [59].
Inhibition required both cell-to-cell contact as well
as IL-10 suggesting that multiple mechanisms are used
to ensure complete suppression. Ghiringhelli et al.
recently showed that natural killer cells can also be
inhibited by CD4+CD25high Tregs. The rationale for
their investigation was the preliminary Wnding that NK
cell activity in tumor bearing patients was inversely
correlated with the levels of Tregs. Subsequent in vitro
studies showed that the direct application of Tregs to
NK cells could block NK-mediated cytolysis and IFN-�
production as well as downregulation of the NK-acti-
vating receptor NKG2D [60].

While most of these mechanistic studies demon-
strate killing or suppression of eVector cells in vitro, it
remains unclear which of these mechanisms are opera-
tive and dominant in vivo [6]. Importantly, it remains
unknown if cell-to-cell contact is required in vivo or if
inhibition of T cell responses is mediated by soluble
factors or a combination of soluble and contact-depen-
dent mechanisms.

In general, less is known about the immunosuppres-
sive mechanisms of peripherally induced Tregs [2]. Tr1
Treg-mediated immune suppression appears to require
both IL-10 and TGF-� but unlike thymically derived
Tregs, does not require cell-to-cell contact indicating

that both IL-10 and TGF-� are released as soluble
mediators [61]. Unlike the Tr1 Tregs, the Th3 Treg
subset does not typically produce IL-10 but rather con-
fers immune suppression through the elaboration of
soluble TGF-� and by an undeWned cell-contact mech-
anism that may involve CTLA-4 [10, 62].

Human Treg migratory mechanisms

The Wndings in the past decade that tumors can prefer-
entially recruit Tregs into the tumor microenvironment
underscores the importance of identifying mechanisms
by which Tregs migrate from the periphery into the tis-
sues. Iellem et al. found in early studies that human
Tregs express both CCR4 and CCR8. Furthermore,
they showed that Tregs are attracted to mature den-
dritic cells by secretion of CCL17 and CCL22 [63]. As
will be discussed below, several tumor types attract
Tregs by releasing CCR4 binding ligands [64, 65]. In
addition to the CCR4/CCR8 axes, Tregs use other
mechanisms for migration which are just now being
elucidated but as of yet have no established role in can-
cer pathogenesis. For example, Lim et al. found that
tonsillar-localized Tregs switch their traYcking pattern
from the CCR7/CCL19 axis to the CXCR5/CXCL13
axis upon activation providing them with the capability
of migrating from the T-cell rich areas of the tonsils to
the B-cell rich germinal centers [66]. Thymically
derived Tregs can also migrate toward CCL1, perhaps
using CCR8, as a means to localize to speciWc regions
within the thymus [14]. Thus, several migratory mecha-
nisms have been identiWed and the evidence suggests
migration or acquisition of migratory capabilities is a
dynamic process that may reXect the microenviron-
ment in which Tregs may Wnd themselves. Tumors may
use these dynamic migratory mechanisms to selectively
recruit in Tregs to block normal immunosurveillance
and immune destruction.

The Weld of Tregs is an area that is being aggres-
sively pursued by many laboratories. Based on the
striking new Wndings that continue to emerge regularly,
it is conceivable that we have only the most rudimen-
tary understanding of Tregs. Studies continue to be
published that identify new Treg subsets (other than
CD4+ Tregs), including one by Cosmi et al. who
recently showed the existence of CD8+ Tregs that share
many of the same properties of the CD4+ Treg [67].
How these various subsets will relate to each other and
contribute to immune tolerance will also become
clearer with the continued discovery of cell surface
markers that uniquely identify Treg subsets such as
CCR8 and Neuropilin-1 [52, 68]. For example, in stud-
ies by Freeman et al. it was found that the chemokine
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receptor, CCR8 may be a cell surface marker for IL-10
producing CD4+CD25+Foxp3-Tregs [52]. Such mark-
ers will ultimately prove useful for purifying Tregs for
ex vivo expansion and ex vivo analysis of phenotype
and functions [69].

Tregs in human cancer pathogenesis

Studies over the last several years now suggest that a
natural function of the immune system is to prevent
tumor growth by a process called immunosurveillance
and immunoediting [70]. Although controversial, sev-
eral lines of evidence from mouse modeling studies
strongly support a role for immunosurveillance in con-
trolling tumors. For example, mice that lack IFN-� and
lymphocytes have higher incidences of spontaneous
and chemically induced tumors [71]. However, in other
studies of sporadic tumorigenesis, tumors avoid
immune destruction by simply inducing tolerance [72].
The reasons for the discordance in results are not
known, largely because it is unclear how the immune
system, thought to be trained to avoid self-tissues, can
target tumors of non-viral origin. One possibility is that
the immune system relies on its peripheral mechanisms
of suppressing autoimmunity greater than previously
thought. In mouse models of tolerance, rather than
being deleted, high aYnity tumor antigen-speciWc
T cells remain latent but can be recovered in vitro or
in vivo [73, 74]. The fact that we can Wnd functionally
active human tumor antigen-speciWc T cells in patients
with cancer suggests that there are similar tolerance
mechanisms in the human [75–79, 80]. Other circum-
stantial lines of evidence also support natural immuno-
surveillance in humans. Human tumors, for example,
are often inWltrated with T cells, some of which are
known to be self-antigen-speciWc and correlate with
disease outcome [81, 82, 83]. Assuming then that
immunosurveillance is important, how do tumors
evade immunity? The possibility that Tregs interfere
with antitumor immunity was suggested in the years
immediately following the re-emergence of CD4+

Tregs, which may have at least two roles in blocking
tumor-speciWc immunity; Wrst by blocking the genera-
tion of immunity to tumor antigens in the periphery
(i.e., lymph nodes) and by neutralizing tumor inWltrat-
ing eVector T cells.

A sphere of inXuence

Tumors may block the generation of tumor antigen-
speciWc immunity by releasing diVusible factors (e.g.,
cytokines or antigens) that increase the numbers of

CD4+ Tregs in the lymphactics and the peripheral cir-
culation. Indeed, increased levels of CD4+ Tregs in the
peripheral blood of cancer patients, as compared to
normal healthy control, have been reported in recent
years for many cancers, including head and neck, hepa-
tocellular, gastric, breast, ovarian, lung, melanoma,
renal cell, and pancreatic [15–18, 19, 23, 25, 84]. Studies
examining all CD4+CD25+ cells, regardless of the level
of expression of CD25, suggested that in cancer
patients Tregs represented 13–52% of the total CD4+ T
cells [15, 18, 19]. However, when conWned to Foxp3+ or
CD25high the increases are more moderate ranging
from 4 to 10% which is still signiWcantly higher than the
1–2% observed in the normal healthy population [16,
23, 25]. The reason and the biological signiWcance of
the increased peripheral levels of Tregs is unclear but
perhaps an important question to be asked is whether
this represents a non-speciWc expansion or if the Tregs
are responding to tumor antigen (i.e., tumor antigen-
speciWc Tregs)? Indeed, if the latter were true, then
peripheral Tregs may aid in the identiWcation of tumor
antigens to which the immune system may be respond-
ing. Some evidence supports that Tregs associated with
tumors are antigen-speciWc Tregs. For example, Wang
et al. recently described their Wndings that LAGE-1-
speciWc T cells cloned from melanoma TIL demon-
strated suppressive activity as well as Foxp3 expression
[85]. Given our current understanding of the inducibil-
ity of Foxp3 in human T cells, however, it is plausible
that the cloning process resulted in the in vitro genera-
tion of antigen-speciWc T cells with acquired immune
suppressive activities [13]. The development of HLA
class II tetramers may be one way to circumvent the
problems associated with ex vivo expansion and
enrichment to deWne the prevalence and speciWcity of
tumor-associated Tregs [86].

Increases of Tregs in the circulation may also be
indicative of Treg expansion in the draining lymph
nodes and subsequent spillover into the circulation.
Studies are emerging showing elevated levels of Tregs
in tumor draining lymph nodes, including cervical,
endometrial, gastric cancers, and melanoma [87–89,
90]. Tregs in the tumor draining lymph nodes may
directly result in tolerance induction manifesting itself
as a lack of functional tumor antigen-speciWc immune
eVectors. Although the numbers of studies pertaining
to Tregs in the lymph nodes is small yet, the informa-
tion indicates that tumors create a sphere of inXuence
that results in blocking the generation of immune
responses where tumor antigens are present (i.e., prox-
imal lymph nodes). For example, a recent study by
Kawaida showed that in gastric cancer patients the
levels of CD4+CD25+ Tregs in the lymph nodes are
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elevated the closer the proximity to the tumor [87]. In
melanoma, the nodal CD4+CD25+ Tregs at sites proxi-
mal to the tumor are activated despite the fact that the
nodes are free of tumors whereas more distant sites
have normal levels of non-activated Tregs [90]. It
seems unlikely that a tumor-derived systemic factor is
responsible for activation and expansion of the Tregs
as this might be expected to result in increased levels of
Tregs in all of the lymph nodes throughout the body.
Likely, the tumor relies on establishing a concentration
gradient of antigens and other factors (TGF-�, chemo-
kines, etc.) that result in elevated Tregs that are detect-
able in the peripheral blood because of convergence of
the lymphatics and the blood veins. In addition to
CD4+CD25+ Tregs, Viguier and colleagues observed
that CD4+CD25- T cells from tumor draining nodes
released IL-10, TGF-�, or both, suggesting that Tregs
are also induced indicating either that tumors can
increase activate multiple subtypes of Tregs or that tol-
erance is infectious (i.e., Tregs promote more Tregs)
[90, 91]. Lastly, proof that the tumors directly lead to
elevated Tregs was demonstrated by Kono et al. who
showed that resection of gastric cancers results in a
near complete restoration of elevated peripheral Treg
levels [24].

A curtain of protection?

Tumors may also block the activities of tumor inWltrat-
ing immune eVectors by recruiting or inducing one or
more of the Treg subsets into the tumor microenviron-
ment as has been shown in animal models [92–94, 95].
Indeed, many studies in humans have shown intratu-
moral localization of CD4+CD25+(Foxp3+) Tregs in
several human cancers including breast, ovarian, lung,
non-Hodgkin lymphoma, liver, and melanoma [15, 64,
65, 84, 90, 96–100] (Table 3). Because recent human
studies have shown that Foxp3 can be induced in acti-
vated T cells, it is not possible at present to determine
if tumor-associated Foxp3+CD4+ Tregs are induced or

natural Tregs [90]. Understanding whether tumors
recruit or induce Tregs in the tumor microenvironment
is potentially important when designing targeted
agents aimed at reducing tumor-associated Tregs as
one could envision diVerences in approaches targeting
migration or induction.

Tumors can directly induce Tr1 (nonCD25+Foxp3+)
CD4+ Tregs in the tumor microenvironment. For
example, it has been shown that Hodgkin lymphomas
have an abundance of Tr1 Tregs within the tumor beds
[101]. In vitro, these Tr1 cells can block eVector T cell
activation mediated by soluble IL-10. Furthermore,
studies in ovarian cancer suggest that a specialized
CD8+ subset of Tr1 Tregs are induced by inWltrating
tolerigenic plasmacytoid dendritic cells [102]. Thus, it
appears that tumors possess multiple mechanisms of
recruiting and inducing Tregs in the tumor microenvi-
ronment, which may block the function of inWltrating
potentially tumor destructive immune eVectors.

The ultimate question is, are the intratumoral Tregs
clinically relevant? In some human tumors, intratu-
moral Tregs are associated with a poorer outcome.
Because it is diYcult to identify Tregs with certainty in
humans, it has not yet been possible to thoroughly
evaluate their role in the pathogenesis of cancer con-
clusively and there are many conXicting reports about
whether these intratumoral Tregs are important in
blocking inWltrating immune eVectors (i.e., DC and T
cells). The best evidence for a pathogenic role of Tregs
is in ovarian cancer as indicated by two independent
studies. In the Wrst study by Curiel et al., it was found
that regardless of stage, an increased number of
CD4+CD25+ T cells in the tumor is associated with a
poorer disease outcome [64]. In that study, tumor-inWl-
trating Tregs were analyzed both in vitro (i.e., T cell
immunosuppression assays) and in vivo (NOD/SCID),
demonstrating both the ability to block tumor-speciWc
immunity as well as tumor growth. In another corrobo-
rating study in ovarian cancer, Wolf et al. observed
that increased levels of intratumoral Foxp3, assessed

Table 3 Intratumoral Tregs

Cancer Phenotype Associated with survival 
or tumor control

Reference

Breast cancer IL-10+, TGF-�?? (Tr1) and 
CD4+CD25+Foxp3+

Unknown (TR1), 
No (CD4+CD25+Foxp3+)

[13, 94]

Ovarian cancer CD4+CD25+ Yes, negatively [62, 99]
Hodgkin’s lymphoma IL-10 (Tr1) and Foxp3+CD4+CD25+ Ambiguous [97]
Non-Hodgkin’s lymphoma CD4+CD25+Foxp3+CTLA-4+ Unknown [63]
Lung CD4+CD25+ Unknown [81]
Liver CD4+CD25+Foxp3+TGF-�+ No [95, 96]
Pancreas IL-10+, TGF-� ??(Tr1) Unknown [13]
Head and neck CD4+CD25+ and CD4+Foxp3+ Yes, positively [101]
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by RT-PCR, within the tumor bed was highly associ-
ated with decreased survival [103]. In that study, indi-
viduals who had low Foxp3 had a mean survival of 77
months (median not reached) while those with high
Foxp3 levels had a median survival of 30.2 months.
Furthermore, in a previous study, the authors of this
study had shown that patients with increased levels of
IFN-� within the tumor had signiWcantly improved sur-
vival [104]. This updated study, however, revealed that
co-localization of high Foxp3 neutralized this improved
survival, strongly suggesting that Tregs can block eVec-
tor immunity if recruited or induced in the tumor
microenvironment. However, one caveat is that it
remains unclear what the source of the Foxp3 is (i.e.,
tumor or T cells).

Despite the evidence in ovarian cancer, studies of
Tregs in other cancers have failed to demonstrate a
role of intratumoral Tregs in tumor pathogenesis.
Badoual et al. examined Foxp3+CD4+ T cells and
CD69+CD4+ T cells (activated eVector T cells) in head
and neck cancers, observing that both subsets were
associated with improved locoregional control. The
CD69+ subset was also positively associated with
improved overall survival while the Foxp3+ only dem-
onstrated a trend toward survival [105]. In another
study, Alvaro et al. were also unable to demonstrate a
signiWcant association of Foxp3+ cells with poorer sur-
vival in Hodgkin’s Lymphoma [106]. In fact, their study
also showed some evidence that Foxp3 expression in
the tumor bed was associated with improved survival.
The reasons for the discrepancies are unclear, but a
number of potential explanations emerge with the Wrst
being that each tumor type behaves diVerently with
some beneWting from inWltration of immune eVectors,
perhaps by beneWting from a rich source of cytokine-
associated signals, which may actually enhance tumor
growth.

Modulating CD4+ Tregs to augment tumor rejection 
immunity

As previously discussed, Tregs are potent immunoreg-
ulatory cells and play a critical role in maintaining
immune homeostasis. In addition to playing a key role
in the maintenance of immunologic self-tolerance and
prevention of autoimmunity, Tregs are also known to
regulate immune responses against infectious agents,
tumor antigens and transplantation antigens [107, 108].
While the current literature on Tregs is substantial, the
exact mechanisms of how Tregs control or regulate
normal and pathological immune responses (i.e., mech-
anism of activation, speciWcity for antigen, mode of

action, etc.) have not been fully deWned. Thus, the
impact of modulating this speciWc T cell population is
not trivial and may result in unwanted oV-target eVects.
Additionally, the lack of accessible (i.e., cell surface
bound) molecules that can be used to identify Tregs
and serve as targets makes this therapeutic strategy
increasingly diYcult.

However, given that Tregs have been demonstrated
to down-regulate immune responses to self-antigens,
such as tumor antigens, careful depletion or inactiva-
tion of Tregs may result in generation of functional
immune eVector cells and enhancement of endogenous
tumor-speciWc immunity [109]. The initial studies that
suggested that modulation of Tregs could result in the
development of an antitumor response came from
North and colleagues who showed that elimination of
tumor-induced suppressor T cells with cyclophospha-
mide resulted in immune-mediated regression of an
advanced lymphoma [110, 111]. Cyclophosphamide is
an alkylating agent that mediates DNA cross-linking
and has been used extensively to treat human diseases
including various cancers. While high doses of cyclo-
phosphamide which are required for eVective tumor
cytotoxicity result in immunosuppression, low doses of
cyclophosphamide can induce immunostimulatory
eVects resulting in improved immune responses in vari-
ous animal tumor models [112]. Preclinical studies in
mice have shown that the immunostimulatory eVects
observed at the lower doses of cyclophosphamide are
due to the selective depletion of cycling (i.e., proliferat-
ing) Tregs [73, 113]. For example, Lutsiak et al. found
that low-dose cyclophosphamide signiWcantly reduced
the CD4+CD25+ T cells but not the total CD4+ and
CD8+ T cell populations [113]. Furthermore, depletion
of Tregs increases the capability of mice to overcome
tolerance to tumor-associated antigen neu [73]. Erco-
lini et al. showed that CD4+CD25+ T cells in the
periphery are selectively downregulated and latent
pools of high avidity tumor antigen-speciWc T cells are
recruited to the antitumor immune response when vac-
cines are combined with cyclophosphamide, in the neu-
transgenic mouse [73]. In clinical studies, the use of
cyclophosphamide as a pretreatment in adoptive T cell
therapy strategies has been eVective in causing regres-
sion of tumors in patients with advanced metastatic
melanoma. In a study by Dudley and colleagues, pre-
treatment of patients with a non-myeloablative chemo-
therapy regimen of Xudarabine and cyclophosphamide
followed by infusion of ex vivo expanded melanoma
antigen-speciWc T cells resulted in persistence of
tumor-speciWc T cells in vivo, evidence of antitumor
functional activity (i.e., 50% clinical response rate),
and the ability of the infused T cells to traYc to tumor
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sites [5]. Thus, while current data supports the idea that
low dose cyclophosphamide can be used clinically to
reduce Treg-mediated immunosuppression, the speciWc
eVects of cyclophosphamide on Tregs remain unclear.
In fact, it remains unclear whether cyclophosphamide
depletes Tregs in humans.

Preclinical murine cancer models have also demon-
strated in vivo depletion of Tregs with resultant regres-
sion of tumors after treatment with anti-CD25
monoclonal antibodies [114] Thus, a logical technique
for depleting Tregs based on these animal studies, is
the use of anti-CD25 monoclonal antibodies which
have already been developed for clinical use in humans
for the treatment of acute cellular rejection of allograft
transplants, demonstrating both a good safety proWle
as well as clinical eYcacy [115, 116, 117]. As previously
mentioned, CD25 is the high aYnity IL-2 receptor
alpha subunit and while it is constitutively expressed
on some subsets of Tregs, it is also expressed, albeit
transiently and at high levels, on eVector T cells during
activation. The upregulation of CD25 imparts respon-
siveness of the eVector T cells to the growth factor
eVects of IL-2 generated during the immune response,
and it is this subset of lymphocytes that are targeted in
the setting of allograft rejection, rather than the Tregs.
Thus, based on its eYcacy at inhibiting CD25+ eVector
T cells, anti-CD25 may also be eVective at depleting
CD25+ Tregs to augment antitumor immunity. How-
ever, because expression of CD25 expression would
occur during the eVector phase of an emerging antitu-
mor immune response that would be targeted by the
antibody, it is likely that dosing with anti-CD25 anti-
bodies in the setting of cancer therapy will be diVerent
from the strategies used in the transplant setting. For
example, CD25-expressing Tregs might be amendable
to rapid depletion with a high dose of anti-CD25 anti-
body followed by its rapid elimination (i.e., the anti-
bodies) which may subsequently allow for the natural
or pharmacologically induced development of eVector
antitumor T cell immunity during the Treg deplete
period (1–2 months) [30]. The ability of anti-CD25
antibody alone to augment endogenous immunity
depends where in the development of an antitumor
response the eVector T cells were inhibited by the
tumor. If the eVectors are inhibited following the prim-
ing phase within the tumor by the Tregs, then the elim-
ination of Tregs may result in spontaneous tumor
rejection by releasing blocks on endogenous eVectors.
This is suggested by preclinical murine models in
murine sarcoma which have revealed that simply elimi-
nating intratumoral CD4+CD25+ Tregs with an anti-
CD4 antibody can directly lead to the unmasking of
tumor-rejecting immunity, suggesting that anti-CD25

monoclonal antibody monotherapy may be possible
with some tumor types and possibly with intratumoral
injections [92]. However, if blockade of the develop-
ment of a tumor-speciWc immune response involves a
combination of diVerent elements (e.g., tolerance),
then other strategies (e.g., vaccines) may be needed to
boost the immune response following Treg depletion.
In the neu-transgenic preclinical mouse model of
breast cancer, for instance, some studies have shown
that the combination of depletion with anti-CD25
antibodies and vaccines is a more eVective approach
than using either depletion or vaccines alone [73]. Treg
killing may be enhanced through conjugation of
anti-CD25 antibodies to toxins. Attia et al. recently
reported that LMB-2, a conjugate of an anti-CD25 sin-
gle chain antibody and Pseudomonas exotoxin, selec-
tively impairs CD25+ Tregs in vitro without harming
bystander T lymphocytes [118].

The use of IL-2 or IL-2 conjugates to selectively tar-
get CD25-expressing Tregs is currently being explored
as an alternative to anti-CD25 monoclonal antibody.
Our group has used Denileukin Diftitox (Ontak,
DAB389IL-2), an IL-2 diphtheria toxin fusion protein,
to directly kill Treg in preclinical models [119]. Deni-
leukin Diftitox down-regulates CD4+CD25+Foxp3+

Tregs and when used early in the course of disease can
lead to a sustained antitumor response in tumor growth
in the neu-transgenic mouse. Coincidental with the
development of a sustained antitumor response, Deni-
leukin Diftitox also resulted in the ability of the trans-
genic animals to generate both T cell and B cell
immune responses that were speciWc for tumor anti-
gens. Furthermore, the immunotoxin also led to
reduced Tregs in the tumor bed. Like the anti-CD25
antibody, the central concern when using Denileukin
Diftitox is the most appropriate dosing of the immuno-
toxin so that eVector T cells are not inhibited.
Recently, Denileukin Diftitox has been evaluated as an
adjunct to deplete Tregs and improve the immuno-
genicity of cancer vaccines. Dannull et al. used the
immunotoxin to deplete Tregs from PBMC from renal
cancer patients [30]. Patients were treated with a single
dose of the immunotoxin followed by vaccination with
tumor antigen RNA-transfected dendritic cells. Treat-
ment resulted in the elimination of Tregs, identiWed as
CD4+CD25high T cells. Interestingly, the administration
of Denileukin Diftitox did not aVect CD25-intermedi-
ate eVector/memory T cells. Compared to vaccination
alone (i.e., in the absence of Treg depletion), the
administration of Denileukin Diftitox seemed to have
greatly improved the immune response to the vaccine.
These results provide strong evidence that Denileukin
Diftitox can modulate the Treg population in humans
123



280 Cancer Immunol Immunother (2007) 56:271–285
and that immunity to self-antigens can be augmented.
Continued development and determining its most
eVective use (e.g., tumor and vaccine settings) seem to
be warranted.

High dose IL-2 has been used extensively in patients
with metastatic melanoma and renal cell carcinoma
and results in approximately a 20% response rate
[120]. While in vitro studies support the role of low-
dose IL-2 in promoting the survival and diVerentiation
of Tregs, the in vivo eVect of high-dose IL-2 on the
Treg population and its mechanism of therapeutic
activity in responding patients are not known, but a
recent study by Cesana et al. suggests that high-dose
IL-2 alone (i.e., unconjugated) may down-modulate
Treg levels, at least in the periphery [23]. Administra-
tion of high-dose IL-2 in melanoma or renal cancer
patients resulted in a signiWcant decrease of peripheral
Tregs in those patients who achieved an objective clini-
cal response to IL-2 therapy. Intratumoral Tregs were
not evaluated so it is unclear if the treatment resulted
in decreased microenvironmental suppression or
increase in eVector T cells or both.

Targeting of suppressive molecules on Tregs such as
CTLA-4 is another therapeutic strategy to reverse
immunosuppression and enhance endogenous tumor-
speciWc immunity. Tregs constitutively express CTLA-4
and use it to suppress eVector T cells, as previously
mentioned above. Like CD25, CTLA-4 is not
expressed exclusively on Tregs but unlike CD25,
CTLA-4 is only associated with inhibiting T cell
responses and, therefore, blocking its function at multi-
ple sites may lead to an immune response that may be
greater than if it was expressed only on Tregs [121].
Current data suggest that in vivo administration of
anti-CTLA-4 antibody blocks CTLA-4-speciWc signal-
ing in CTLA-4+ Tregs and thereby promotes tumor
immunity. Phan et al. showed that treatment with anti-
CTLA-4 antibody induced cancer regression in some
patients that were vaccinated with HLA-A2 restricted
gp100-derived peptides [122]. Importantly, blockade of
CTLA-4 led to severe autoimmunity (grade III/IV
dermatitis, enterocolitis, hepatitis, and hypophysitis) in
43% of patients. The phase I clinical trial was instru-
mental in deWning the central role of CTLA-4 in
blocking autoimmunity. However, it remains unclear if
anti-CTLA-4 acted by reducing Tregs in the tumor,
augmenting antigen-speciWc T cells in the periphery or
both. In recent studies, the administration of anti-
CTLA-4 antibody in patients with renal-cell cancer or
metastatic melanoma did not inhibit the suppressive
activity of Tregs in vivo or in vitro and there was no
decrease in the number of peripheral blood Tregs
[123]. Thus, a mechanistic link between the eVects of

anti-CTLA-4 antibody on Treg function and improved
tumor immunity, if any, remains to be deWned.

Two preclinical studies have shown that administra-
tion of GITR-speciWc antibody protected mice from
tumor challenge and induces tumor regression in mice
bearing advanced cancers [112, 124]. In the latter
study, Ko et al. showed that treatment of mice with
agonistic antibody resulted in the reduced recruitment
of Tregs into the tumor microenvironment thereby
permitting reduction of the microenvironmental sup-
pression of the eVector T cells and better tumor eradi-
cation [124]. Another possibility that remains to be
tested is whether depletion of Tregs can be accom-
plished with depleting anti-GITR monoclonal anti-
bodies in a manner analogous to anti-CD25 antibodies.

Other strategies that have emerged in recent years,
which may be useful for inhibiting Treg function,
include blocking soluble suppressive molecules such as
IL-10 and TGF-�. Notably, IL-10 and TGF-� can be
produced by multiple cell types in the tumor microen-
vironment. Although, Tregs might not be the main
source of IL-10 and TGF-� it is clear that Tregs can
mediate suppression through the actions of IL-10 and
TGF-� in vivo [112, 125]. More speciWcally, the primary
mechanism of action of induced Tregs (Tregs gener-
ated in the periphery from CD4+CD25- precursors) is
mediated through IL-10 or TGF-� as described above.
IL-10 is a pleiotropic cytokine and is suppressive to
eVector T cells but is an important B cell diVerentiation
and maturation factor [126]. IL-10-speciWc antibodies
have been shown to result in more prolonged antitu-
mor CTL responses in vitro [127]. Additionally, IL-10-
speciWc antibodies can block the severity of Systemic
Lupus Erythmatosus (SLE), a disease in which autoan-
tibodies are important in pathogenesis [128]. In that
early study, Wve of six SLE patients were treated into
clinical remission with blockade of IL-10. Furthermore,
the treatment was safe and well tolerated. The Wndings
that IL-10-secreting Tregs are induced and accumulate
within some tumors (e.g., Hodgkin’s lymphoma) sug-
gests that blockade of IL-10 with antibody may be
worthwhile to block the local immune suppression if
the antibody can be speciWcally targeted to the tumor.

Conclusion

In closing, modulating the action of Tregs may be
important in enhancing endogenous tumor immunity
for some cancers, as recent evidence suggests that they
may be involved in pathogenesis. Potential therapeu-
tic strategies in targeting Tregs include depletion,
blocking traYcking into tumors, or reducing their
123



Cancer Immunol Immunother (2007) 56:271–285 281
diVerentiation and suppressive mechanisms. Again,
one of the major concerns with targeting Tregs for the
purposes of treating tumors is the potential for oV-
target eVects. As previously mentioned above, agents
like anti-CTLA-4, have signiWcant toxicity proWles.
Besides blocking intratumoral immune eVectors or
preventing the induction of antitumor immunity,
Tregs are also dominant in controlling generalized
autoimmunity. Thus, treatment strategies that can spe-
ciWcally target these agents, such as to the intratu-
moral microenvironment would be of considerable
interest so as to prevent oV-target eVects. Indeed,
recombinant DNA techniques, agents like anti-IL-10
or anti-CTLA-4 could be conjugated with other agents
that localize them to the tumor microenvironment.
For example, anti-CTLA-4 antibodies could be linked
to nanoparticles that have been pre-coated with a
tumor-localizing antibody (e.g., HER-2/neu) [129,
130]. Such strategies may ultimately reduce the
amount of anti-CTLA-4 antibody thereby reducing
the possibility of oV-target eVects. Lastly, although our
understanding of peripheral regulatory mechanisms
has greatly improved in the last decade, the continued
discoveries of new Tregs and new Treg properties
drives one to the conclusion that, in reality, our under-
standing is still only minimal.
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