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Abstract The C–C chemokines, macrophage inflamma-
tory protein (MIP)1a and MIP1b are potent chemo-
attractants for the monocytes, which form an important
component of the stroma of tumor tissue and may reg-
ulate tumor growth and associated inflammation. We
examined the role of MIP1a and MIP1b in inducing the
release of inflammatory cytokines and the generation of
tumoricidal monocytes from the peripheral blood
monocytes (PBM) of healthy women and patients with
carcinoma of breast (CaBr). Interleukin-1 (IL-1) and
tumor necrosis factor (TNF) a release by the PBM was
markedly stimulated by MIP1a in CaBr patients, but
only marginally so in healthy women. In contrast,
MIP1b stimulated the release of these cytokines by the
PBM of healthy women, but failed to do so in CaBr
patients. MIP1a, but not MIP1b, synergized with LPS in
inducing the release of IL-1 from the PBM of both
healthy women and CaBr patients. Both MIP1a and
MIP1b augmented respiratory bursts in PBM and gen-
erated tumoricidal PBM that killed T24 cells, MIP1a
being more effective in CaBr patients and MIP1b in
healthy women. IFN-c co-stimulated and IL-4 sup-
pressed MIP1a and b-induced cytotoxicity in PBM. The
synergy of IFN-c was more marked with MIP1a than
with MIP1b. The differential effects of MIP1a and
MIP1b on the PBM of healthy women and CaBr pa-

tients co-related with the levels of expression of CCR1
and CCR5 in these monocytes. The expression of
CCR5 was higher than that of CCR1 in the PBM of
healthy women and the PBM of the CaBr patients
showed overexpression of CCR1 and downregulation of
CCR5.
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Introduction

The monocytes and tissue-associated macrophages play
a major role in an acute or chronic inflammation, such
as soft tissue trauma, infection, autoimmune disorder,
and cancer, through the secretion of chemokines and
cytokines. In tumor tissues, these cells form an impor-
tant component of the stroma, but their role in regu-
lating tumor growth is not clear. The tumor infiltrating
monocytes (TIM) and peripheral blood monocytes
(PBM) display varied levels of cytotoxicity that can be
related to their local microenvironment. Tumor-growth-
associated inflammation is dependent on the activation
of endothelium and the infiltration of leukocytes [26, 31]
induced by the C–C and C–X–C chemokines generated
by the activated endothelium. The early response cyto-
kines Interleukin-1 (IL-1) and tumor necrosis factor
(TNF) a determine the adhesion to the endothelium and
transendothelial migration of the leukocyte [34]. The
detection of C–C chemokines, in particular monocyte
chemo-attractant protein-1 (MCP-1), in various tumor
tissues [44] and their role in determining the level of TIM
[25] suggest that the C–C chemokines have a role in
regulating the tumor growth. MCP-1 and macrophage
inflammatory protein (MIP)1a and MIP1b, activate
respiratory bursts in monocytes [16, 46]. MCP-1 has also
been shown to induce tumoricidal macrophages in syn-
ergy with LPS [38]. On the other hand, tumor growth
and metastasis can be promoted by MCP-1 [1, 42]. The
MCP-1-driven TH2 responses, the impairment of IL-12
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production, and the activation of gelatinase- and uro-
kinase-type plasminogen activator [8, 32] may be asso-
ciated with the chemokine-induced augmented tumor
growth and metastasis. MIP1a and MIP1b, in contrast
to the effect of MCP-1, drive TH-1 responses [35, 39].
The regulation of monocyte migration, the induction of
respiratory bursts in monocytes/macrophages, and the
driving of TH-1 responses by MIP1a and MIP1b suggest
that these chemokines may control the host’s antitumor
responses. In malignancy, a defective systemic immunity
along with TH-1/TH-2 imbalance is often observed [5,
6]. The monocytes from cancer patients also have defects
in their ability to respond to chemo-attractants [9]. In
this paper, we examined the role of MIP1a and MIP1b
in inducing inflammatory cytokines and tumoricidal
monocytes in breast cancer patients.

Materials and methods

Patients

Eight patients with adenocarcinoma of breasts (CaBr
patients) (clinical stages II and III), with ages ranging
between 35 and 55, attending the Chittaranjan Cancer
Hospital, Calcutta, India, were included in the study and
the prescribed ethical norms of the institute were strictly
adhered to. Blood samples were collected from the pa-
tients before they underwent any treatment. Seven age-
matched healthy women served as the control group. All
the patients and healthy women were from a middle
socio-economic background, non-smokers, hepatitis B
and HIV negative.

Peripheral blood lymphocytes (PBL) and PBM

The PBL and PBM from the blood samples of healthy
women and CaBr patients were isolated by Histopaque
(Sigma Chemicals Company, St. Louis, MO, USA)
density gradient centrifugation and adherence. As was
confirmed by non-specific esterases staining, more than
96% of the adherent cells were monocytes.

Culture medium

RPM1-1640 supplemented with 10% fetal bovine serum
(LPS-free), 100 U/ml penicillin, and 10 lg/ml strepto-
mycin (CM) was used throughout this study. The
materials were procured from GIBCO, BRL, Gaithers-
burg, MD, USA.

Cell lines

T24 (human urinary bladder transitional cell carcinoma)
and L929 (mouse fibroblastoid cell line) cells obtained
from the National Facility for Animal tissue and Cell

Culture, Pune, India, were cultured in CM and used as
targets in cytotoxicity assay and TNF bioassay, respec-
tively.

Chemokines, cytokines, and antibodies

The human recombinant MIP1a, MIP1b, and IL-4 were
obtained as a gift from NCI, Frederick, MD, USA.
Human recombinant IFN-c, rabbit anti-human MIP1a,
MIP1b, IL-1, IFN-c, and IL-4 antibodies were pur-
chased from (Biogen Research Corporation, Cambridge
MA, USA) Peprotech, EC Ltd., London, UK and
Pharmingen, Singapore.

In-vitro culture of PBM and PBL

The PBM and PBL were suspended in CM and plated
into the wells of 96 well microculture plates at desired
concentrations. The cells were cultured for 18 h (unless
otherwise specified) at 37�C in 5% CO2 atmosphere in
the presence or absence of the C–C chemokines and
cytokines.

Cytokine assays

The IL-1 bioactivity in the monocyte culture superna-
tants (CS) was determined by assaying the thymocyte
co-mitogenic activity of the CS [28]. The thymocytes
isolated from Balb/c mice were cultured for 72 h in CM
in the presence of ConA (2.5 lg/ml) and aliquots of
serially diluted monocyte CS. The monocyte CS added
with anti-IL-1 antibody (diluted 1:100) and the mono-
cyte-free CM was used as controls. The proliferation of
the thymocytes was measured by MTT (Sigma) colori-
metric assay [29].

The tumor necrosis factor bioactivity in the CS of
PBM was assayed by measuring the CS-induced death of
actinomycin D (Sigma)-treated L929 cells, as described
earlier [18]. In brief, the L929 cells suspended in the CM
were plated (5·105 cells/well) in 96 well flat-bottomed
microtitre plates. Actinomycin D was added to the cells
to a final concentration of 1 mg/ml. The cells were
incubated for 18 h in the presence or absence of test CS.
MTT colorimetric assay was done and the percentage
dead cells (% DC) were determined from the OD values
of the culture-supernatant-treated and -untreated L929
cells.

Microcytotoxicity assay

The cytotoxicity of PBM against the T24 cells was
measured by co-culturing the PBM with T24 cells at an
effector : target ratio of 1:40 for four hours at 37�C in
5% CO2 atmosphere in a 96 well microculture plate
following a method published earlier [13]. The LDH
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released from the target cells in the culture supernatant
was measured using a commercially available kit (Boe-
ringer Mannheim, Indianapolis, IN, USA). The results
were expressed as percent cytotoxicity, determined by
taking into consideration the LDH released by the
effector cell and target cell controls.

Cytotoxicity (%) = [{(OD of effector–target cell
mix-OD of effector cell control)-OD of low control}/OD
of high control-OD of low control]·100.

The low control or spontaneous LDH release was
measured from the wells containing 1·104 T24 cells in
assay medium. The high control (maximum LDH re-
lease) was determined by plating 1·104 cells in each of
the triplicate wells containing 100 ll of 1% Triton X-
100. The effector cell control was determined by plating
PBM (1·105 cells/well) in triplicate wells and incubating
the cells alone in the assay medium.

Assay for superoxide anion production

The production of superoxide anion (O2
�) by the PBM

was measured by assaying the Superoxide dismutase
(SOD) (Sigma) inhibitable reduction of Ferricytochrome
C (Sigma) by a technique modified from that described
by Pike and Mizel [33]. The PBM suspended in CM were
plated in a 96 well microtitre plate (106 cells/well) and
cultured in the presence or absence of the chemokines
for 18 h at 37�C in 5% CO2 atmosphere. The cells were
treated with PMA (0.5 lg/ml) as control. The cells were
washed and the monolayer was cultured with Krebs
ringer phosphate dextrose (KRPD) medium containing
80 lM of Ferricytochrome C in the presence or absence
of SOD (100 lg/ml) for 60 min at 37�C. The change in
the absorbance of the wells was measured at 550 nm.
The rate of O2

� production was expressed as a unit of
nmol O2

�/106 cells/60 min.

Results

MIP1a and MIP1b differentially modulate
the release of IL-1 from the PBM of healthy women
and CaBr patients

The PBM of healthy women and CaBr patients were
cultured in the presence or absence of different doses
(10–50 ng/ml) of MIP1a or MIP1b for 18 h. The culture
supernatants were collected and the IL-1 bioactivity of
the CS was determined. As shown in Fig. 1, MIP1a at
20- and 50-ng/ml doses stimulated IL-1 release from the
PBM of CaBr patients, whereas MIP1b in similar doses
stimulated IL-1 release from the PBM of healthy wo-
men. A marginal stimulation of IL-1 release from the
PBM of healthy women was obtained with 10 and 20 ng/
ml of MIP1a. The MIP1b failed to stimulate IL-1 release
from the PBM of CaBr patients. The inhibition of the
thymocyte co-mitogenesis following the addition of
1:100 diluted anti-IL-1 antibodies in the CS indicated
specificity of the IL-1 bioactivity in the CS.

Synergy of MIP1a with LPS in inducing IL-1 release
from the PBM of CaBr patients

The PBM of healthy women and CaBr patients were
treated with LPS (1 lg/ml) alone, MIP1a (10, 20, and
50 ng/ml) alone, MIP1b (10, 20, and 50 ng/ml) alone
and with combined doses of MIP1a and LPS or MIP1b
and LPS for 18 h. Figure 2a shows that the LPS-induced
IL-1 release by the PBM is less in CaBr patients than in
healthy women. As shown earlier, MIP1a alone at all
doses induced IL-1 release by the PBM of healthy wo-
men and CaBr patients. The MIP1a at 10 ng/ml was co-
stimulatory with LPS and markedly enhanced IL-1 re-
lease by the PBM of healthy women and CaBr patients
(Fig. 2a). In contrast, no synergy of MIP1b with LPS
was observed in inducing IL-1 release from the PBM of
either healthy women or CaBr patients (Fig. 2b).

MIP1a and MIP1b differentially modulate TNFa and
superoxide anion release by the PBM of healthy women
and CaBr patients

The PBM of the healthy women and CaBr patients were
treated with 10, 20, and 50 ng/ml of MIP1a and MIP1b
for 18 h at 37�C in 5% CO2 atmosphere. The cells were
washed and further cultured in CM for 18 h and the
TNFa bioactivity in the CS was determined. The PBM
of CaBr patients secreted significantly less (P<0.01)
amount of TNFa as compared to that secreted by the
PBM of healthy women (Fig. 3). The MIP1a enhanced
TNFa release highly significantly (P<0.001) by the
PBM of CaBr patients and less potently by the cells of
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Fig. 1 MIP1a and MIP1b differentially modulate IL-1 release from
the PBM of healthy women and CaBr patients. The PBM of seven
healthy women and eight CaBr patients were cultured with (0–50-
ng/ml) MIP1a and MIP1b for 18 h. The IL-1 released in the culture
supernatants was determined by assaying thymocyte co-mitogenic
activity of the culture supernatants. The data (mean ± SD) is
representative of seven independent setsof experiments in the case
of healthy women and eight sets of independent experiments in the
case of CaBr patients

1536



healthy women. In contrast, the MIP1b significantly
(P<0.001) enhanced TNFa release by the PBM of
healthy women, but not so in CaBr patients (Fig. 3).

To determine the superoxide anion release, the
chemokine-treated cells were washed and further cul-
tured in KRPD medium containing Ferricytochrome C
in the presence or absence of SOD (100 lg/ml) for 1 h at
37�C.

Figure 4 shows that the O2
� production by the PBM

of CaBr patients was deficient as compared with that by
the PBM of healthy women. MIP1a augmented O2

� re-
lease from the PBM of both healthy women and CaBr
patients in a dose-dependent manner, but the stimula-
tory effect of MIP1a was more marked in CaBr patients.
MIP1b in all doses (10–50 ng/ml) significantly enhanced
(P<0.01) O2

� release by the PBM of healthy women.
Only a marginal stimulation of O2

� release in CaBr pa-
tients was observed following the treatment of the PBM
with 50-ng/ml MIP1b (Fig. 4).

MIP1a and MIP1b stimulate tumor target killing by the
PBM of healthy women and CaBr patients

The PBM of healthy women and CaBr patients were
treated with or without 10–50 ng/ml of MIP1a or
MIP1b for 18 h. The cells were then washed and co-
cultured with T24 cells to determine their cytotoxicity
against the T24 cells. The results of microcytotoxicity
assays revealed that the PBM of both healthy women

and CaBr patients could kill T24 cells (Fig. 5). MIP1a
and b stimulated cytotoxicity of the PBM of both
healthy women and CaBr patients in a dose-dependent
manner. However, the cytotoxicity of the PBM induced
by MIP1a was more marked in CaBr patients and that
by MIP1b in healthy women. In a few experiments, the
PBM of healthy women and CaBr patients were treated
with MIP1a (50 ng/ml) plus anti-MIP1a antibodies (di-
luted 1:100) and MIP1b (50 ng/ml) plus anti-MIP1b
antibodies (1:100). The treatment with the antibodies
partially blocked (60–70%) the chemokine-induced
cytotoxicity of the PBM.

IFN-c co-stimulates and IL-4 inhibits the MIP1a-
and MIP1b-induced tumoricidal activities of PBM

The PBM of healthy women and CaBr patients were
cultured in the presence or absence of 50 ng/ml of
MIP1a or MIP1b alone, 100 U/ml of IFN-c alone or
200 U/ml of IL-4 alone and MIP1a (50 ng/ml) or
MIP1b (50 ng/ml) along with IFN-c (100 U/ml) or IL-4
(200 U/ml) for 18 h at 37�C in 5% CO2 atmosphere. The
cytotoxicity of the monocytes against the T24 cells and
the release of O2

� and TNFa from the PBM were mea-
sured. Figure 6a shows that IFN-c alone enhanced the
tumor killing by the PBM of both healthy women and
CaBr patients. With MIP1a and MIP1b, the IFN-c
produced synergistic effect and significantly augmented
the cytotoxicity of the PBM of healthy women and CaBr
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Fig. 2 Synergy of MIP1a and
MIP1b with LPS in inducing
the IL-1 release from the PBM
of healthy women and CaBr
patients. a MIP1a synergies
with LPS in inducing IL-1
release. b MIP1b does not
synergize with LPS in inducing
IL-1 release. The PBM from
seven healthy women and eight
CaBr patients were cultured in
the presence or absence of LPS
(1–lg/ml) alone, 10–50–ng/ml
of MIP1a or MIP1b alone and
with combined doses of MIP1a
and LPS or MIP1b and LPS for
18 h. The IL-1 released in the
culture supernatants was
determined by assaying
thymocyte co-mitogenic activity
of the culture supernatants. The
data (mean ± SD) are
representative of seven and
eight sets of independent
experiments for healthy women
and CaBr patients, respectively
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patients as compared with that induced by MIP1a alone,
MIP1b alone, or IFN-c alone. IL-4 alone inhibited
cytotoxicity of the PBM of both healthy women and
CaBr patients. In the presence of IL-4, MIP1a and

MIP1b failed to induce cytotoxicity in the PBM of both
healthy women and CaBr patients (Fig. 6b). The syn-
ergy of IFN-c with MIP1a and MIP1b and downregu-
lation by IL-4 was also found in the induction of O2

� and
TNF release by the PBM of healthy women and CaBr
patient’s data. In all the assays, the synergy of IFN-c
was found to be greater with MIP1a than with MIP1b.

Discussion

The pro-inflammatory C–C chemokines MIP1a and
MIP1b are potent chemoattractants for the mononu-
clear cells [32]. The MIP1b, when injected causes a mild
neutrophil accumulation followed by a more prominent
monocytic infiltration [3, 27], a process that involves the
activation of the cells. Appropriately, the activated
monocytes and tissue macrophages release cytokines
and have the ability to kill tumor cells [10, 45]. The
monocytes, which are a major source of MIP1a and
MIP1b, thus may play an important role in malignancy-
associated inflammatory and immune responses, and the
control of tumor growth.

Initial insult results in the release of proinflammatory
cytokines, IL-1 and TNF, from the endothelial cells and
tissue macrophages, which in turn induce the release of
C–C and C–X–C chemokines from the surrounding
stromal or parenchyma cells. The production of IL-1
was shown to be a necessary intermediate step for MCP-
1 gene expression in the endothelial cells [37]. The C–C
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chemokines activate and recruit PBM and lymphocytes,
which further release inflammatory cytokines and
chemokines, and induce inflammatory and immune re-
sponses. The IL-1 and TNF released by the activated
monocytes also regulate adherence to endothelium and
transendothelial migration of leukocytes by enhancing
the expression of adhesion molecules in both leukocytes
and endothelial cells [17, 21, 34]. Though MCP-1 regu-
lates the induction of adhesion molecules it is unable to
induce TNF release [22]. Fahey et al. [16] using mouse
peritoneal exudate cells observed that MIP1a, but not
MIP1b, induced the release of IL-1 and TNFa. In con-
trast, the present data show that IL-1 and TNF release
from the PBM of healthy women was markedly en-
hanced by MIP1b and only marginally by MIP1a
(Figs. 1, 3). On the other hand, MIP1a had a marked
stimulatory effect on the release of these cytokines by the
PBM of CaBr patients, but MIP1b had no effect on
these cells (Figs. 1, 3). IL-1 secretion by the PBM in
response to LPS also differed in healthy women and
CaBr patients (Fig. 2). LPS, like IL-1, activates a pro-
tein kinase cascade that leads to altered gene expression.
P38, an MAP kinase family member found in the cyto-
plasm and the nucleus of activated cells, is phosphory-
lated in tyrosine residues in response to LPS [19]. The
blocking of the MAP kinase by a pyridinyl amidazol
compound inhibited IL-1 and TNF release by LPS-
stimulated monocytes [19, 23]. The cell surface changes
and the deficient kinase activation associated with
malignancy [24] may be responsible for the observed
deficiency in LPS, as well as MIP1b, and also the in-
duced IL-1 secretion by the PBM of the CaBr patients.
Similar to the synergistic effect of MCP-1 with LPS in

the induction of tumoricidal macrophages [20], MIP1a
showed synergy with LPS in inducing IL-1 from the
PBM of both healthy women and CaBr patients (Fig. 2).
The receptor for MIP1a, CCR1, couples to multiple G
proteins Gi and Gq. The Gi coupled receptors are
known to stimulate MAPK via bc subunits [14]. The
synergy between MIP1a and LPS in stimulating the IL-1
release may be due to the activation of common MAPK
family members by CCR1 and LPS. Although CCR5,
the receptor for MIP1b, signals through Gc i proteins
and phosphorylates the MAPK family [4, 18], no syn-
ergy between MIP1b and LPS was observed.

While some chemokines may favor tumor growth and
metastasis by promoting angiogenesis and tumor-cell
proliferation, others may enhance innate or acquired
host immunity against tumor [43]. The MIP1a, MIP1b,
and RANTES are known to augment NK cell cytotox-
icity [41]. Like other agonists [46], MIP1a and MIP1b
also induced respiratory bursts in the monocytes
(Fig. 3). The augmented release of TNFa and O2

� by the
PBM of healthy women (Figs. 3, 4) correlated with their
enhanced tumor killing ability induced by MIP1a and
MIP1b (Fig. 5). The specificity of MIP1a- and b-induced
cytotoxicity of the monocytes was evident in the block-
ing of the chemokine-induced tumor target killing by the
monocytes with MIP1a and MIP1b antibodies. It ap-
pears that the PBM-mediated killing of T24 cells in-
volved TNFa-independent mechanisms, as in the CaBr
patients, the PBM were found to be deficient in secreting
TNFa (Fig. 3) and O2

� (Fig. 4), but not in killing T24
cells (Fig. 5).

The activation of monocytes to classical inflamma-
tory macrophages is regulated by the TH-1 cytokines.

NT IL-4 MIP1α MIP1α+IL-4 MIP1β MIP1β+IL-4

B

0

10

20

30

40

50

60

0

10

20

30

40

50

60

70

NT IFNγ MIP1α MIP1α+IFNγ MIP1β MIP1β+IFNγ

Healthy
CaBrA

%
C

yt
ot

ox
ic

ity
(M

ea
n 

+
S

D
)

%
C

yt
ot

ox
ic

ity
(M

ea
n 

+
S

D
)

Fig. 6 IFN-c upregulates and
IL-4 downregulates MIP1a-
and MIP1b-induced activation
of PBM. a IFN-c synergizes
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inducing cytotoxicity in PBM. b
IL-4 downregulates MIP1a-
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of six healthy women and six
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(200 U/ml)) alone, IL-4 (200 U/
ml) alone, or with the combined
doses of the IFN-c or IL-4 with
MIP1a and MIP1b for 18 h.
The PBM were then co-cultured
with T24 cells at an E:T of 20:1
for 4 h and LDH released
specifically from the target cells
was measured by using LDH
assay kit to determine
cytotoxicity of the PBM. The
data (mean ± SD) is
representative of six sets of
independent experiments in
healthy women and CaBr
patients separately
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The TH-1 effector cells are recruited in the inflamed sites
by the C–C chemokines [2], which are inducible and
upregulated in inflammatory lesions. The MIP1a is
highly effective in recruiting TH-1 cells [39] and it pref-
erentially chemo attracts CD8+ cells [40]. The influx of
CD8+ cells, a major source of MIP1a [11], into the tu-
mor is associated with the restriction of tumor growth
[15]. The synergy observed between IFN-c and MIP1a
or MIP1b in augmenting tumor killing (Fig. 6a) and the
release of TNFa and O2

� (data not shown) by the PBM
of both healthy women and CaBr patients suggests that
the C–C chemokines and the TH-1 cytokines may reg-
ulate monocyte activation through their concerted ef-
fort. The present data showed more marked synergy of
IFN-c with MIP1a than with MIP1b, the underlying
mechanism of which is not clearly understood. The G-
protein coupled C—C-chemokine receptors activate
phospholipase C, inositol tryphosphate, intracellular
Ca2+ mobilization, and protein kinese C (PKC) [7]. The
activation of common signaling molecules, such as PKC,
by the C–C chemokines and IFN-c may account for
their co-stimulatory effect in inducing tumoricidal
monocytes. The synergy of IFN-c with MIP1a and
MIP1b in activating the PBM (Fig. 6a) may also be due
to IFN-c-induced increased expression of CCR1, the
receptor for MIP1a, and CCR5, the receptor for MIP1b
and MIP1a in these cells [12, 35, 47].

The human leukocytes were shown to produce C–C
chemokines during type I response but not during type
II response [3]. We have earlier reported downregulation
of IL-12 and IFN-c release by the PBM and PBL in
CaBr patients [7], which may be correlated with the
malignancy-associated preponderance of TH-2 re-
sponses [5], and may explain the observed downregula-
tion of monocyte activation in CaBr patients. The
suppression of MIP1a- and MIP1b-induced PBM cyto-
toxicity by IL-4 (Fig. 6b) suggests that the TH-2 cyto-
kines, similar to their inhibitory effect on the TH-1
cytokine-induced monocyte activation [1, 30], may
downregulate the C–C chemokine-induced activation
and generation of tumoricidal monocytes.

The role of the communicating network of C–C
chemokines and TH-1 cytokines as a regulator of cell-
mediated immune responses and inflammatory re-
sponses in cancer is also evident from the findings that
the CCR1 and CCR5 are expressed in both monocytes
and TH-1 cells [35, 36].

Our results show that MIP1b is more potent in
activating the PBM of healthy women than MIP1a,
whereas in breast cancer patients, MIP1a is more
effective than MIP1b (Figs. 1–5). Using RNA–DNA
hybridization and RT-PCR techniques, we have ob-
served overexpression of CCR1 and downregulation of
CCR5 in the PBM of CaBr patients as compared with
those in the PBM of healthy women, which correlated
well with the observed differential effect of MIP1a and
MIP1b on these cells. The RT-PCR analysis also
showed the same results as of dot blot DNA–RNA
hybridization. The present findings provide evidence

that MIP1a, along with TH-1 cytokines, plays a
greater role than MIP1b in monocyte- mediated reg-
ulation of tumor growth.
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