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Abstract Molecules belonging to the Tumor Necrosis
Factor (TNF) and TNF receptor superfamilies have
explosively expanded through the era of genomics and
bioinformatics. Biological investigations of these mole-
cules have explored their potency as attractive targets
for cancer therapy. Anti-tumor mechanisms mediated by
TNF superfamily molecules (TNFSF) could be classified
into direct actions onto tumor cells and indirect effects
through immune or non-immune components of tumor-
bearing host. In this review, we focus on TRAIL, CD40,
4-1BB (CD137), and LIGHT as promising molecules to
mediate powerful and selective anti-tumor responses,
and summarize their unique effector mechanisms. In
addition, optimal approaches to manipulate these mol-
ecules for cancer therapy are also discussed. We try to
provide an insight into a role of TNFSF in cancer
therapeutics and highlight each of their potency to be an
important player in anti-cancer strategies.

Introduction

Tumor necrosis factor (TNF) was originally character-
ized as a substance mediating necrotic death in various
types of tumors in 1975 [4]. As a consequence of the
findings, numerous challenges to utilize TNF for the
treatment of cancer had been implemented in both
experimental animals and clinical trials. Although cer-
tain levels of immunological and tumoricidal responses
have been observed in experimental tumor models,

clinical trials with systemic administration of re-
combinant human TNF were unsuccessful due to con-
siderable adverse effects without apparent therapeutic
benefits [30, 33]. Beginning in 1990s, novel molecules
belonging to TNF and TNF receptor superfamily (re-
ferred to as TNFSF and TNFRSF hereafter) have been
identified and characterized. Developments of world-
wide organizations constructing genomic and expressed
sequence tags (EST) databases of mammals as well as
the emergence of bioinformatics have boosted the
expansion of these families. Among novel members of
TNFSF and TNFRSF, molecules that mediate powerful
anti-tumor effects without inducing severe adverse ef-
fects have been detected. Thus, growing TNFSF and
TNFRSF molecules have brought us the revival of
TNF-related molecules in cancer immunotherapy. In
this review, we will discuss the molecules of this super-
family as potential targets for the development of future
cancer immunotherapy.

Mechanistic insights of cancer immunotherapy
with TNFSF/TNFRSF molecules

Cancer immunotherapies employing TNFSF/TNFRSF
molecules exhibit anti-tumor effects through two pre-
dominant mechanisms: direct killing of tumor cells and
indirect effects by activated anti-tumor immunity. The
former mechanism is limited to tumors which express
appropriate TNFRSF molecules, while the latter works
irrelevant to tumor types so that it may have broad
applicability as cancer therapy. These mechanisms are
not mutually exclusive, and some TNFSF molecules
employ both mechanisms to express anti-tumor effects.

Direct anti-tumor effects through TNFRSF molecules
on tumor cells

Signaling from several TNFRSF molecules directly
induces cellular phenotypic changes that result in death
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of tumor cells. One representative mechanism is to de-
liver apoptotic signal from death domain-containing
TNFRSF molecules on tumor cells. Practical applica-
tion of this strategy to treat cancer, however, was se-
verely hampered by profound adverse effects such as
systemic inflammation and liver toxicity triggered by
TNFa and Fas signaling, respectively [8, 9, 30, 31, 33,
56]. To overcome this, two alternative approaches have
been developed. One is to discover TNFSF molecules
capable of delivering death signals on tumor cells,
without inducing significant damage in non-malignant
cells. In this regard, TRAIL and CD40 are particularly
attractive targets. The other strategy is a selective
administration technique into tumor sites such as iso-
lated limb perfusion of TNFa.

TRAIL, a new path to selective tumoricidal effects

Among TNFRSF molecules with death domain, a rare
example to show selective killing of malignant cells is
TNF-related apoptosis-inducing ligand (TRAIL)/
TRAIL receptors system. TRAIL is a type-II trans-
membrane protein expressed as a homotrimer [26, 43],
shows high similarity with TNFa and Fas ligand, and is
capable of binding to five different receptors [11, 15, 47,
48, 64]. Two of the receptors, death receptor 4 (DR4)
and DR5, have cytoplasmic death domains so as to
deliver apoptotic signals [47, 48, 64]. The other three
receptors are decoy receptor 1 (DcR1), DcR2, and os-
teoprotegerin (OPG), which are either devoid of func-
tional death domains or produced as secreted protein,
and therefore may act as a negative regulator of cell
death [11, 15, 47, 64]. TRAIL expression can be induced
on activated T, NK, dendritic cells (DC), and mono-
cytes, while a subset of liver NK cells constitutively ex-
press [68]. Importantly, many tumor cells are susceptible
to TRAIL-induced apoptosis, whereas non-transformed
cells are in general resistant to TRAIL. Although the
precise mechanisms underlying the differential sensitivity
remain unclear, several possibilities have been proposed.
First, an obvious hypothesis would suggest a role of
functional balance between death domain-containing
receptors and decoy receptors. Large-scale screening of
different cell lines, however, does not always indicate the
correlation between TRAIL sensitivity and receptor
expression pattern [34, 85]. Alternative possibility is a
distinct transduction of death signal between tumor and
normal cells. The primary candidate responsible for the
distinct signaling is cellular FLICE-like inhibitory pro-
tein (c-FLIP), which prevents apoptosis by blocking
caspase-8 activation [28]. Increased expression of c-FLIP
in TRAIL-resistant cell lines and a gain of susceptibility
by decreasing c-FLIP expression in those lines have been
reported [21, 34].

There are numerous studies indicating potential
application of TRAIL for cancer immunotherapy. Re-
combinant TRAIL or anti-DR5 mAb has demonstrated
remarkable anti-tumor effects that eradicate established

tumors in experimental animals with no or very little
adverse effects [27, 75]. The mice genetically deficient of
the TRAIL gene exhibit increased susceptibility to
experimental and spontaneous tumor [10], suggesting an
important role of endogenous TRAIL in tumor sur-
veillance. This notion was further supported by the
findings that fibrosarcoma cells grown in the mice trea-
ted with anti-TRAIL neutralizing mAb, have increased
susceptibility to TRAIL-induced death [69]. Interest-
ingly, TRAIL-deficient T cells exhibit significantly lower
activity of graft-versus-leukemia (GVL) effects com-
pared to wild-type T cells, whereas these T cells generate
comparable graft-versus-host disease (GVHD) [59]. This
study may suggest a potential use of TRAIL to
strengthen GVL effects without exacerbating GVHD. In
addition, combined usage of chemotherapeutic drugs
with TRAIL sensitizes tumor cells otherwise resistant to
TRAIL-induced death [24]. Accumulated pre-clinical
studies thus clearly indicate a potential of TRAIL for
cancer therapy.

Tumoricidal effects of CD40 signaling on tumor cells

Another example for the direct tumoricidal effect
through TNFRSF molecules on tumor cells is CD40 and
CD40L (CD154) system. CD40 is widely expressed on
various types of cancer including hematological malig-
nancies and epithelial cell-derived carcinomas. In
hematopoietic tumors, signaling from CD40 leads to
diverse outcomes according to cell types. In Hodgkin’s
disease and low-grade B cell malignancies such as
chronic lymphocytic leukemia, hairy cell leukemia, and
follicular lymphoma, CD40 activation contributes to the
survival of tumor cells through increased proliferation
and inhibited apoptosis [16, 32, 74], as similar to its ef-
fects on non-malignant B cells. In contrast, CD40 sig-
naling in high-grade B cell lymphoma, Burkitt
lymphoma, and multiple myeloma cells induces growth
arrest and apoptosis [17, 50, 57]. In epithelial carcinoma
cells, the effects of CD40 signaling appear consistently
suppressive, as it mediates growth retardation and
apoptosis in breast, ovarian, squamous cell, and lung
cancer [19, 25, 52, 86].

Although in vitro studies indicate the direct tumori-
cidal activity of CD40, in vivo anti-tumor effects could
be interpreted as indirect actions to tumor cells because
of its broad expression and functions on immune cells
[53]. In this regard, recombinant CD154 protein is
capable of inhibiting the growth of CD40+ human
breast or ovarian tumor xenografted in severe combined
immunodeficiency (SCID) mice [19, 25]. These results
suggest that in vivo anti-tumor effects by CD40 signaling
are, at least in part, mediated independently of adaptive
immune systems. Increased expression of apoptotic
molecules such as Fas ligand, TNFa, and TRAIL would
contribute to the direct tumoricidal effects of CD40 [1,
14, 20]. Alternatively, CD40 signal in B cell lymphoma
converts them to suitable antigen-presenting cells (APC)
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by increasing costimulatory molecule and/or cytokine
expressions [61]. This mechanism has been translated
into clinic, in which autologous plasma cell leukemia are
stimulated with CD154 ex vivo and used as cancer
vaccine [62].

Isolated limb perfusion of TNFa

Due to the dose-limiting toxicity, a tolerable dose of
systemic TNFa is 10–50 times lower than that required
for anti-tumor effects [2]. Isolated limb perfusion, a
technique to achieve an elevated concentration of drugs
at the isolated extremity without flowing them into
systemic circulation, has been successfully applied to
local administration of TNFa. Clinical trials by multiple
groups have demonstrated that isolated limb perfusion
of TNFa with melphalan achieves >70% response rate
(complete and partial responses) in patients suffering
from unresectable bulk melanoma or soft-tissue sarco-
mas [13, 35]. This approach thus can avoid the necessity
of amputation of limbs. Therapeutic mechanism of iso-
lated limb perfusion of TNFa appears to be destruction
of endothelial cells and vasculature of tumors rather
than direct killing of tumor cells [46, 54]. In addition,
given the profound synergistic effects of TNFa and
melphalan, augmented tissue penetration of chemo-
therapeutic drugs by TNFa would play an important
role. Host immune cells may also contribute to the ef-
fects since pre-irradiated lymphopenic animals are not
susceptible to TNFa perfusion [37]. Taken together,
TNFa can be a potent therapeutic reagent for tumors
localized in extremity by utilizing the isolated limb per-
fusion technique.

Indirect anti-tumor effects of TNFRSF expressed
on immune cells

Many members of TNFRSF have been shown to func-
tion as costimulatory molecules on T lymphocytes [77].
In addition, function and survival of DC can be regu-
lated by signals from TNFRSF molecules [44, 55, 60, 79,
84]. Thus, two major components for T cell immunity,
i.e. T cells and APC, are both controlled by TNFSF/
TNFRSF interactions. Targeting these pathways,
therefore, is a potent strategy for cancer immunother-
apy. Here we focus on two representative molecules, 4-
1BB (CD137) and LIGHT, based on their capacity to
stimulate both T cell and DC, and to generate powerful
anti-tumor immunity.

Potent anti-tumor immunity induced by 4-1BB signaling

There is ample evidence demonstrating that triggering
4-1BB signaling elicits robust anti-tumor immune
responses in vivo [42, 77]. This effect is largely inter-
preted by 4-1BB signaling on tumor-specific T cells
enhancing proliferation and CTL activity, and prevent-

ing activation-induced cell death [51, 65, 67]. Recent
studies, however, have revealed diverse expression and
functions of 4-1BB on immune cells, and have suggested
novel mechanisms of its anti-tumor effects (Fig. 1).

First, 4-1BB signaling is able to prevent and rescue T
cells from immune tolerance [81, 83]. In several animal
models that render Ag-specific T cells anergic through
tolerogenic Ag immunization, agonistic anti-4-1BB mAb
abrogates T cell anergy induction and recovers respon-
siveness of those T cells [83]. Since there is substantial
evidence indicating that tumor-reactive T cells are ren-
dered functionally tolerant in tumor-bearing mice [49],
the functional role of 4-1BB signaling in T cell anergy
could be crucial to mediate anti-tumor effects. In addi-
tion, 4-1BB signal delivery, in conjunction with tumor
Ag vaccination, breaks T cell ignorance to poorly
immunogenic tumors, leading to an eradication of those
tumors [81]. Besides T cell anergy and ignorance, recent
studies suggest that 4-1BB signal has a functional role in
CD4+CD25+ regulatory T cells, a central player
maintaining T cell tolerance and immune homeostasis.
4-1BB is expressed on activated regulatory T cells, and
stimulation of regulatory T cells by agonistic 4-1BB
mAb abrogates their suppressive function [6]. Taken
together, interference with T cell tolerance mechanisms
by 4-1BB may play an important role in the anti-tumor
effects.

Secondly, 4-1BB expression on non-T cell population
including NK cells and DC has been explored, and
functional contribution of this pathway to the immune
activation is strongly implicated [18, 41, 79, 82]. In vivo
depletion of NK cells abrogates anti-tumor effects of
anti-4-1BB mAb in some tumor models [41]. 4-1BB
signal stimulates in vitro proliferation and cytokine
production of NK cells purified from RAG-deficient

Fig. 1 Multi-cellular mechanisms of anti-tumor effects through 4-
1BB signal. During generation of anti-tumor immunity, 4-1BB
signaling is capable of targeting at least three immune cell
components, T cells, dendritic cells (DC), and NK cells. 4-1BB
signal directly activates tumor-specific T cells, while 4-1BB signal to
DC and NK cells indirectly stimulate T cells through cytokines,
cognate interaction, or other unknown mechanisms. T cell
activation induced by 4-1BB signal confer them the ability to
overcome T cell tolerance associated with tumor-bearing condi-
tions, thus leaving secondary lymphoid organs to migrate into the
tumor site and attack tumor cells
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mice [82]. The NK cells activated with 4-1BB have a
positive cross-talk with T cells, in which NK cells
accelerate T cell responses to specific Ag and, on the
other hand, T cell-derived IL-2 stimulates proliferation
of NK cells [82]. 4-1BB expressed on DC may also
function as immune modulator since stimulation of DC
with 4-1BB ligand triggers IL-12 and IL-6 production
and confers them potent Ag-presenting capacity [79].
Collectively, current studies strongly suggest that 4-1BB
signaling activate the cross-talk between innate and
adaptive immune systems, by which powerful anti-tu-
mor effects are generated.

Finally, 4-1BB stimulation modifies the distribution
pattern of tumor-specific T cells in vivo. The number of
tumor-specific T cells infiltrating into the tumor sites
significantly increases by the administration of agonistic
anti-4-1BB mAb [80]. This effect is largely dependent on
IFN-c, since the infiltration of tumor-specific T cells is
completely abrogated in mice deficient of IFN-c, while
their number in tumor-draining LN remains unchanged.
Consequently, 4-1BB mAb is incapable of inducing anti-
tumor effects in the mice deficient of IFN-c or treated
with anti-IFN-c neutralizing mAb [80]. In addition,
blockade of 4-1BB signaling by either anti-4-1BB ligand
mAb or gene disruption of 4-1BB, decreases T cell
infiltration in cardiac allograft and prolongs the graft
survival [5]. Taken together, modification of migratory
features in T cells by 4-1BB signaling could be a novel
mechanism contributing to the anti-tumor effects.

Dual functions of LIGHT on tumor immunity
through two counter-receptors

LIGHT is a potent T cell costimulator in both mouse
and human immune systems [70, 71]. It is expressed on
activated T cells and immature DC and interacts with
two distinct cell-membrane receptors, HVEM and
LTbR, and one decoy receptor, TR6/DcR3 [38, 70, 89].
HVEM is expressed on a broad range of hematopoietic
cells including T cells, whereas LTbR is mainly detected
on non-hematopoietic populations such as stromal cells
[3, 23], suggesting a primary role of HVEM in T cell
costimulation by LIGHT. In addition, it was also re-
ported that HVEM signaling on DC stimulates their
APC function and cytokine production [44]. Genetic
disruption of LIGHT results in deficient CD8 T cell
functions including impaired graft rejection in allogeneic
organ transplantation [58, 72, 87]. Conversely, trans-
genic expression of LIGHT under T cell-specific pro-
moters results in autoimmune phenotypes associated
with the infiltration of activated T cells in multiple or-
gans [63, 76]. These findings indicate that LIGHT–
HVEM pathway plays an important role in the compe-
tent activation of T cell immunity as well as maintenance
of T cell tolerance.

Consistent with its costimulatory functions, expres-
sion of LIGHT on tumor cells accelerates anti-tumor T
cell immunity, which results in a delayed growth or

spontaneous regression of tumors [71, 90]. Increased
CTL activity in tumor-draining LN and abrogation of
anti-tumor effect by CD8+ T cell depletion, indicates a
central role of tumor-reactive CTL in LIGHT-mediated
anti-tumor effects. It was shown that inoculation of
LIGHT-expressing tumor cells induces profound
expression of chemokine CCL21 and adhesion molecule
MAdCAM-1 on tumor stromal cells through LIGHT–
LTbR interaction [90]. These factors may attract naı̈ve T
cells into the site of tumor, where they receive costimu-
latory signal by LIGHT–HVEM pathway to proliferate
and differentiate into effector T cells against tumor
(Fig. 2). Although the direct link between this phe-
nomenon and anti-tumor effects by LIGHT has not
been established, LIGHT-dependent manipulation of
two distinct arms of immunity, i.e. migration and acti-
vation of T cells, is an attractive and novel strategy for
cancer immunotherapy.

Approaches to manipulate TNFSF/TNFRSF molecules
for cancer therapy

Gene transfer of costimulatory TNFSF molecules into
tumor cells is a powerful cancer vaccine strategy in
experimental models [7, 40, 71]. However, this method
may encompass obstacles to translate into clinical
settings due to requirements of gene transfer into pri-
mary tumor cells. Alternatively, recombinant proteins of
TNFSF molecules can be prepared in vitro and used as
biological adjuvants to enhance T cell responses trig-
gered by cancer vaccines. Based on physiological struc-
ture of TNFSF proteins as homo- or heterotrimers [36],
protein engineering to trimerize recombinant proteins
would be essential for the effects. In fact, conjugation of
leucine zipper motif to TNFSF proteins accelerates to

Fig. 2 Dual functions of LIGHT for the activation of anti-tumor
immunity. LIGHT over-expressed on tumor cells triggers LTbR
signal in tumor stromal cells to stimulate chemokine production
and adhesion molecule expression such as CCL21 and MAdCAM-
1. These factors attract T cells into the tumor site where they
receive LIGHT–HVEM costimulatory signal to be activated into
anti-tumor effector T cells
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form multi-complexes of proteins and results in superior
biological effects in vitro and in vivo [22, 45, 75].

Development of agonistic mAb against TNFRSF
molecules is one of the most promising strategies for
cancer immunotherapy.Administration of agonisticmAb
to 4-1BB, CD40, or OX-40 has been shown to generate
strong anti-tumor responses in various experimental
cancer models [12, 42, 66, 78]. To translate this strategy
into clinical settings and to maximize their effects in pa-
tients, humanization of mAbs might be necessary. An
alternative strategy to employ agonistic mAb for cancer
immunotherapy is to construct membrane-bound single-
chain Fv fragment (scFv). Recent study indicates that
vaccination of anti-4-1BB scFv-expressing tumor cells is
capable of treating MHC class I-negative parental tumor
in amanner dependent onCD4+T cells andNKcells, but
not CD8+ T cells [88]. These findings suggest a potential
use of scFv agonistic to costimulatory receptors to treat
low immunogenic or immune-evaded human tumors.

Finally, immunotherapy with TNFSF/TNFRSF
molecules can be significantly fortified by a combination
with other vaccine strategies. For instance, the effects of
agonistic 4-1BB mAb become prominent by concurrent
vaccination with tumor-specific Ag or Ag-pulsed DC
[29, 73, 81]. In adoptive immunotherapy using tumor-
reactive T cells, ex vivo provision of 4-1BB signal in-
duces continuous expansion of T cells and efficient anti-
tumor activity after in vivo transfer [39]. In addition,
tumoricidal activity of TRAIL has synergistic effects
with various chemotherapeutic reagents [24]. Thus,
identifying optimal combinations of TNFSF/TNFRSF-
based treatments with other anti-cancer therapies would
indeed be an important subject in future studies.

Concluding remarks

Wealthy knowledge in molecular nature and immuno-
logical functions of the TNF superfamily are now
available and ready to be translated into the clinical
settings for cancer therapeutics. Manipulation of
TNFSF or TNFRSF molecules is an attractive strategy
because of their pleiotropic functions on systemic cel-
lular components including T cells, APC, non-hemato-
poietic cells such as stromal cells, or tumor cells
themselves. Their effects include stimulation of anti-tu-
mor immune cells, induction of cytokine and chemokine
production, prolonged survival of effector cells, and di-
rect lysis of tumor cells. These functions, if carefully
selected and manipulated, represent new and promising
strategies for cancer therapy.
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