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Abstract Although even ‘‘spontaneous’’ tumours are
immunogenic and are commonly infiltrated by tumour
antigen-specific T cells (at least in melanoma), most tu-
mours are not completely rejected by the host, and
cancer progresses. There is a growing realisation that
many responses defined as antitumour effector mecha-
nisms act as double-edged swords and under different
conditions either become ineffective or even protumori-
genic. Examples are interleukin 2 (also proapoptotic for
activated T cells), interferon c (by induction of ligands
for T and NK cell inhibitory receptors), angiogenesis
inhibition (by hypoxia-mediated induction of growth
factors promoting metastasis), and macrophage free
radical-mediated cytotoxicity (by inhibiting T cells).
Immune selection pressure itself, resulting in outgrowth
of resistant tumour variants could also be viewed in this
light. On the other hand, knowledge of the many tumour
escape pathways offers the theoretical possibility of
reconstituting antitumour immunity. Tumour escape
from immunosurveillance represents the last series of
hurdles to be overcome in formulating truly effective
cancer immunotherapy, but given the immense plasticity
of the tumour cell, and the complex balance between
pro- and antitumour activity of the very same effector
pathways, this remains a major challenge.
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Introduction

The recent renaissance of interest in the idea of immu-
nosurveillance against tumours has arisen as a result of
new data requiring reexamination of the reasons for
rejecting this theory over the past couple of decades [38].
The evidence against immunosurveillance was derived
largely from an inability to detect remarkable differences
in cancer occurrence in athymic nude mice compared to
their normal wild-type equivalents [146] and because
cancer incidence in long-term immunosuppressed organ
transplant recipients was thought either not to be in-
creased or to be limited to cancers with a viral etiology.
However, athymic mice are not completely devoid of
functional T cells [66], and with longer follow-up, a larger
range of cancers does appear at increased frequency in
transplant recipients [49, 82]. Increasing awareness of the
latter among transplant physicians is leading to routini-
sation of specialist cancer screening follow-up in such
programs (for recent examples, see [7, 155, 170]).

For many years now, clinical vaccination trials have
sought to trigger or enhance antitumour immunity, but
always with rather disappointing results. Many expla-
nations (apart from the nonexistence of anticancer
immunity) could account for the unimpressive success
rates, from the classical concept of immunoselective
pressure giving rise to resistant variants, to the more
recent realisation that tumour-induced alterations to the
patients� immune system may subvert anticancer re-
sponses. These mechanisms may be classified into the
following major groups:

1) alteration of MHC class I and tumour antigen
expression

2) dysregulated expression of adhesion / accessory
molecules by tumour and/or antigen-presenting cells

3) secretion of immunosuppressive soluble factors either
by tumour cells or infiltrating T cells or both

4) induction of immune nonresponsiveness via anergy
induction or clonal deletion of responding T cells

5) induction of suppressor cells
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6) changes in T-cell signal transduction molecules
7) tumour utilisation of products of stimulated leuko-

cytes, i.e. immunostimulation of cancer.

The following sections provide brief examples of
some key findings that have contributed to our current
understanding in each of these categories and, where
appropriate, directions to recent reviews on these topics,
as well as indications for remediation.

Alteration of MHC and tumour-antigen expression

MHC class I–restricted cytolytic T cells (CTLs) are
thought to be major effectors of anticancer immunity.
Loss of HLA antigens from tumour cells would therefore
prevent their recognition and lysis by such CTLs. There is
a lot of data documenting that down-regulation of HLA-
A and HLA-B alleles is common and clinically important
[47, 76], with reduced levels of class I expression predicting
clinical outcome [69]. Even total loss ofHLA expression is
not uncommon [16]. Several mechanisms are responsible,
but total loss of class I expression is usually a result of
deletion of b2-microglobulin [108]. Another common
reason for decreased class I expression is loss of peptide
transporter function, usually regulatory rather than del-
etional and therefore susceptible to remedial manipula-
tion, e.g. with cytokines, as shown for TAP-1 [136].
Down-regulation of MHC antigen by tumour cells is a
powerful strategy to avoid killing by MHC-restricted
CTLs; accordingly, poor prognosis has been reported to
result from HLA loss [4]. However, tumours lacking
MHC class I expression might be expected to become
more susceptible to immunotherapy based on NK cells.
This phenomenon may underlie reports inconsistent with
the above paradigm which suggest that HLA loss may
sometimes predict better not worse survival [94], or even
the extreme example of uveal melanoma where highHLA
expression is seen and correlates with metastatic spread
and poor prognosis [67].

In addition to down-regulation of ‘‘classical’’ HLA
antigens, tumour cells may up-regulate expression of
MHC molecules such as HLA-E, which ligate inhibitory
receptors such as CD94/NKG2A that are expressed
both by NK cells and CTLs. The expression of these
NKIR is up-regulated by cytokines such as IL-15 and
TGF-b, both of which can be produced by tumour cells
[9, 54]. Moreover, even cytokines such as IFN-c may act
as double-edged swords via up-regulation of NKIR
ligands on tumour cells via up-regulation of HLA-G
[89]. Consistent with this, there is also a correlation
between higher serum levels of soluble HLA-G in mel-
anoma patients and advanced stage of disease and
tumour load [154]. For recent reviews on the role of
NKIR, see [20, 26].

Loss of tumour-antigen expression may not occur
infrequently compared with the loss of the HLA mole-
cule presenting tumour peptide, but it has been difficult
to document. Experiments in mice have shown that

immunoselection against dominant tumour antigens
often but not always results in reduced MHC class I
expression [36]. Powerful circumstantial evidence for
similar phenomena in humans derive from an extensive
clinical study examining 532 melanoma lesions from 204
patients after vaccination with gp100 peptide. The fre-
quency of lesions highly expressing gp100 significantly
decreased after therapy whereas the expression of
MART-1 was essentially unchanged [126]. HLA loss
cannot strictly be excluded but would require that gp100
production was reduced by HLA loss, which is unlikely.
More recently, a range of mutations in the PA-1 target
antigen in mice in the absence of MHC loss has been
documented as a major mechanism accounting for tu-
mour escape after adoptive immunotherapy [8].

The emergence of tumour variants under selective
pressure of a specific immune response reflects the usual
acquisition of therapy resistance resulting in loss of
susceptibility to therapy. A common approach to alle-
viate this is to increase the dose of therapeutic agent.
This may be more feasible for adoptive immunotherapy
than chemotherapy and stem cell transplantation. In-
deed, in some models, increasing the number of effector
cells can destroy tumour cells before they have time to
evolve resistant variants [91] – here is therapy as a race
against time. In this context, either in vivo, or in in vitro
propagation of large numbers of T cells for use in
adoptive immunotherapy, a further problem arises: cell
senescence caused by extensive replication of somatic
cells (for reviews, see [39, 112]).

Expression of adhesion or costimulatory molecules
by tumour and/or dendritic cells

Tumour-antigen presentation by dendritic cells in the
context of appropriate costimulation is critical for elic-
iting CTLs, and accessory molecule expression by tu-
mour cells is important in their susceptibility to such
CTLs. Both DC and tumour cell adhesion/accessory/
costimulatory molecule expression is dysregulated in
cancer and contributes materially to tumour escape.
Early work showed that tumour-infiltrating DCs were
strongly MHC class II+ but failed to express the
important costimulatory molecules CD80 or CD86
(thereby inducing T-cell anergy), whereas DCs in
inflammatory infiltrates such as in Crohn�s disease le-
sions were highly functional and all CD80/86+ [23].
Failed attempts to normalise DC function in cancer have
included treatment with Flt3-ligand [40], and use of
neutralising antisera against IL-10, VEGF, TGF-b or
PGE2 [72]. In other model systems in which DCs pro-
gressively lost MHC class II expression, Flt3L treatment
also proved ineffective at restoring DC integrity [27].

Effector cells, once generated, must interact with their
target cells, initially via antigen nonspecific adhesive
mechanisms. Tumour cells of different histologies fre-
quently show relatively decreased levels of important
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adhesion molecules, such as ICAM-1 [158], which may
have functional consequences [45]. IFN-c treatment can
up-regulate ICAM-1 on colon carcinoma cells and in-
crease their lytic susceptibility [12]. Cancer cells may also
lack expression of other important costimulatory mole-
cules, such as CD40 [62], the absence of which on epi-
dermal tumours has been suggested to facilitate escape
[156]. Von Leoprechting et al. reported that advanced
stages were CD40) whereas primary tumours and even
metastases were CD40+ [157]. Moreover, CD40 ligation
on melanoma cells enhanced their susceptibility to lysis
by Melan-A/MART-1–specific CTLs, so loss of CD40
expression would prevent this and contribute to escape
[157]. CD40 expression may be associated with a more
favourable prognosis in some other tumours as well, e.g.
diffuse large B-cell lymphoma [83].

As with NKIR mentioned above, costimulatory
family receptor/ligand pairs are also present not only as
positive but also as negative regulatory effectors. Recent
awareness of the widespread expression of ligands such
as PD-1L on several different types of cancer and the
negative effects that they mediate on antitumour T cells
[34] may make these molecules critical targets for
immunoregulation therapy. Again, care must be exer-
cised here; commonly employed immunomodulatory
cytokines such as IFN-c increase the level of PD-1L
expression [34]. Undoubtedly, yet more negative recep-
tors remain to be discovered [160]; complete knowledge
of all such possible interactions might be beneficial in
manipulating responses in the desired direction.

Secretion of immunosuppressive substances

It has been known for many years that sera of cancer
patients can contain an impressive variety of immuno-
suppressive proteins, ranging from acute phase reactants
with nonspecific inhibitory properties, to adhesion
molecules blocking cell interactions or apoptosis.
Reactivity not only to tumour but also to nontumour
antigens may be depressed in cancer patients and con-
tribute to their increased susceptibility to infection.
Soluble forms of adhesion molecules such as CD54,
CD58, and others may correlate with disease progres-
sion, as has been suggested for plasma sCD54 levels [53,
132]. Gangliosides may be inhibitory at the level of
antigen-presenting cell function [113, 138]. Serum levels
of soluble Fas may also contribute to tumour escape [13,
68, 153]. Molecules commonly overexpressed in tumour
cells, such as MUC-1 and MUC-2, may also be immu-
nosuppressive for T cells in soluble form [73] and asso-
ciate with poor survival and poor anticancer responses
in patients on immunotherapy [87]. Annexin II, over-
expressed in several tumours, may also inhibit T-cell
proliferation [1]. The human neutrophil proteins known
as ‘‘defensins’’ may also fall into this category [59].
Tumours can also exert nonspecific suppressive activity,
e.g. by secreting adenosine as a result of their hypoxic
metabolism. Adenosine can inhibit IL-12 and stimulate

IL-10 production by monocytes, contributing to these
suppressive effects [84]. Another simple substance pos-
sibly functioning in this way may be tryptophan, se-
creted by tumour-associated macrophages (for review,
see [93]).

Many cytokines secreted by either tumour, immune
system or both, can exert immunosuppressive effects.
The best known of these are probably TGF-b and IL-10,
but a whole range of others, including those most
commonly thought of as immunostimulatory, may also
have this effect. IL-10 has been shown to hinder a
number of immune functions, i.e. T-lymphocyte prolif-
eration, TH1-type cytokine production, antigen presen-
tation, and lymphokine-activated killer cell cytotoxicity.
Elevated levels of IL-10 concentrations have been found
in patients with various solid tumours, as well as hae-
matological malignancies [41, 133] and may have prog-
nostic significance in a variety of cancers [31]. Many
negative effects of IL-10 on the host immune system
have been described, including inhibition of proinflam-
matory cytokines, and down-regulation of both the ini-
tiation and effector phase of inflammatory and delayed-
type hypersensitivity responses in vivo (for review, see
[96]). Kim et al. [73] described secretion of IL-10 by
carcinoma cells and showed that intralesional treatment
with IFN-a induced tumour regression, associated with
down-regulation of IL-10 mRNA. We have shown that
CML cells spontaneously secrete large amounts of IL-10
ex vivo and that IFN-a acts to decrease this while
increasing IL-1b secretion without altering TNF-a [111].
IL-10 might therefore play a central role as one of the
mechanisms responsible for immune dysregulation in
cancer patients. Taken together, the majority of reports
suggests that when tumours or/and tumor-infiltrating
lymphocytes (TILs) express higher levels of IL-10 (and
TGF-b), this mostly results in deleterious immunosup-
pressive effects.

There is also evidence that other cytokines, such as
circulating IL-6, are associated with worse survival and
greater extent of disease [130]. IL-6 production could
contribute to peripheral T lymphocyte dysfunction, en-
abling tumour cells to escape immune surveillance by
preventing the antitumour TH1 immune responses [42].
In lung cancer patients, levels of serum IL-6 are greater
even than in patients with chronic obstructive pulmo-
nary disease and acute infection; thus it is unlikely that
the increases in IL-6 reflect merely a systemic inflam-
matory response [35]. In melanoma, patients responding
to therapy showed a serum IL-6 level twice that of
controls, whereas in nonresponders this factor was 11-
fold, suggesting a strong correlation between IL-6 level
and clinical status [98]. In breast cancer, patients with
more metastases and patients refractory to therapy had
higher levels of IL-6 in their serum; they also had poorer
survival such that multivariate analysis showed that IL-6
and disease-free interval were the major prognostic
factors [172]. On the other hand, the prognostic rele-
vance of single cytokine markers may vary with the type
of tumour examined: for example, in hepatocellular
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carcinoma, it has been reported that serum IL-10 levels
but not serum IL-6 levels predict clinical outcome after
resection [22]. It is therefore, and is likely to remain, an
extremely difficult task to synthesise available data into a
common model. Given this complexity, a unifying
hypothesis has great attraction; one such is the rule of
thumb that TH1 predominance equates with host-medi-
ated tumour rejection, but that TH2 predominance
inhibits this process. Although this may end up to be the
case more often than not, it is obviously not a universal
finding under all circumstances. For example, IL-4–
transduced tumour vaccines trigger type 2 polarisation
in both CD4 and CD8 cells; the CD8 cells are instru-
mental in rejecting the tumours, in an IL-4–dependent
fashion involving other CD8 cells and probably also NK
cells [127]. There is evidence that IL-10 can also enhance
tumour rejection [125], elicit cytotoxic immune memory
due to the combined action of NK cells, CD8+ T cells
and neutrophils [50], and, in conjunction with CD80-
CD28 costimulation, can prime tumour-reactive CTLs
[166]. This is consistent with the ability of IL-10 to
prevent T-cell apoptosis [110, 147]. Nevertheless, par-
ticularly for IL-10, many negative effects on the host
immune system have been described, including inhibi-
tion of proinflammatory cytokine production by mac-
rophages [32], and down-modulation of both the
initiation and effector phase of inflammatory and de-
layed-type hypersensitivity responses in vivo [117].
Moreover, DCs exposed to IL-10 may induce anergy in
peptide-specific antitumour CTLs instead of activating
them [142]. IL-10–pretreated DCs also tend to prime IL-
4–secreting T cells, perhaps by default due to the down-
regulation of IL-12 production [85] and lower levels of
expression of costimulatory molecules [18]. In addition,
IL-10–exposed DCs are more susceptible to lysis by
autologous NK cells [18], which would decrease antigen-
presenting capability but might also help to prevent
anergy induction. Recently the mechanism responsible
for the decreased MHC class I presentation in the mouse
lymphoma RMA and the mastocytoma P815 was shown
to involve a down-regulation of the expression of the
TAP-1/2 proteins and of their functions in the IL-10–
expressing tumours [129]. An intriguing possibility is
therefore that IL-10 might be one of the mechanisms
responsible for the finding that TAP-1/2 expression is
frequently turned off in human tumours (for review, see
[135]), promoting their escape from tumour-specific
CTLs, as discussed above. Zeidler et al. [171] confirmed
that cellular and viral IL-10 affects antigen presentation
and MHC class I expression in EBV-infected human B
lymphocytes through its ability to reduce TAP-1
expression. Since not only TH2 cells but also many tu-
mours themselves produce IL-10, this could contribute
to immunosuppressive effects and the class I down-reg-
ulation (also class II down-regulation) commonly seen in
tumour cells.

Considering the complexity and multitude of effects
that IL-10 exerts on the immune system, as reviewed
above, it could be asked what the net effect of a systemic

overexpression of this cytokine on host antitumour
surveillance will be. As transgenic mice expressing IL-10
under the control of the IL-2 promoter were found to be
unable to limit the growth of immunogenic tumours [56],
this is consistent with the argument made above that a
deleterious effect of this cytokine on the host resistance
to tumour growth will predominate in vivo. On the other
hand, IL-10 has been shown to exert antiangiogenic and
antimetastatic effects in certain murine models [64], so
that it is remains difficult to dissect out the contradictory
activities of this cytokine in tumour immunology.

Inducing immune nonresponsiveness in TILs

T-cell destruction

Perhaps the most direct example of tumour escape by
induction of unresponsiveness in T cells is the finding
that secreted protein from tumours may be presented in
the thymus and cause clonal deletion of newly gener-
ated T cells, according to the usual paradigm of central
tolerance induction [80]. Another possible tumour es-
cape mechanism involving clonal deletion, but this time
peripheral deletion, relies on the fas/fas-ligand path-
way. Shortly after activation, T cells begin to express
fas (CD95). Some time, but not immediately thereafter,
CD95+ T cells acquire susceptibility to fas-mediated
cell death. Therefore, under certain conditions
remaining to be precisely defined, the interaction of fas-
ligand with CD95 can induce T-cell apoptosis but other
outcomes are also possible. The nonapoptotic conse-
quences of fas signaling may have been relatively
overlooked thus far (for review, see [159]). Many types
of tumour have been reported to express fas ligand
following the initial publication in 1996 [57] (for re-
view, see [123]), although this is controversial [21]. It
was proposed [124] that contrary to the prevailing view
that tumour cells cause the death of antitumour T cells
by expressing FasL, the FasL is in fact expressed by T
lymphocytes upon activation after tumour cell recog-
nition, causing them to kill themselves (‘‘suicide’’) and
each other (‘‘fratricide’’) through the same caspase-
based mechanism. Some of the disparities in the liter-
ature may perhaps be due to variation in tumour stage,
within lesions or after selection. For example, in gastric
carcinoma it has been argued that fas-ligand positivity
of metastatic but not primary tumour is functional, in
terms of inducing apoptosis of TILs [78]. In many
other reports, the fas ligand expressed was shown to be
functional, i.e. its ligation of fas resulted in apoptosis
of the target cell: for example, in breast and cervical
cancer [28, 99]. In esophageal cancer, up-regulation of
fas ligand and down-regulation of fas was found to be
an early indicator of progression [52]; in this cancer, fas
ligand was also found to be functional in triggering
apoptosis of the TILs [11]. Longitudinal studies in
melanoma revealed that fas-ligand expression by pri-
mary tumour was weak and rare, whereas in metasta-
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ses, including those of these primary tumours, fas-li-
gand expression was stronger and commoner [148]. In
gastric carcinoma, a correlation between tumour fas-
ligand positivity, lymph node metastasis, and level of
apoptosis in TILs was found [100]. However, in oral
and oropharyngeal squamous cell carcinoma, no cor-
relation was reported between fas or fas-ligand
expression by the tumour and clinicopathological fac-
tors. Nonetheless, there was a correlation between fas-
ligand expression and IL-10 (and GM-CSF) expression
[44]. Direct evidence of a role for fas ligand in tumour
escape is nonetheless hard to come by; in one attempt
intratumourally transfected fas ligand antisense did
result in reduction of tumour growth and metastasis,
but the exact mechanism was not detailed [104]. Ani-
mal models demonstrate a potential clinical impact of
these types of findings, where regressor and progressor
variants of the same tumour can be distinguished by
their level of fas-ligand expression (and MHC class II
expression, which may induce anergy) [15]. These
important facets of tumour-host interaction continue to
be discussed in a lively manner [152, 163].

T-cell anergy

The induction of T-cell nonresponsiveness without
destroying them and thereby possibly triggering com-
pensatory responses on the part of the host probably
contributes to a large degree to tumour escape. Even
highly effective antigen-presenting cells such as DCs can
be subverted by tumour products, eg. IL-10, to anergise
rather than activate antitumour cells [142, 143], as men-
tioned above. Anergy induction is antigen-specific and is
an early event associated with tumour progression [141].
Naturally occurring peptide sequences from endogenous
as well as foreign proteins can act as partial agonists for
the melanoma antigen MART-1/Melan-A (27–35) and
anergise antitumour T cells by cross-presentation [86].
Moreover, the presence of such anergy-inducing peptides
on the melanoma surface can prevent T-cell activation by
immunodominant peptides [19].

On the other hand, recent investigations using HLA-
A2/Melan-A (27–35) tetramers to visualise antigen-spe-
cific T cells revealed that in patients where antigen-spe-
cific cells expressed a CCR7+CD45RO) (‘‘naı̈ve’’)
phenotype, there was a lack of response to the peptide in
vitro. In contrast, where the tetramer+ cells were
CCR7)CD45RO+ there was a response [37]. This rather
suggests lack of activation of antigen-specific cells in
nonresponders, not activation and anergy induction.
However, potentially dangerous for immunotherapy,
under certain circumstances, anergy can also be induced
by vaccination with immunogenic peptides representing
tumour antigens [150]. This may be prevented by engi-
neering stimulation via CD40-CD40L interactions [33],
or other costimuli [164].

The in vivo relevance of these mechanisms in a clinical
context has recently become susceptible to analysis by

employing tetramer technology to identify tumour anti-
gen–specific T cells in patients. Thus, the use of soluble
tetramer/peptide complexes between HLA-A2 and com-
mon melanoma antigens such as tyrosinase (368–376)
allow the direct demonstration of clonally expanded
antigen-specific CD8 cells in melanoma patients. These
effector cells were demonstrated to be anergic, being un-
able to lyse target cells or secrete cytokines on activation
[81]. Similar clonal expansions have been found under
other conditions of chronic antigenic stress, especially in
aging where the driving antigenic force is likely to be
persistent herpes virus infection [70, 106, 107].

Induction of suppressor cells

The recent renaissance of interest in suppressor cells
has lead to the reinterpretation of many older data,
which in the meantime had been dismissed as artifac-
tual (for review, see [97]). The realisation that
CD4+CD25+ regulatory cells play an important role
in many aspects of immunological tolerance has led to
attention being focused on such cells also in cancer
(for review, see [128]). Potential treatment modalities
may be developed following this realisation. In an
animal model, injection of CD25 mAb preferentially
depletes CD25+CD4 cells and can prevent tumour
progression [105]. Consistent with these data, Shimizu
et al. reported that unresponsiveness to a variety of
tumours in mice can be prevented by removing ‘‘nat-
urally’’ activated (i.e. CD25+) CD4+ cells [139]. The
remaining CD4+CD25) cells were found also to pro-
liferate to MHC class II+ self-peptides on autologous
APCs, suggesting that tolerance to self, including tu-
mours, had been broken.

TH2-type cells can also be considered to have sup-
pressive functions in that they secrete IL-4 and IL-10 as
potentially down-regulatory cytokines. Such cells have
also been identified among melanoma TILs, and could
act as negative regulatory cells, although they themselves
also specifically lysed autologous tumour cells in 18-h
(i.e. long-term) cytotoxicity assays [71]. Along these
lines, it has also been found that soluble products from
NSCLC can induce IL-10 production in normal human
PBMCs [63]. This was found to be caused by the PGE2

secreted by the cancer cells; neutralisation of the secreted
IL-10 enhanced IFN-c production, suggesting a negative
autocrine loop triggered by cancer cell–derived PGE2.
Intervention with prostaglandin blockers may therefore
be beneficial, as has been reported for COX-2 inhibition
in a rat model [145].

Alterations in signal-transducing molecules

Direct effects on T cells

The original observation that T-cell signal transduction
is compromised in tumour-bearers [95] has subse-
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quently been confirmed and extended to a variety of
human tumours, including renal, colorectal, ovarian,
liver, gastric, oral, prostate, pancreatic and cervical
carcinomas, glioblastomas and melanomas (for review,
see [162]). Of particular interest is the repeatedly
documented correlation between these alterations and
the disease stage in many different cancers. In mice,
resection of tumour late after inoculation could still
result in reappearance of an immune response, and
normalisation of p56lck expression, a hallmark of this
dysregulated state [131]. As even large tumour burdens
in mice may still have effects limited to the locality,
and do not cause systemic suppression [122], there may
be hope of manipulation here to restore T-cell
responsiveness. Down-regulated TCR signal transduc-
tion may be paralleled by down-regulation of CD28
[58]. This may reflect T-cell replicative senescence
caused by continuous antigen activation, which could
contribute to tumour escape from immunosurveillance
[39, 109]. These correlations indicate that loss of f
chain, or abnormal association between f chains and
other CD3 components, might explain the observed
gradual decline of cell-mediated responses in patients
and experimental animals with progressing tumours.
However, under certain conditions, extinction of
f-signalling may not inhibit T-cell responses [6, 137],
and decreased levels of CD3f chain in cancer patients
may not correlate with their proliferative or cytotoxic
capacity [25]. Conversely, it has been reported that
T cells from PBMCs in early breast cancer patients do
not show f chain deficiencies but are nonetheless
functionally compromised [103]. Hence, there is some
controversy still also in this area. However, where
observed, the presumption is that prevention or
reversal would be a good thing. In CMLs, for exam-
ple, the majority of patients� T cells were indeed found
to be CD3f deficient, which could be at least partially
reversed by stimulation with CD3 mAb, IL-2 and
IFN-a [24]. Whether the same sort of manipulation
would be effective in vivo is also controversial. How-
ever, decreased CD3f in three patients with myeloid
malignancies after successful remission induction
showed normalisation of the TCRs [14]. A study of 26
RCC patients treated with IL-2, IFN-a and LAK cells
revealed posttreatment improvement of low f-chain
expression in 62% of the patients [51]. Moreover, 4/5
achieving a complete response normalised f (and
p56lck), whereas only 2/7 patients with progressive
disease did so [51]. These reports therefore suggest that
under certain conditions the defect in CD3 f expres-
sion might be reversible in vivo.

Effects via macrophages

The possibility that a mechanism of action of suppressor
macrophages may be to induce alterations in signal
transducing molecules has recently emerged from studies
in murine and human systems. Macrophages with the

capacity to suppress immune responses in tumour-
bearing hosts have been extensively described before [2,
3, 90]. Aoe et al. [5] described the ability of tumour-
infiltrating macrophages to decrease CD3f expression
even on freshly isolated normal T cells. This effect is not
tumour-specific, but may be a normal consequence of
activation; thus zymosan/LPS-activated but not unacti-
vated normal macrophages also induced CD3f down-
regulation. However, this phenomenon does occur in
cancer patients; Kono et al. [75] showed that macro-
phages isolated from metastatic lymph nodes of mela-
noma patients were able to down-regulate CD3 f levels
in autologous PBLs. Again, this was not tumour-spe-
cific, because LPS-stimulated monocytes from normal
PBMCs did the same. Because treatment with catalase
prevented this, and H2O2 duplicated it, it was concluded
that reactive oxygen metabolites produced by activated
monocytes were responsible for f chain down-regulation
[75]. The final mechanism of action of this oxidative
stress-induced CD3 f loss may be via activation of
components of the apoptotic pathway. Thus, oxidative
stress triggers many cellular responses including proa-
poptotic factors such as p53; indeed, in a model system,
loss of CD3 f chain may be directly mediated by one of
the enzymes intimately involved in the apoptotic path-
way, caspase-3 [48]. Moreover, the induction of apop-
tosis in T cells by fas-ligand–bearing ovarian carcinoma
cells is accompanied by f down-regulation, and inhibi-
tors of fas or apoptosis prevent this [121]. Moreover, it
may well be the memory-phenotype cells, representing
the antitumour effectors, which are most susceptible to
oxidative stress [88].

These observations therefore argue that chronic
inflammatory conditions in advanced cancer and in
certain infectious and autoimmune conditions will alter
the redox potential of macrophages, causing them to
exert an immunosuppressive effect on the host immune
system via secretion of factors such as H2O2. These
factors will rapidly shut off the effector functions of CTL
and NK cells. Research aimed at developing drugs
which can counteract suppression of antitumour activity
and which should be given in combination with immu-
notherapy should provide new and promising avenues
for the treatment of cancer.

Immune stimulation

It has been repeatedly suggested that the immune system
can exert a bipolar effect on tumours, often encouraging
their growth [55, 115, 116, 118]. A striking recent dem-
onstration of this phenomenon is the observation of
enhanced growth of tumours in cancer-prone mice im-
munised with ras mutant peptides [140]. The progression
of tumour development may even be dependent upon
immune responses in at least some models, as shown by
Hammond et al. [60]. Here, the rapidity and progression
of carcinogen-induced guinea pig tumours was directly
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correlated with the immune status of the animals. A fully
competent immune system furthered tumour progres-
sion, a fully incompetent one did not, and a partly
competent one lay between the two extremes. As has
been pointed out [119], this kind of phenomenon might
explain the paradoxical observations that certain types
of human melanoma which are usually curable have a
bad prognosis if and only if they show signs of sponta-
neous regression. A potential clinical relevance for these
findings may be found in accumulating data on tumour
incidence in immunosuppressed transplant recipients.
Stewart et al. [144] found a reduced risk of breast cancer
(but not other cancers) in a very large number of women
with heart or kidney transplants.

Cytokines produced by T cells reacting to the tumour
may well encourage tumour growth, especially in the
case of hematopoietic tumours, e.g. B-CLL respond to
IL-4 produced by T cells. IL-4 protects the tumour cells
from apoptosis and acts as a growth factor [29].
Receptors for IL-4 [120] may be even more widespread
than those for IL-2 and be important for either
enhancing or inhibitory effects of immune activity on
tumour growth [30]. In CMLs, class II–restricted T cells
specific for b3/a2 fusion products enhanced tumour cell
colony formation, despite their concurrent cytotoxicity
[167]. Receptors for IL-10 have been found on mela-
noma cells and it has been reported that IL-10 may
function as a growth-stimulating factor for melanoma as
well as reducing cell surface expression of HLA and
adhesion molecules [169]. In this case, melanoma cells
may also produce the IL-10 themselves, making it an
autocrine growth factor; but as alluded to above, infil-
trating T cells may provide a rich source of IL-10 as well.
A further remarkable example of immunostimulation
was reported recently where mucosa-associated B-cell
lymphomas develop secondary to H. pylori infection in
the stomach; their growth was shown to depend on the
presence of H. pylori-specific CD4+ T cells [77]. Simi-
larly, but without direct evidence, it has been suggested
that the pathogenesis of hepatocellular carcinoma is
dependent upon the immune response to HBV [102].
Novel and unsuspected mechanisms continue to be dis-
covered, as illustrated by the recent finding that a T cell
and monocyte-proinflammatory cytokine identified as
macrophage migration inhibitory factor (MIF) inhibits
the tumour suppressor activity of p53 [65].

Mechanisms other than cytokine production may also
be involved in immunostimulation of the tumour. An
intriguing report showed that many melanoma cells ex-
press CD40, which was on occasion up-regulatable by
IFN-c. While CD40 may engage CD154 on activated T
cells and possibly deliver costimulatory signals, it is well
known that on B cells CD40 itself delivers stimulatory
signals required for target cell activation. According to
Thomas et al. [149] the same may be true in melanoma,
where ligating CD40 with mAb resulted in enhanced cell
division. Thus, antimelanoma cells expressing CD154
(CD40-ligand) may interact with melanoma cells and di-
rectly stimulate them via CD40. Another aspect of im-

munostimulation of tumour growth is represented by the
finding that TILs can also secrete angiogenic factors
contributing to vascularisation of the tumours (basic
fibroblast growth factor) and factors directly stimulating
tumour cells (heparin-binding epidermal growth factor-
like GF) [114]. TILs may also secrete other factors which
indirectly assist the growth of tumour, e.g. vascular
endothelial growth factor, which enhances angiogenesis
[43]. In this study, in situ hybridisation showed that T cells
infiltrating bladder and prostate cancer expressed VEGF
mRNAand protein, and that isolated T cells could secrete
bioactive VEGF. Activated macrophages may also stim-
ulate enhanced VEGF and IL-8 production bymelanoma
cells, via a TNF/IL-1–dependent pathway; indeed the
degree of macrophage infiltration has been reported to
correlate with tumour stage and angiogenesis in mela-
noma [151]. Certainly, increased serum levels of VEGF,
IL-8, bFGF and angiogenin do correlate with advanced
disease state and degree of tumour burden [154]. Indeed,
one of the requirements for CD4+ cells in tumour rejec-
tion may be their production of IFN-c, which results in
blockade of tumour angiogenesis; if the tumour fails to
respond to IFN-c, e.g. by down-regulating IFN-cR, or by
expressing factors blocking IFN-c activity at downstream
signalling pathways [165], it can escape this effect [10].
Indeed, IFN-c may represent a critical regulatory cyto-
kine for tumour control, also contributing to counter-
acting enhancement of tumour progression by T- and B-
cell products. It appears that without IFN-c, even when
antitumour effectors are generated, they may not be able
to home in properly to the tumour [101].

Tumours may also subvert the immune response by
expressing receptors for T-cell growth factors such as IL-
2. Absorption of IL-2 secreted by antitumour T cells
could induce anergy. Moreover, tumours themselves
might even be able to use IL-2 for their growth [17], so
that expression of the IL-2R has been associated with
higher levels of proliferation but increased drug resis-
tance in some tumours [79]. The potential clinical impact
of these findings is illustrated by a case report of a mel-
anoma patient whose tumour progressed and metastasis
increased during IL-2/IFN-a therapy [61]. As IL-2–based
immunotherapy is effective in only a small minority of
patients, and many reports record progressive disease in
the majority, such immunoenhancement may be more
common than usually accepted. McMillan et al. [92]
previously reported that the majority of solid tumours
express IL-2R b but not IL-2R a chains and some can
respond to IL-2 by increasing growth rates, and this was
blocked by anti-IL-2 Ab. On the other hand, some
tumour cells expressing IL-2R can actually be blocked
in their proliferation and not stimulated by IL-2 [161,
168]. The reasons for these differences are not clear;
possibly they relate to different histological types tested
(SCCHN and gastric blocked; melanoma and lung
stimulated). In any event, it is clear that use of IL-2–
based immunotherapy may be a risky business, and that
the clinical experience that only a minority of patients
responds while most progress may reflect this variation.
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Concluding remarks

Tumours are immunogenic but escape complete
destruction by the immune system by the main strategies
of invisibility (down-regulation of recognisable targets)
and subversion (both by nullifying attacking cells and by
utilising them and their products to their own growth
advantage). Overcoming the last hurdle to successful
cancer immunotherapy will require identifying and
abrogating each of these escape mechanisms.
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