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Abstract
Objective To	investigate	the	potential	of	six	advanced	diffusion-weighted	imaging	(DWI)	models	for	preoperative	predic-
tion	of	lymph	node	metastasis	(LNM)	in	resectable	gastric	cancer	(GC).
Methods Between	Nov	2022	and	Nov	2023,	standard	MRI	scans	were	prospectively	performed	in	consecutive	patients	with	
endoscopic	pathology-confirmed	gastric	adenocarcinoma	who	were	referred	for	direct	radical	gastrectomy.	Six	DWI	mod-
els,	including	fractional	order	calculus	(FROC),	continuous-time	random	walk	(CTRW),	diffusion	kurtosis	imaging	(DKI),	
intravoxel	incoherent	motion	(IVIM),	the	mono-exponential	model	(MEM)	and	the	stretched	exponential	model	(SEM)	were	
computed.	Surgical	pathologic	diagnosis	of	LNM	was	the	reference	standard,	and	patients	were	classified	into	LNM-positive	
or	LNM-negative	groups	accordingly.	The	morphological	features	and	quantitative	parameters	of	the	DWI	models	in	differ-
ent	LNM	categories	were	analyzed	and	compared.	Multivariable	logistic	regression	was	used	to	screen	significant	predictors.	
Receiver-operating	characteristic	curves	and	the	area	under	the	curve	(AUC)	were	plotted	to	evaluate	the	performances,	the	
Delong	test	was	performed	to	compare	the	AUCs.
Results In	the	LNM-positive	group,	tumor	thickness	and	kurtosis	(DKI_K)	were	significantly	higher,	while	anomalous	diffu-
sion	coefficient	(CTRW_D),	diffusivity	(DKI_D),	diffusion	coefficient	(FROC_D),	pseudodiffusion	coefficient	(IVIM_D*),	
perfusion	fraction	(IVIM_f),	and	ADC	were	lower	compared	to	the	LNM-negative	group.	Clinical	tumor	staging	(cT)	and	
CTRW_D	were	independent	predictors.	Their	combination	demonstrated	a	superior	AUC	of	0.930,	significantly	higher	than	
that	of	individual	parameters.
Conclusions Tumor	thickness,	DKI_K,	CTRW_D,	DKI_D,	FROC_D,	IVIM_D*,	IVIM_f	and	ADC	were	associated	with	
LNM	status.	The	combination	of	independent	predictors	of	cT	and	CTRW_D	further	enhanced	the	performance.
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Abbreviations
ADC	 	Apparent	diffusion	coefficient
cT	 	Clinical	stage
CTRW	 	Continuous-time	random	walk	diffusion-

weighted	imaging
CTRW_α	 	Temporal	diffusion	heterogeneity
CTRW_β	 	Spatial	diffusion	heterogeneity
CTRW_D	 	Anomalous	diffusion	coefficient
DKI	 	Diffusion	kurtosis	imaging
DKI_D	 	Diffusivity
DKI_K	 	Kurtosis
DWI	 	Diffusion	weighted	imaging
FROC	 	Fractional	order	calculus	diffusion
FROC_D	 	Diffusion	coefficient
FROC_β	 	Intravoxel	diffusion	heterogeneity	parameter
FROC_mµ	 	Spatial	parameter
GC	 	Gastric	cancer
IVIM	 	Intravoxel	incoherent	motion	diffusion-

weighted	imaging
IVIM_D	 	True	diffusion	coefficient
IVIM_D*	 	Pseudodiffusion	coefficient
IVIM_f	 	Pseudodiffusion	fraction
LNM	 	Lymph	node	metastasis
MRI	 	Magnetic	resonance	imaging
SEM	 	Stretched	exponential	model
SEM_α	 	Water	diffusion	heterogeneity	index
SEM_DDC	 	Distributed	diffusion	coefficient

Introduction

Gastric	cancer	(GC)	was	the	fifth	most	frequently	diagnosed	
cancer	and	the	fifth	leading	cause	of	cancer	death	in	2022	[1]. 
Precise	staging,	particularly	regarding	lymph	node	metasta-
sis	(LNM),	is	essential	for	treatment	planning	and	progno-
sis	 [2–4].	 LNM	 status	 dictates	 treatment	 options,	 such	 as	
contraindicating	endoscopic	mucosal	resection	for	early	GC	
and	 indicating	 neoadjuvant	 therapy	 for	 locally	 advanced	
cases	[3,	4].	Additionally,	LNM	significantly	impacts	patient	
survival	 and	 disease	 progression	 [5–7].	Current	 preopera-
tive	 diagnosis	 of	LNM	primarily	 relies	 on	 imaging-based	
assessment,	with	computed	tomography	(CT)	being	the	rec-
ommended	modality	 [8,	 9].	However,	 the	 performance	 of	
CT	 in	predicting	LNM	varies	markedly	 [10–12].	Positron	
emission	tomography	has	been	used	for	staging	of	GC,	but	
no	significantly	added	benefit	has	been	reported	in	detecting	
positive	nodes	 in	esophago-gastric	cancer	or	GC	[13,	14]. 
Functional	magnetic	resonance	imaging,	particularly	diffu-
sion	weighted	imaging	(DWI),	has	shown	additional	value	
in	the	staging	of	GC	[15,	16].	However,	in	mono-exponen-
tial	 model	 of	 DWI,	 water	 molecular	 motion	 is	 simulated	
to	 follow	a	Gaussian	distribution	which	 is	not	 the	case	 in	

heterogeneous	 cancerous	 tissue	 [17].	 Emerging	 advanced	
DWI	 models,	 such	 as	 diffusion	 kurtosis	 imaging	 (DKI),	
stretched-exponential	 models	 (SEM),	 intravoxel	 incoher-
ent	motion	 (IVIM),	 the	 fractional	 order	 calculus	 (FROC)	
model	 and	 continuous-time	 random	walk	 (CTRW)	model	
are	 increasingly	 utilized	 to	 depict	 authentic	water	motion	
in	vivo	 and	 tumor	heterogeneity	 in	 the	microenvironment	
[18–24],	and	offer	new	sets	of	imaging	markers	for	cancers.	
Regarding	GC,	 the	 true	diffusion	coefficient	of	 IVIM	 is	 a	
useful	index	for	evaluating	LNM	and	lymphovascular	inva-
sion	[19,	25].	The	kurtosis	of	DKI	is	positively	correlated	
with	Ki-67	expression	and	useful	 for	evaluating	 treatment	
response	[18,	26].	The	FROC	model	provides	useful	tools	
for	noninvasive	assessment	of	the	Lauren	classification	[27]. 
These	 studies	 together	 highlight	 the	 promise	 of	 advanced	
DWI	models	in	the	stomach.	We	postulated	that	advanced	
DWI	 models	 with	 additional	 novel	 imaging	 markers	 can	
provide	 multiple	 perspectives	 into	 tumor	 characteristics,	
which	may	assist	more	accurate	preoperative	prediction	of	
LNM	among	GC	patients.	Therefore,	the	aim	of	this	study	
was	to	investigate	the	potential	and	added	value	of	six	DWI	
models	(mono-exponential	DWI,	IVIM,	SEM,	DIK,	FROC,	
and	CTRW)	for	preoperative	prediction	of	LNM	in	patients	
with	resectable	GC.

Methods

Patients

The	present	prospective	study	received	approval	 from	our	
hospital’s	institutional	review	board	and	adhered	to	the	prin-
ciples	of	 the	Declaration	of	Helsinki.	All	participants	pro-
vided	written	informed	consent	(NCT04028375).	Between	
Nov	 2022	 and	Nov	 2023,	 patients	 diagnosed	with	 gastric	
adenocarcinoma	 by	 endoscopic	 biopsy	were	 enrolled	 fol-
lowing	the	inclusion	criteria	as:	(a)	had	no	history	of	prior	
anticancer	treatment	or	any	concurrent	malignancy;	(b)	had	
completed	 gastric	MRI	 scans	 before	 surgery;	 and	 (c)	 had	
resectable	GC	lesions	(cT1–4a,	N0-1,	M0)	assessed	by	the	
multidisciplinary	tumor	board	(MDT)	and	scheduled	direct	
radical	gastrectomy.	Patients	were	 excluded	 if	 (a)	postop-
erative	pathology	confirmed	as	mucinous	adenocarcinomas	
because	its	mucinous	nature	may	cause	migrations	of	ADC	
values;	 (b)	 had	 the	 tumor	 diameter	<	10	 mm,	 which	 was	
insufficient	to	place	a	valid	region	of	interest	(ROI);	or	(c)	
had	low-quality	images	(image	score	<	3).	The	flowchart	for	
patient	recruitment	is	displayed	in	Fig.	1. The framework of 
MDT	for	evaluating	tumor	resectability	is	shown	in	Figure	
S1,	Supplementary	Materials.
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MRI protocol

All	 participants	 underwent	 gastric	MRI	 scans	 within	 one	
week	 before	 surgery	 (median:	 3	 days)	 using	 a	 3.0	T	MR	
scanner	 (MAGNETOM	 Prisma,	 Siemens	 Healthineers)	
equipped	with	an	anterior	18-element	body	coil	and	an	inte-
grated	 posterior	 32-element	 spine	 coil	 array.	After	 6	 h	 of	
fasting,	 each	 patient	 was	 trained	 to	 breathe	 rhythmically	
to	 reduce	 unwanted	 respiratory	motion	 artifacts,	 and	was	

instructed	 to	 consume	 500	mL	 of	warm	water	 10	min	 in	
advance	 to	 distend	 the	 stomach.	 Thereafter,	 raceanisoda-
mine	hydrochloride	(10	mg)	was	intramuscularly	adminis-
tered	within	15	min	before	MRI	acquisition.	Table	1	presents	
the	standard	protocol	with	detailed	acquisition	parameters,	
including	(a)	3D	volumetric	interpolated	breath-hold	exami-
nation	(VIBE)	axial	T1WI.	(b)	Axial	respiratory-triggered,	
fat-suppressed	turbo	spin	echo	(fs_TSE)	T2WI.	(c)	Multi-b	
value	DWI	obtained	using	echo	planar	 imaging-based	 the	

Parameters T1WI	axial T2WI	axial Multi-b	value	DWI	
sequence	(b	=	0,	25,	50,	75,	
100,	200,	400,	800,	1200,	
1600,	2400,	3000	s/mm2)

TR	(ms) 3.9 4500 ~ 7800 8000
TE	(ms) 1.32/2.74 98 59
Slice	thickness	(mm) 5 5 5
Slice	gap	(mm) NA 0.5 0.5
NEX 1 2 1 ~ 4
FOV	(cm2) 38 × 38 28.7 × 28.7 38 × 38
Resolution 180 × 288 193	× 384 83 × 128
Voxel	size	(mm3) 1.47 × 1.32 × 4.23 1.49	× 1.04 × 5 3.28 × 2.66 × 5
Flip	angle	(°) 9 120 NA

Table 1	 MRI	acquisition	protocol

Abbreviations	TR	=	Rep-
etition	time;	TE	=	Echo	time;	
NEX	=	Nnumber	of	excitations,	
FOV	=	Field	of	view.	Note:	
NEX	for	IVIM	range	from	1–4,	
NEX	= 1 for b =	0,	25,	50,	75,	
100,	200,	400	s/mm2,	NEX	= 2 
for b =	800	s/mm2,	NEX	= 3 for 
b =	1200	s/mm2,	NEX	= 4 for 
b =	1600,	2400,	3000	s/mm2

 

Fig. 1	 The	flowchart	of	patient	
recruitment
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fraction	 (IVIM_f)	 from	 IVIM;	 the	water	 diffusion	 hetero-
geneity	index	(SEM_α)	and	distributed	diffusion	coefficient	
(SEM_DDC)	of	SEM;	and	the	mono_ADC,	respectively.

Postprocessing and image interpretation

Two	 board-certified	 radiologists	 with	 10	 and	 14	 years	 of	
experience	in	gastrointestinal	(GI)	radiology	independently	
assessed	 the	 quality	 of	MR	 images	 via	 the	 5-point	 scale	
approach.	Scores	 ranging	from	1	 to	5	 indicate	poor,	mild,	
average,	good	and	excellent	tumor	detection	and	anatomical	
detail	display,	respectively,	and	severe,	massive,	moderate,	
mild,	and	none	for	observed	artifacts	or	image	distortions.	
Images	scored	 less	 than	3	by	any	of	 the	radiologists	were	
excluded	 from	 analysis.	 The	 raw	 data	 were	 imported	 to	
ITK-SNAP	(v3.8.0,	http://www.itksnap.org)	for	tumor	seg-
mentation	 using	 a	 3D	 volume	 of	 interest	 (VOI)	 method.	
The	two	radiologists	used	T2WI	as	the	reference	and	manu-
ally	delineated	the	region	of	interest	(ROI)	along	the	outer	
boundary	of	tumor	on	the	axial	plane	of	the	b	=	800	s/mm2 
images,	and	finally	integrated	all	 the	ROIs	into	a	3D-VOI	
(Fig.	 2).	 Thereafter,	 the	 data	 obtained	 from	 the	 six	 DWI	
models	were	uploaded	as	supplementary	data,	and	the	same	
VOI	was	duplicated	and	applied	on	each	DWI	model	to	gen-
erate	 relevant	parametric	maps	 (Fig.	3).	Subsequently,	 the	
corresponding	 quantitative	 parameters	were	 automatically	
computed	using	the	“volume	and	statistics”	function	within	
the	 “segmentation”	 toolbar	 of	 ITK-SNAP.	 The	 interob-
server	 agreement	 between	 the	 two	 readers’	measurements	
were	 performed,	 and	 if	 good	 agreements	 were	 achieved,	
the	mean	of	their	measurements	were	used	for	subsequent	

prototyped	integrated	specific	slice	dynamic	Shim	(iShim)	
sequence.	With	 the	 aforementioned	 sequences,	 2D	multi-
gradient	echo	images	were	initially	acquired	for	each	imag-
ing	slice.	The	orientation	and	field	of	view	(FOV)	for	these	
images	were	adjusted	based	on	the	corresponding	imaging	
slices.	Subsequently,	we	distinguished	fat	and	water	by	ana-
lyzing	the	difference	in	echo	time	between	the	first	and	last	
echoes.	Following	this,	a	phase	difference	image	was	com-
puted	 from	 the	 two	echoes,	and	12	b	values	were	applied	
within	the	range	of	0–3000	s/mm2	(0,	25,	50,	75,	100,	200,	
400,	800,	1200,	1600,	2400,	3000	s/mm2)	[28].	The	diffu-
sion	gradient	parameters	included	a	gradient	amplitude	(G)	
of	80	mT/m,	diffusion	gradient	duration	(δ)	of	11.1	ms,	time	
separation	between	two	diffusion	gradient	lobes	(Δ)	of	23.9	
ms,	and	a	total	acquisition	time	of	3	min	and	40	s.

Diffusion models reconstruction

A	 domestic	 BoDiLab	 software	 was	 used	 to	 process	 the	
raw	multi-b	value	DWI	data	 to	generate	parametric	maps	
by	fitting	six	DWI	models,	including	CTRW,	DKI,	FROC,	
IVIM,	 SEM,	 and	 conventional	 mono-exponential	 model.	
These	 sequences	generated	14	parameters,	 including	 tem-
poral	 diffusion	 heterogeneity	 (CTRW_α),	 spatial	 diffu-
sion	 heterogeneity	 (CTRW_β),	 and	 anomalous	 diffusion	
coefficient	 (CTRW_D)	 from	 CTRW,	 diffusivity	 (DKI_D)	
and	kurtosis	 (DKI_K)	from	DKI;	 the	anomalous	diffusion	
coefficient	 (FROC_D),	 intravoxel	 diffusion	 heterogeneity	
parameter	 (FROC_β),	 and	 spatial	 parameter	 (FROC_mµ)	
from	 FROC;	 the	 true	 diffusion	 coefficient	 (IVIM_D),	 the	
pseudodiffusion	 coefficient	 (IVIM_D*)	 and	 the	 perfusion	

Fig. 2	 Diagrams	 of	 tumor	 segmentation	 process	 and	 relevant	 tumor	
display	on	conventional	MR	images.	(A)	Tumor	segmentation	along	
the	outer	boundary	at	the	maximal	layer	on	the	axial	plane;	(B)	Com-
pleted	 tumor	 segmentation	 occupying	 the	 whole	 tumor	 area	 on	 the	
axial	plane;	(C)	Completed	tumor	segmentation	on	the	coronal	plane;	

(D)	Completed	 tumor	segmentation	on	 the	 sagittal	plane;	 (E)	Fused	
3D	 volumetric	 tumor	 segmentation;	 (F)	Axial	 fat	 suppressed	T2WI	
shows	a	mildly	hyperintense	tumor	in	the	gastric	body;	(G)	ADC	map	
shows	the	tumor	presents	markedly	hypointense	appearance;	(H)	Axial	
contrast-enhanced	images
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of	the	visceral	peritoneum	or	adjacent	structures;	and	T4a:	
tumoral	invasion	of	the	serosa,	peri-gastric	fat	infiltration	or	
nodular	bulging	around	the	tumor	can	be	clearly	identified.	
The	final	 diagnoses	were	determined	by	 the	 consensus	of	
the	two	radiologists,	any	disagreement	was	resolved	by	con-
sulting	to	a	third	GI	radiologist	with	23	years	of	experience.

Pathologic diagnosis

Post-surgical	 pathology	 from	 4-µm-thick	 sections	 stained	
with	 hematoxylin	 and	 eosin	 (HE)	 were	 examined	 by	 a	
board-certified	pathologist	with	9	years	of	experience	in	GI	
pathology,	following	the	diagnostic	criteria	of	the	8th	AJCC	
[8].	Tumor	location,	histodifferentiation	grade,	LNM,	ulcer-
ation	status,	pathological	tumor	stage	(pT),	Lauren	subtype,	
perineural	 invasion	 (PNI),	 and	 lymphovascular	 invasion	
(LVI)	were	analyzed.

Statistical analysis

The	statistical	analysis	was	conducted	with	Medcalc	18.0.	
Two-sided	 P <	0.05	 indicated	 statistical	 significance.	 The	
intraclass	correlation	coefficient	(ICC)	and	95%	confidence	
intervals	(CIs)	were	used	to	evaluate	inter-reader	variability	
between	the	measurements	of	DWI	models-derived	param-
eters.	The	ICC	values	of	0.00–0.20,	0.21–0.40,	0.41–0.60,	
0.61–0.80,	 and	 0.81–1.00	 indicated	 low,	 fair,	 moderate,	
good,	 and	 excellent	 correlations,	 respectively.	 Normally	

analysis.	 Regarding	 morphologic	 features,	 the	 two	 radi-
ologists	 independently	interpreted	the	MR	images	without	
knowing	 the	 pathological	 results.	 We	 determined	 tumor	
thickness	based	on	the	maximum	diameter	perpendicular	to	
the	 longest	 axis	 plane	 [12].	 Clinical	 staging	 in	 this	 study	
refers	 to	 the	 local-regional	 tumor	 (cT)	 and	 node	 staging	
(cN).	Clinical	node	staging	was	classified	into	cN-positive	
or	negative,	described	as	positive	or	negative	MRI-reported-
LN	status,	following	the	newly	proposed	Node-RADS	1.0	
scheme	 [29,	 30]	 and	 patients	 were	 recorded	 as	 positive	
when	 regional	 nodes	 reached	 Node-RADS	 score	≥ 3 by 
any	of	the	radiologist,	vice	versa.	Specifically,	cN-positive	
was	determined	on	T2WI	as	 the	presence	of	a	nodal	mor-
phologic	abnormality	(short-axis	diameter	≥	10	mm,	round	
shape,	 clustering,	 irregular/spiculated	 nodal	 margins,	 and	
heterogeneous	 signal	 intensity);	 and	 on	DWI	 as	 the	 pres-
ence	 of	 restricted	 signal	 intensity	 on	 b	=	800	 s/mm2	 and	
hypointense	 on	 corresponding	ADC	maps.	Clinical	 tumor	
staging	 refers	 to	 tumor	 infiltration	depth	 (cT1	~	4a)	 in	 this	
study	and	were	determined	according	to	the	8th	edition	of	
the	American	Joint	Commission	on	Cancer,	or	AJCC	[8] by 
radiologists’	 readings	 on	T2WI,	DWI	 and	 enhanced	MRI	
[12,	14,	25].	Be	specific,	in	this	study,	T1	tumors	regard	to	
invasion	depth	 limited	 to	mucosa	or	submucosa	and	pres-
ent	only	mildly	irregular	mucosal	abnormality;	T2:	tumoral	
infiltration	of	 the	muscularis	propria	which	can	be	 identi-
fied	as	focal	wall-thickening	with	or	without	ulceration;	T3:	
tumoral	penetration	of	 the	subserosal	 fat	without	 invasion	

Fig. 3	 Parametric	maps	derived	from	six	diffusion-weighted	MRI	mod-
els	in	a	LNM-positive	patients	with	pathologically	confirmed	gastric	
adenocarcinoma	by	radical	gastrectomy,	pT3N1M0.	(A)	Mono_ADC	
grayscale	map	with	tumor	segmentation;	(B)	Mono_ADC	jet	map;	(C)	

CTRW_α	map;	 (D)	CTRW_β	map;	 (E)	CTRW_D	map;	 (F)	DKI_D	
map;	 (G)	 DKI_K	 map;	 (H)	 FROC_β	 map;	 (I)	 FROC_D	 map;	 (J)	
FROC_	mµ	map;	(K)	IVIM_D	map;	(L)	IVIM_D*	map;	(M)	IVIM_f	
map;	(N)	SEM_α	map;	(O)	SEM_DDC	map
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confirmed	 as	 LNM	 positive	 (72.4%),	 and	 16	 were	 LNM	
negative	 (27.6%).	No	evidences	of	differences	were	 iden-
tified	 in	 age,	 sex,	 location,	 or	 ulceration	between	 the	 two	
groups	(all	P >	0.05).	As	depicted	in	Table	2,	significant	dif-
ferences	were	observed	in	terms	of	histodifferentiation,	pT,	
Lauren	subtype,	LVI,	and	PNI.	Specifically,	compared	to	the	
LNM-negative	 group,	 the	 LNM-positive	 group	 contained	
more	 lesions	with	poor	histodifferentiation	 (31	vs.	 7),	 the	
diffuse	Lauren	subtype	(28	vs.	5),	advanced	pT3-4a	lesions	
(30	vs.	4),	positive	LVI	(37	vs.	3),	and	positive	PNI	(31	vs.	
4).

Comparisons of MRI parameters

The	values	of	DWI	models-derived	parameters	showed	good	
to	perfect	inter-reader	variability,	ranging	from	ICC	= 0.815 
to	ICC	=	0.981	(Table	S1,	Supplementary	material).

As shown in Fig. 4; Table 3,	the	mean	tumor	thickness	was	
20.20 ±	6.49	mm	in	 the	LNM-positive	group,	significantly	
larger	 than	 those	 in	 the	 LNM-negative	 group	 (t = 2.345, 
P =	0.023).	 Compared	 with	 the	 LNM-negative	 group,	 the	
mean	 values	 of	CTRW_D,	DKI_D,	 FROC_D,	 IVIM_D*,	
and	IVIM_f	in	the	LNM-positive	group	decreased,	whereas	
the	 mean	 value	 of	 DKI_K	 significantly	 increased	 (all	
P <	0.05).	In	addition,	cT	and	MRI-reported-LN	status	were	
significantly	different	between	the	two	groups	(all	P <	0.05).	

distributed	data	are	presented	as	the	mean	±	standard	devia-
tion	(X	±	s);	otherwise,	the	data	are	presented	as	the	median	
(25th	 quartile,	 75th	 quartile)	 [M	 (Q1,	 Q3)].	 Continuous	
variables	were	compared	using	either	the	Mann–Whitney	U 
test	or	Student’s	t	test.	Categorical	variables	were	analyzed	
using	Fisher’s	exact	test	or	the	chi-square	test.	Multivariable	
logistic	 regression	 was	 employed	 to	 identify	 independent	
predictors	 of	LNM.	Diagnostic	 performances	were	 evalu-
ated	 through	 the	ROC	analysis.	The	 area	under	 the	 curve	
(AUC),	specificity,	sensitivity,	positive	and	negative	predic-
tive	values	(PPV/NPV)	were	calculated.	Differences	among	
AUCs	were	compared	using	the	Delong	test.	The	relation-
ships	between	DWI	parameters	and	LNM	status	were	evalu-
ated	through	Spearman’s	rank	correlation	test,	with	r	values	
of	 0.00–0.20,	 0.21–0.40,	 0.41–0.60,	 0.61–0.80,	 and	 0.81–
1.00	indicating	low,	fair,	moderate,	good,	and	excellent	cor-
relations,	respectively.

Results

Clinicopathological characteristics

Fifty-eight	patients	were	ultimately	recruited,	including	41	
men	and	17	women,	 aged	39–77	 (average,	 60.88	±	10.48)	
years.	 After	 surgery,	 42	 patients	 were	 pathologically	

Table 2	 Comparison	of	clinicopathological	characteristics	between	LNM	negative	and	LNM	positive	groups
Clinicopathological	characteristics Overall

(n =	58)
LNM	(-)
(n =	16)

LNM	(+)
(n =	42)

χ/2t/Z	value P	value

Age	(years) Range:	39–77 60.88 ± 10.48 60.94	±	9.82 60.86 ± 10.83 0.260 0.979
Sex Male 41 14 27 3.014 0.112

Female 17 2 15
Location Cardia/Fundus 19 4 15 1.634 0.442

Gastric	body 27 7 20
Antrum 12 5 7

Histodifferentiation* Poor 38 7 31 0.002
Moderate 16 5 11
Well 4 4 0

Ulceration Absent 8 4 4 2.234 0.198
Present 50 12 38

pT 1 9 8 1 22.059 <0.001
2 15 4 11
3 17 1 16
4a 17 3 14

Lauren	subtype Intestinal 13 9 4 14.557 0.001
Mixed 12 2 10
Diffuse 33 5 28

PNI Negative 23 12 11 11.535 0.001
Positive 35 4 31

LVI Negative 18 13 5 25.031 <0.001
Positive 40 3 37

Abbreviations	LNM	=	Lymph	node	metastasis;	(-)	=	Negative;	(+)	=	Positive;	pT	=	Pathologic	tumor	stage;	PNI	=	Perineural	invasion;	LVI	= Lym-
phovascular	invasion;	Note:	Histodifferentiation*	means	the	comparison	of	this	characteristics	using	Fisher’s	exact	test,	no	statistic	here
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LNM-positive.	 The	 combination	 of	 CTRW_D	 and	 MRI-
reported-LN	showed	a	significantly	improved	performance	
with	 AUC	 being	 0.869.	 Specifically,	 MRI-reported-LN	
diagnosed	LNM-negative	 in	32	patients,	among	whom	18	
were	 pathologically	 confirmed	 as	 LNM-positive;	 when	
using >	cT2	and	CTRW_D	≤ 2.467 × 10− 3/mm2	as	the	diag-
nostic	 criteria,	 17	 and	23	were	 categorized	as	LNM-posi-
tive	 rather	 than	negative.	Compared	 to	pathologic	 results,	
cT	and	CTRW	correctly	diagnosed	21	and	24	out	of	these	
32	patients	with	 their	accuracies	 reaching	65.63%	(21/32)	
and	 75%	 (24/32),	 respectively.	 Furthermore,	 model-by-
model	comparison	revealed	that	DWI	models	demonstrated	
non-significantly	 different	 performances.	No	 evidences	 of	
significant	differences	were	identified	among	AUCs	of	indi-
vidual	parameters	(all	P>0.05,	Table	S2	in	Supplementary	
material).	The	combined	parameter	exhibited	 significantly	
higher	performances	than	any	other	parameters	and	models	
as shown in Table 5.

Correlations between significant MRI parameters 
and LNM status

Tumor	 thickness,	 cT,	 MRI-reported-LN	 status,	 DKI_K,	
and	 the	 combined	 parameter	 were	 significantly	 and	 posi-
tively	correlated	with	the	LNM	status.	Inverse	correlations	
were	 identified	 between	 FROC_D,	 IVIM_D*,	 IVIM_f,	
CTRW_D,	 DKI_D,	 Mono_ADC,	 and	 the	 LNM	 status	
(Table	S3,	Supplementary	material).

No	 evidences	 of	 differences	 were	 observed	 in	 CTRW_α,	
CTRW_β,	 FROC_β,	 FROC_mµ,	 IVIM_D,	 SEM_α	 or	
SEM_DDC	between	the	two	groups.

Independent predictors

Univariable	 regression	 analysis	 showed	 that	 cT,	 MRI-
reported-LN,	 thickness,	 CTRW_D,	 DKI_D,	 DKI_K,	
FROC_D,	 IVIM_D*,	 IVIM_f,	 Mono_ADC	 were	 sig-
nificant	 for	 predicting	 LNM	 status.	Multivariable	 logistic	
regression	 analysis	 demonstrated	 that	 cT	 and	 CTRW_D	
were	 independent	predictors	 and	used	 to	establish	a	 com-
bined	parameter	(odds	ratio	=	3.241,	P =	0.037,	for	cT,	odds	
ratio =	0.948,	P =	0.020,	for	CTRW_D;	Table	4).	The	Hos-
mer	and	Lemeshow	test	showed	good	consistency	between	
the	 probability	 of	 LNM	 positivity	 predicted	 by	 the	 com-
bined	parameter	and	the	actual	incidence	of	LNM	positivity	
(χ =	4.648,	P =	0.794).

Diagnostic performance

As shown in Fig. 5,	the	ROC	analysis	results	revealed	the	
combined	 parameter	 yielded	 the	 highest	 AUC	 of	 0.930	
(95%CI:	 0.831,	 0.980),	 significantly	 higher	 than	 the	
AUCs	 of	 cT	 and	 CTRW_D	 (Z =	2.590,	P =	0.010	 vs.	 cT;	
Z =	2.149,	P =	0.032	 vs.	 CTRW_D).	The	 overall	 accuracy	
of	 MRI-reported-LN	 was	 65.52%	 with	 its	 AUC	 reached	
0.723;	 compared	 to	 surgical	 pathology,	MRI-reported-LN	
correctly	 diagnosed	 14	 true	 LNM-negative	 and	 24	 true	

Fig. 4	 Box	and	whisker	plots	for	the	comparison	of	mean	values	of	significant	MRI	parameters	between	LNM	negative	group	and	LNM	positive	
group.	(A)	Thickness;	(B)	CTRW_D;	(C)	DKI_D,	(D)	DKI_K;	(E)	FROC_D;	(F)	IVIM_D*;	(G)	IVIM_f;	(H)	IVIM_ADC
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and	cT	were	 independent	predictors	 and	used	 to	 establish	
a	 combined	 parameter,	 which	 further	 improved	 the	 per-
formance.	 These	 DWI	models	 offer	 new	 sets	 of	 imaging	
markers	for	depicting	tumor	characteristics	and	can	serve	as	
useful	tools	for	quantitative	prediction	of	LNM.	The	mono-
exponential	diffusion	model-derived	ADC	is	useful	for	dis-
tinguishing	LN	status	 in	GC	[31].	The	ADC	values	 in	 the	

Discussion

This	work	investigated	the	potential	of	six	advanced	DWI	
models	 for	 preoperative	 prediction	 of	 LNM	 in	 resectable	
GC	patients.	ADC,	CTRW_D,	DKI_D,	DKI_K,	FROC_D,	
IVIM_D*,	and	IVIM_f	demonstrated	clinically	acceptable	
performance	for	LNM	prediction.	Furthermore,	CTRW_D	

Table 3	 Comparison	of	MRI	parameters	between	LNM	negative	and	LNM	positive	groups
MRI	parameters LNM	(-)

(n =	16)
LNM	(+)
(n =	42)

t/z/χ2	value P	value

cT* 1 6 0 - <0.001
2 4 8
3 6 25
4a 2 9

MR	reported	LN	status Negative 14 18 9.336 0.002
Positive 2 24

Thickness	(mm) Mean:	18.9	± 7.3
Range: 11–43

15.39	± 8.20 20.20 ±	6.49 -2.345 0.023

CTRW_α 0.91	± 0.10 0.88 ± 0.08 1.458 0.150
CTRW_β 0.60 ± 0.14 0.64 ± 0.11 -1.015 0.315
CTRW_D 2.67 ±	1.29 1.65 ± 0.40 3.122 0.007
DKI_D 3.44	(1.87,	4.2) 1.92(1.68,	2.45) -3.062 0.002
DKI_K 0.44	(0.388,	0.57) 0.52	(0.47,	0.62) -2.296 0.022
FROC_β 0.65 ± 0.13 0.67 ± 0.14 -0.553 0.582
FROC_D 2.82	(1.34,	3.35) 1.36	(1.21,	1.86) 2.836 0.005
FROC_mµ 3.38 ±	0.89 3.43 ± 0.66 -0.221 0.826
IVIM_D 1.01 ± 0.15 0.92	± 0.15 1.935 0.058
IVIM_D* 0.92	± 0.35 0.68 ± 0.21 2.546 0.020
IVIM_f 0.41 ±	0.19 0.27 ± 0.72 2.785 0.013
Mono_ADC 2.067 ±	0.96 1.31 ± 0.26 3.096 0.007
SEM_α 0.46 ± 1.07 0.47 ± 1.02 -0.359 0.721
SEM_DDC 2.44 ± 0.72 2.18 ± 0.50 1.573 0.121
Abbreviations	 LNM	=	Lymph	 node	 metastasis;	 (-)	=	Negative;	 (+)	=	Positive;	 ADC	=	Apparent	 diffusion	 coefficient;	 CTRW	=	Continuous	
time	 random	 walk	 diffusion-weighted	 imaging;	 CTRW_α	=	Temporal	 diffusion	 heterogeneity;	 CTRW_β	=	Spatial	 diffusion	 heterogeneity;	
CTRW_D	=	Anomalous	diffusion	coefficient;	DKI	=	Diffusion	kurtosis	imaging;	DKI_D	=	Diffusivity;	DKI_K	=	Kurtosis;	FORC	= Fractional 
order	calculus	diffusion;	FROC_D	=	Diffusion	coefficient;	FROC_β	=	Intravoxel	diffusion	heterogeneity	parameter;	FROC_mµ	=	Spatial	param-
eter;	 IVIM	=	Intravoxel	 incoherent	 motion	 diffusion-weighted	 imaging;	 IVIM_D	=	True	 diffusion	 coefficient;	 IVIM_D*=Pseudodiffusion	
coefficient;	 IVIM_ f =	Pseudodiffusion	 fraction;	 SEM	=	Stretched	 exponential	model;	 SEM_α	=	Water	 diffusion	 heterogeneity	 index;	 SEM_
DDC	=	Distributed	diffusion	coefficient
Note:	cT*	means	the	comparison	of	this	characteristics	using	Fisher’s	exact	test,	no	statistic	here.	Normally	distributed	data	were	presented	as	
mean ±	standard	deviation	(X±	s),	and	skewed	data	were	formatted	as	the	median	(25%	quartile,	75%	quartile)	[M	(Q1,	Q3)]

Table 4	 Univariable	and	multivariable	regression	analysis	of	MRI	parameters	for	LNM	prediction
Variables Univariable	regression	analysis Multivariable	regression	analysis

OR	(95%	CI)	value P	value OR	(95%	CI)	value P	value
cT 5.786	(2.166,	15.453) <0.001 3.241	(1.076,	9.761) 0.037
MRI	reported	LN	status 9.333	(1.879,	46.353) 0.006
Thickness 1.123	(1.012,	1.247) 0.029
CTRW_D 0.978	(0.967,	0.999) 0.002 0.948	(0.922,	0.998) 0.020
DKI_D 0.998	(0.998,	0.999) 0.001
DKI_K 1.006	(1.000,	1.012) 0.064
FROC_D 0.998	(0.998,	0.999) 0.002
IVIM_D* 0.997	(0.994,	0.999) 0.008
IVIM_f 0991	(0.984,	0.997) 0.004
Mono_ADC 0.997	(0.995,	0.999) 0.001
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suggestive	of	higher	 risk	of	LNM	and	advanced	stage	 for	
endometrial	carcinoma	[33].	DKI_K	holds	the	potential	to	
capture	microstructural	complexity	and	heterogeneity	 [26,	
34].	Therefore,	DKI_D	 together	with	DKI-K	 can	 provide	
insights	into	tumor	aggressiveness	and	heterogeneity,	which	
may	 facilitate	 preoperative	 identification	 of	 LNM.	 We	

LNM-positive	group	were	significantly	lower	than	those	in	
the	LNM-negative	group,	and	the	ADC	alone	demonstrated	
a	 similar	 performance	 to	 that	 reported	 previously	 (0.767	
vs.	 0.788).	 Shi	B	 et	 al.	 reported	 that	DKI_D	 and	DKI_K	
were	correlated	with	the	tumor	necrosis	fraction	after	TGF-
β1	inhibition	in	mouse	GC	models	[32].	A	lower	DKI_D	is	

Table 5	 Comparison	among	diagnostic	efficacies	of	MRI	parameters	in	predicting	LNM	positivity	in	resectable	gastric	cancer
Parameters AUC	(95%	CI) Sensitivity Specificity Cut	off

value
Youden
index

PPV
(%,	95%	CI)

NPV
(%,	95%	CI)

Z	value P 
value

cT 0.793	(0.659,	
0.927)

80.95 62.50 > cT2 0.435 85.00
(70.16,	94.29)

55.56
(30.76,	78.47)

4.704 0.001

CTRW_D 0.767	(0.637,	
0.928)

97.62 56.25 ≤ 2.467 0.539 85.41
(72.33,	93.93)

90.01
(55.51,	99.75)

3.876 0.002

CTRW_D	+	MRI	
reported	LN

0.869	(0.755,	
0.94)

61.00 100 >0.837 0.619 100
(86.77,	10)

50
(31.89,	68.11)

7.907 <0.001

DKI	model	
(D	+	K)

0.760	(0.630,	
0.863)

100 56.25 >0.395 0.563 85.71
(72.76,	94.06)

100
(66.38,	100)

3.056 0.002

IVIM	model	
(D*+f)

0.729	(0.596,	
0.838)

97.62 56.25 >0.537 0.539 85.41
(72.33,	93.93)

90.01
(55.51,	99.75)

2.490 0.013

Combined	
parameter

0.930	(0.831,	
0.980)

90.48 87.50 >0.663 0.780 95
(83.08,	99.39)

77.79
(52.34,	93.60)

11.477 <0.001

Abbreviations	 CI	=	Confidence	 interval;	 cT	=	Clinical	 stage;	 PPV	=	Positive	 predictive	 value;	 NPV	=	Negative	 predictive	 value;	
ADC	=	Apparent	 diffusion	 coefficient;	 CTRW_D	=	Anomalous	 diffusion	 coefficient;	DKI_D	=	Diffusivity;	 FROC_D	=	Diffusion	 coefficient;	
IVIM_D*=Pseudodiffusion	coefficient;	IVIM_ f =	Pseudodiffusion	fraction

Fig. 5	 Comparison	of	perfor-
mances	of	MRI	parameters	for	
predicting	LNM	in	gastric	cancer	
patients.	The	combined	parameter	
(cT	+	CTRW_D,	the	solid	purple	
line)	presents	the	highest	AUC	
of	0.930
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the	standard	of	care	in	clinical	practice	and	closely	associ-
ated	with	LNM	[12,	19].	We	found	that	cT	and	CTRW_D	
have	overweighted	MRI-reported-LN	and	exhibited	added	
value	in	MRI-reported-LN	negative	cohort.	Besides,	com-
bining	CTRW_D	with	MRI-reported-LN	exhibited	signifi-
cantly	 better	 performance	 compared	 to	MRI-reported-LN	
alone,	 suggesting	 quantitative	 CTRW_D	 has	 incremental	
benefit	 on	 this	 issue.	 Furthermore,	 the	 combination	 of	 cT	
and	CTRW_D	demonstrated	a	more	favorable	performance,	
underscoring	 the	 feasibility	 and	 superiority	 of	 integrating	
both	qualitative	and	quantitative	parameters	 from	a	single	
MRI	 scan	 for	 GC	 patients.	 Certain	 limitations	 should	 be	
noted	in	this	study.	First,	the	sample	size	was	small,	and	the	
results	were	 preliminary;	 therefore,	 further	 researches	 are	
needed.	 Second,	mixed	 adenocarcinomas	were	 eliminated	
from	the	analysis	since	they	may	cause	migration	and	bias	
in	ADC	 values	 calculations.	Third,	 the	 standard	 scanning	
specification	for	multi-b	value	DWI	lacks	global	consensus,	
our	results	were	generated	from	the	sequence	with	the	maxi-
mal	b-value	at	3000	s/mm2,	which	may	not	be	applicable	to	
other	cancers.	In	conclusion,	the	proposed	six	DWI	models	
offer	new	sets	of	quantitative	imaging	markers	for	preopera-
tive	prediction	of	LNM	 in	 resectable	GC,	with	CTRW_D	
appearing	as	 the	most	beneficial	marker.	The	combination	
of	CTRW_D	and	cT	demonstrates	significant	added	value	
and	further	enhances	the	predictive	performance.
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found	significantly	decreased	DKI_D	and	increased	DKI_K	
values	in	the	lesions	of	LNM-positive	group,	suggesting	the	
higher	 levels	 of	 heterogeneity	 in	 these	 lesions.	 IVIM_f is 
effective	for	distinguishing	different	node	stages	in	GC	[19],	
and	a	prior	study	has	proved	that	IVIM_f is a useful marker 
for	assessing	LVI	[25].	GC	metastasis	to	lymph	nodes	is	a	
complicated	process	involving	disruption	of	the	lymphatic	
network	and	neovascularization	[35,	36],	which	may	result	
in an increase in the f	value	 in	LNM-positive	GC	lesions.	
Based	 on	 the	 previous	 evidences,	 IVIM_D*	 is	 not	 useful	
for	 characterizing	 or	 staging	 GC	 [19,	 25].	 However,	 we	
found	a	significant	reduction	of	D*	value	in	the	LNM-pos-
itive	group.	According	 to	 the	 IVIM	 theory,	D*	 represents	
microcirculation	 perfusion	 of	 tissues	 [35].	 The	 reduced	
D*	value	may	indicate	that	GC	lesions	with	positive	LNM	
have	less	perfusion	than	those	without	LNM;	nevertheless,	
this	was	a	preliminary	result	 that	needs	further	validation.	
CTRW	was	 firstly	 applied	 in	 the	 brain	 for	 characterizing	
both	 degenerative	 diseases	 and	 gliomas	 [37,	 38]	 and	 has	
been	utilized	for	solid	tumors	such	as	breast	cancer	recently	
[39];	nevertheless,	no	study	has	ever	applied	CTRW	in	the	
stomach.	Our	 preliminary	 results	 showed	 that	GC	 lesions	
with	positive	LNM	had	lower	CTRW_D	values	than	those	
without	LNM.	Moreover,	CTRW_D	exhibited	superior	per-
formance	 compared	 to	 the	 other	 parameters	 and	 emerged	
as	one	of	the	risk	factors	of	LNM.	Lower	CTRW_D	were	
closely	associated	with	more	advanced	disease	stages	[38,	
39].	 Tumors	 with	 advanced	 stage	 are	 of	 high	 cellularity,	
leading	to	reduced	extracellular	space	and	lower	CTRW_D	
values	[39].	However,	in	this	study,	we	failed	to	prove	the	
usefulness	of	the	α	and	β	parameters	for	predicting	LNM,	
which	were	contrary	to	a	previous	report	[36].	This	discrep-
ancy	may	attribute	to	the	variations	in	sample	size,	differ-
ent	 types	 of	 cancers;	 the	 choice	 of	 b	 values	 for	 sequence	
acquisition	may	be	another	possible	reason.	The	FROC	has	
been	applied	to	classify	the	Lauren	subtype	in	GC	[27]. The 
derived	β,	D,	and	mµ	parameters	exhibited	favorable	per-
formance	 for	 distinguishing	 the	 intestinal-and-mixed	 sub-
types	 from	the	diffuse	subtypes.	Besides,	previous	studies	
have	 proved	 close	 and	 inverse	 likelihood	 between	D	 val-
ues	 and	 significant	 prognostic	 histologic	 markers	 of	 LVI	
and	LNM	[25,	31];	consistently,	negative	correlations	were	
identified	between	D	values	and	LNM	status	in	this	study.	
β	 is	 related	 to	 intravoxel	 diffusion	 heterogeneity,	 and	mµ	
is	 linked	 to	 the	diffusion	mean	 free	 length	 and	 cellularity	
[27].	Theoretically,	these	factors	together	reflect	tumor	cel-
lularity	heterogeneity	and	may	vary	between	patients	with	
different	LNM	status.	However,	 no	 significant	 differences	
in	β	or	mµ	were	observed	 in	 this	study.	The	possible	 rea-
sons	may	due	to	the	small	sample	size	and	b	values	adopted	
for	DWI	acquisition.	Regarding	morphologic	MRI	features,	
cT	overweighed	others	and	were	a	predictor	of	LNM.	cT	is	
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