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Abstract
Objective  To investigate the potential of six advanced diffusion-weighted imaging (DWI) models for preoperative predic-
tion of lymph node metastasis (LNM) in resectable gastric cancer (GC).
Methods  Between Nov 2022 and Nov 2023, standard MRI scans were prospectively performed in consecutive patients with 
endoscopic pathology-confirmed gastric adenocarcinoma who were referred for direct radical gastrectomy. Six DWI mod-
els, including fractional order calculus (FROC), continuous-time random walk (CTRW), diffusion kurtosis imaging (DKI), 
intravoxel incoherent motion (IVIM), the mono-exponential model (MEM) and the stretched exponential model (SEM) were 
computed. Surgical pathologic diagnosis of LNM was the reference standard, and patients were classified into LNM-positive 
or LNM-negative groups accordingly. The morphological features and quantitative parameters of the DWI models in differ-
ent LNM categories were analyzed and compared. Multivariable logistic regression was used to screen significant predictors. 
Receiver-operating characteristic curves and the area under the curve (AUC) were plotted to evaluate the performances, the 
Delong test was performed to compare the AUCs.
Results  In the LNM-positive group, tumor thickness and kurtosis (DKI_K) were significantly higher, while anomalous diffu-
sion coefficient (CTRW_D), diffusivity (DKI_D), diffusion coefficient (FROC_D), pseudodiffusion coefficient (IVIM_D*), 
perfusion fraction (IVIM_f), and ADC were lower compared to the LNM-negative group. Clinical tumor staging (cT) and 
CTRW_D were independent predictors. Their combination demonstrated a superior AUC of 0.930, significantly higher than 
that of individual parameters.
Conclusions  Tumor thickness, DKI_K, CTRW_D, DKI_D, FROC_D, IVIM_D*, IVIM_f and ADC were associated with 
LNM status. The combination of independent predictors of cT and CTRW_D further enhanced the performance.
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Abbreviations
ADC	 �Apparent diffusion coefficient
cT	 �Clinical stage
CTRW	 �Continuous-time random walk diffusion-

weighted imaging
CTRW_α	 �Temporal diffusion heterogeneity
CTRW_β	 �Spatial diffusion heterogeneity
CTRW_D	 �Anomalous diffusion coefficient
DKI	 �Diffusion kurtosis imaging
DKI_D	 �Diffusivity
DKI_K	 �Kurtosis
DWI	 �Diffusion weighted imaging
FROC	 �Fractional order calculus diffusion
FROC_D	 �Diffusion coefficient
FROC_β	 �Intravoxel diffusion heterogeneity parameter
FROC_mµ	 �Spatial parameter
GC	 �Gastric cancer
IVIM	 �Intravoxel incoherent motion diffusion-

weighted imaging
IVIM_D	 �True diffusion coefficient
IVIM_D*	 �Pseudodiffusion coefficient
IVIM_f	 �Pseudodiffusion fraction
LNM	 �Lymph node metastasis
MRI	 �Magnetic resonance imaging
SEM	 �Stretched exponential model
SEM_α	 �Water diffusion heterogeneity index
SEM_DDC	 �Distributed diffusion coefficient

Introduction

Gastric cancer (GC) was the fifth most frequently diagnosed 
cancer and the fifth leading cause of cancer death in 2022 [1]. 
Precise staging, particularly regarding lymph node metasta-
sis (LNM), is essential for treatment planning and progno-
sis [2–4]. LNM status dictates treatment options, such as 
contraindicating endoscopic mucosal resection for early GC 
and indicating neoadjuvant therapy for locally advanced 
cases [3, 4]. Additionally, LNM significantly impacts patient 
survival and disease progression [5–7]. Current preopera-
tive diagnosis of LNM primarily relies on imaging-based 
assessment, with computed tomography (CT) being the rec-
ommended modality [8, 9]. However, the performance of 
CT in predicting LNM varies markedly [10–12]. Positron 
emission tomography has been used for staging of GC, but 
no significantly added benefit has been reported in detecting 
positive nodes in esophago-gastric cancer or GC [13, 14]. 
Functional magnetic resonance imaging, particularly diffu-
sion weighted imaging (DWI), has shown additional value 
in the staging of GC [15, 16]. However, in mono-exponen-
tial model of DWI, water molecular motion is simulated 
to follow a Gaussian distribution which is not the case in 

heterogeneous cancerous tissue [17]. Emerging advanced 
DWI models, such as diffusion kurtosis imaging (DKI), 
stretched-exponential models (SEM), intravoxel incoher-
ent motion (IVIM), the fractional order calculus (FROC) 
model and continuous-time random walk (CTRW) model 
are increasingly utilized to depict authentic water motion 
in vivo and tumor heterogeneity in the microenvironment 
[18–24], and offer new sets of imaging markers for cancers. 
Regarding GC, the true diffusion coefficient of IVIM is a 
useful index for evaluating LNM and lymphovascular inva-
sion [19, 25]. The kurtosis of DKI is positively correlated 
with Ki-67 expression and useful for evaluating treatment 
response [18, 26]. The FROC model provides useful tools 
for noninvasive assessment of the Lauren classification [27]. 
These studies together highlight the promise of advanced 
DWI models in the stomach. We postulated that advanced 
DWI models with additional novel imaging markers can 
provide multiple perspectives into tumor characteristics, 
which may assist more accurate preoperative prediction of 
LNM among GC patients. Therefore, the aim of this study 
was to investigate the potential and added value of six DWI 
models (mono-exponential DWI, IVIM, SEM, DIK, FROC, 
and CTRW) for preoperative prediction of LNM in patients 
with resectable GC.

Methods

Patients

The present prospective study received approval from our 
hospital’s institutional review board and adhered to the prin-
ciples of the Declaration of Helsinki. All participants pro-
vided written informed consent (NCT04028375). Between 
Nov 2022 and Nov 2023, patients diagnosed with gastric 
adenocarcinoma by endoscopic biopsy were enrolled fol-
lowing the inclusion criteria as: (a) had no history of prior 
anticancer treatment or any concurrent malignancy; (b) had 
completed gastric MRI scans before surgery; and (c) had 
resectable GC lesions (cT1–4a, N0-1, M0) assessed by the 
multidisciplinary tumor board (MDT) and scheduled direct 
radical gastrectomy. Patients were excluded if (a) postop-
erative pathology confirmed as mucinous adenocarcinomas 
because its mucinous nature may cause migrations of ADC 
values; (b) had the tumor diameter < 10  mm, which was 
insufficient to place a valid region of interest (ROI); or (c) 
had low-quality images (image score < 3). The flowchart for 
patient recruitment is displayed in Fig. 1. The framework of 
MDT for evaluating tumor resectability is shown in Figure 
S1, Supplementary Materials.
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MRI protocol

All participants underwent gastric MRI scans within one 
week before surgery (median: 3 days) using a 3.0 T MR 
scanner (MAGNETOM Prisma, Siemens Healthineers) 
equipped with an anterior 18-element body coil and an inte-
grated posterior 32-element spine coil array. After 6  h of 
fasting, each patient was trained to breathe rhythmically 
to reduce unwanted respiratory motion artifacts, and was 

instructed to consume 500 mL of warm water 10 min in 
advance to distend the stomach. Thereafter, raceanisoda-
mine hydrochloride (10 mg) was intramuscularly adminis-
tered within 15 min before MRI acquisition. Table 1 presents 
the standard protocol with detailed acquisition parameters, 
including (a) 3D volumetric interpolated breath-hold exami-
nation (VIBE) axial T1WI. (b) Axial respiratory-triggered, 
fat-suppressed turbo spin echo (fs_TSE) T2WI. (c) Multi-b 
value DWI obtained using echo planar imaging-based the 

Parameters T1WI axial T2WI axial Multi-b value DWI 
sequence (b = 0, 25, 50, 75, 
100, 200, 400, 800, 1200, 
1600, 2400, 3000 s/mm2)

TR (ms) 3.9 4500 ~ 7800 8000
TE (ms) 1.32/2.74 98 59
Slice thickness (mm) 5 5 5
Slice gap (mm) NA 0.5 0.5
NEX 1 2 1 ~ 4
FOV (cm2) 38 × 38 28.7 × 28.7 38 × 38
Resolution 180 × 288 193 × 384 83 × 128
Voxel size (mm3) 1.47 × 1.32 × 4.23 1.49 × 1.04 × 5 3.28 × 2.66 × 5
Flip angle (°) 9 120 NA

Table 1  MRI acquisition protocol

Abbreviations TR = Rep-
etition time; TE = Echo time; 
NEX = Nnumber of excitations, 
FOV = Field of view. Note: 
NEX for IVIM range from 1–4, 
NEX = 1 for b = 0, 25, 50, 75, 
100, 200, 400 s/mm2, NEX = 2 
for b = 800 s/mm2, NEX = 3 for 
b = 1200 s/mm2, NEX = 4 for 
b = 1600, 2400, 3000 s/mm2

 

Fig. 1  The flowchart of patient 
recruitment
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fraction (IVIM_f) from IVIM; the water diffusion hetero-
geneity index (SEM_α) and distributed diffusion coefficient 
(SEM_DDC) of SEM; and the mono_ADC, respectively.

Postprocessing and image interpretation

Two board-certified radiologists with 10 and 14 years of 
experience in gastrointestinal (GI) radiology independently 
assessed the quality of MR images via the 5-point scale 
approach. Scores ranging from 1 to 5 indicate poor, mild, 
average, good and excellent tumor detection and anatomical 
detail display, respectively, and severe, massive, moderate, 
mild, and none for observed artifacts or image distortions. 
Images scored less than 3 by any of the radiologists were 
excluded from analysis. The raw data were imported to 
ITK-SNAP (v3.8.0, http://www.itksnap.org) for tumor seg-
mentation using a 3D volume of interest (VOI) method. 
The two radiologists used T2WI as the reference and manu-
ally delineated the region of interest (ROI) along the outer 
boundary of tumor on the axial plane of the b = 800 s/mm2 
images, and finally integrated all the ROIs into a 3D-VOI 
(Fig.  2). Thereafter, the data obtained from the six DWI 
models were uploaded as supplementary data, and the same 
VOI was duplicated and applied on each DWI model to gen-
erate relevant parametric maps (Fig. 3). Subsequently, the 
corresponding quantitative parameters were automatically 
computed using the “volume and statistics” function within 
the “segmentation” toolbar of ITK-SNAP. The interob-
server agreement between the two readers’ measurements 
were performed, and if good agreements were achieved, 
the mean of their measurements were used for subsequent 

prototyped integrated specific slice dynamic Shim (iShim) 
sequence. With the aforementioned sequences, 2D multi-
gradient echo images were initially acquired for each imag-
ing slice. The orientation and field of view (FOV) for these 
images were adjusted based on the corresponding imaging 
slices. Subsequently, we distinguished fat and water by ana-
lyzing the difference in echo time between the first and last 
echoes. Following this, a phase difference image was com-
puted from the two echoes, and 12 b values were applied 
within the range of 0–3000 s/mm2 (0, 25, 50, 75, 100, 200, 
400, 800, 1200, 1600, 2400, 3000 s/mm2) [28]. The diffu-
sion gradient parameters included a gradient amplitude (G) 
of 80 mT/m, diffusion gradient duration (δ) of 11.1 ms, time 
separation between two diffusion gradient lobes (Δ) of 23.9 
ms, and a total acquisition time of 3 min and 40 s.

Diffusion models reconstruction

A domestic BoDiLab software was used to process the 
raw multi-b value DWI data to generate parametric maps 
by fitting six DWI models, including CTRW, DKI, FROC, 
IVIM, SEM, and conventional mono-exponential model. 
These sequences generated 14 parameters, including tem-
poral diffusion heterogeneity (CTRW_α), spatial diffu-
sion heterogeneity (CTRW_β), and anomalous diffusion 
coefficient (CTRW_D) from CTRW, diffusivity (DKI_D) 
and kurtosis (DKI_K) from DKI; the anomalous diffusion 
coefficient (FROC_D), intravoxel diffusion heterogeneity 
parameter (FROC_β), and spatial parameter (FROC_mµ) 
from FROC; the true diffusion coefficient (IVIM_D), the 
pseudodiffusion coefficient (IVIM_D*) and the perfusion 

Fig. 2  Diagrams of tumor segmentation process and relevant tumor 
display on conventional MR images. (A) Tumor segmentation along 
the outer boundary at the maximal layer on the axial plane; (B) Com-
pleted tumor segmentation occupying the whole tumor area on the 
axial plane; (C) Completed tumor segmentation on the coronal plane; 

(D) Completed tumor segmentation on the sagittal plane; (E) Fused 
3D volumetric tumor segmentation; (F) Axial fat suppressed T2WI 
shows a mildly hyperintense tumor in the gastric body; (G) ADC map 
shows the tumor presents markedly hypointense appearance; (H) Axial 
contrast-enhanced images
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of the visceral peritoneum or adjacent structures; and T4a: 
tumoral invasion of the serosa, peri-gastric fat infiltration or 
nodular bulging around the tumor can be clearly identified. 
The final diagnoses were determined by the consensus of 
the two radiologists, any disagreement was resolved by con-
sulting to a third GI radiologist with 23 years of experience.

Pathologic diagnosis

Post-surgical pathology from 4-µm-thick sections stained 
with hematoxylin and eosin (HE) were examined by a 
board-certified pathologist with 9 years of experience in GI 
pathology, following the diagnostic criteria of the 8th AJCC 
[8]. Tumor location, histodifferentiation grade, LNM, ulcer-
ation status, pathological tumor stage (pT), Lauren subtype, 
perineural invasion (PNI), and lymphovascular invasion 
(LVI) were analyzed.

Statistical analysis

The statistical analysis was conducted with Medcalc 18.0. 
Two-sided P < 0.05 indicated statistical significance. The 
intraclass correlation coefficient (ICC) and 95% confidence 
intervals (CIs) were used to evaluate inter-reader variability 
between the measurements of DWI models-derived param-
eters. The ICC values of 0.00–0.20, 0.21–0.40, 0.41–0.60, 
0.61–0.80, and 0.81–1.00 indicated low, fair, moderate, 
good, and excellent correlations, respectively. Normally 

analysis. Regarding morphologic features, the two radi-
ologists independently interpreted the MR images without 
knowing the pathological results. We determined tumor 
thickness based on the maximum diameter perpendicular to 
the longest axis plane [12]. Clinical staging in this study 
refers to the local-regional tumor (cT) and node staging 
(cN). Clinical node staging was classified into cN-positive 
or negative, described as positive or negative MRI-reported-
LN status, following the newly proposed Node-RADS 1.0 
scheme [29, 30] and patients were recorded as positive 
when regional nodes reached Node-RADS score ≥ 3 by 
any of the radiologist, vice versa. Specifically, cN-positive 
was determined on T2WI as the presence of a nodal mor-
phologic abnormality (short-axis diameter ≥ 10 mm, round 
shape, clustering, irregular/spiculated nodal margins, and 
heterogeneous signal intensity); and on DWI as the pres-
ence of restricted signal intensity on b = 800  s/mm2 and 
hypointense on corresponding ADC maps. Clinical tumor 
staging refers to tumor infiltration depth (cT1 ~ 4a) in this 
study and were determined according to the 8th edition of 
the American Joint Commission on Cancer, or AJCC [8] by 
radiologists’ readings on T2WI, DWI and enhanced MRI 
[12, 14, 25]. Be specific, in this study, T1 tumors regard to 
invasion depth limited to mucosa or submucosa and pres-
ent only mildly irregular mucosal abnormality; T2: tumoral 
infiltration of the muscularis propria which can be identi-
fied as focal wall-thickening with or without ulceration; T3: 
tumoral penetration of the subserosal fat without invasion 

Fig. 3  Parametric maps derived from six diffusion-weighted MRI mod-
els in a LNM-positive patients with pathologically confirmed gastric 
adenocarcinoma by radical gastrectomy, pT3N1M0. (A) Mono_ADC 
grayscale map with tumor segmentation; (B) Mono_ADC jet map; (C) 

CTRW_α map; (D) CTRW_β map; (E) CTRW_D map; (F) DKI_D 
map; (G) DKI_K map; (H) FROC_β map; (I) FROC_D map; (J) 
FROC_ mµ map; (K) IVIM_D map; (L) IVIM_D* map; (M) IVIM_f 
map; (N) SEM_α map; (O) SEM_DDC map
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confirmed as LNM positive (72.4%), and 16 were LNM 
negative (27.6%). No evidences of differences were iden-
tified in age, sex, location, or ulceration between the two 
groups (all P > 0.05). As depicted in Table 2, significant dif-
ferences were observed in terms of histodifferentiation, pT, 
Lauren subtype, LVI, and PNI. Specifically, compared to the 
LNM-negative group, the LNM-positive group contained 
more lesions with poor histodifferentiation (31 vs. 7), the 
diffuse Lauren subtype (28 vs. 5), advanced pT3-4a lesions 
(30 vs. 4), positive LVI (37 vs. 3), and positive PNI (31 vs. 
4).

Comparisons of MRI parameters

The values of DWI models-derived parameters showed good 
to perfect inter-reader variability, ranging from ICC = 0.815 
to ICC = 0.981 (Table S1, Supplementary material).

As shown in Fig. 4; Table 3, the mean tumor thickness was 
20.20 ± 6.49 mm in the LNM-positive group, significantly 
larger than those in the LNM-negative group (t = 2.345, 
P = 0.023). Compared with the LNM-negative group, the 
mean values of CTRW_D, DKI_D, FROC_D, IVIM_D*, 
and IVIM_f in the LNM-positive group decreased, whereas 
the mean value of DKI_K significantly increased (all 
P < 0.05). In addition, cT and MRI-reported-LN status were 
significantly different between the two groups (all P < 0.05). 

distributed data are presented as the mean ± standard devia-
tion (X ± s); otherwise, the data are presented as the median 
(25th quartile, 75th quartile) [M (Q1, Q3)]. Continuous 
variables were compared using either the Mann–Whitney U 
test or Student’s t test. Categorical variables were analyzed 
using Fisher’s exact test or the chi-square test. Multivariable 
logistic regression was employed to identify independent 
predictors of LNM. Diagnostic performances were evalu-
ated through the ROC analysis. The area under the curve 
(AUC), specificity, sensitivity, positive and negative predic-
tive values (PPV/NPV) were calculated. Differences among 
AUCs were compared using the Delong test. The relation-
ships between DWI parameters and LNM status were evalu-
ated through Spearman’s rank correlation test, with r values 
of 0.00–0.20, 0.21–0.40, 0.41–0.60, 0.61–0.80, and 0.81–
1.00 indicating low, fair, moderate, good, and excellent cor-
relations, respectively.

Results

Clinicopathological characteristics

Fifty-eight patients were ultimately recruited, including 41 
men and 17 women, aged 39–77 (average, 60.88 ± 10.48) 
years. After surgery, 42 patients were pathologically 

Table 2  Comparison of clinicopathological characteristics between LNM negative and LNM positive groups
Clinicopathological characteristics Overall

(n = 58)
LNM (-)
(n = 16)

LNM (+)
(n = 42)

χ/2t/Z value P value

Age (years) Range: 39–77 60.88 ± 10.48 60.94 ± 9.82 60.86 ± 10.83 0.260 0.979
Sex Male 41 14 27 3.014 0.112

Female 17 2 15
Location Cardia/Fundus 19 4 15 1.634 0.442

Gastric body 27 7 20
Antrum 12 5 7

Histodifferentiation* Poor 38 7 31 0.002
Moderate 16 5 11
Well 4 4 0

Ulceration Absent 8 4 4 2.234 0.198
Present 50 12 38

pT 1 9 8 1 22.059 <0.001
2 15 4 11
3 17 1 16
4a 17 3 14

Lauren subtype Intestinal 13 9 4 14.557 0.001
Mixed 12 2 10
Diffuse 33 5 28

PNI Negative 23 12 11 11.535 0.001
Positive 35 4 31

LVI Negative 18 13 5 25.031 <0.001
Positive 40 3 37

Abbreviations LNM = Lymph node metastasis; (-) = Negative; (+) = Positive; pT = Pathologic tumor stage; PNI = Perineural invasion; LVI = Lym-
phovascular invasion; Note: Histodifferentiation* means the comparison of this characteristics using Fisher’s exact test, no statistic here
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LNM-positive. The combination of CTRW_D and MRI-
reported-LN showed a significantly improved performance 
with AUC being 0.869. Specifically, MRI-reported-LN 
diagnosed LNM-negative in 32 patients, among whom 18 
were pathologically confirmed as LNM-positive; when 
using > cT2 and CTRW_D ≤ 2.467 × 10− 3/mm2 as the diag-
nostic criteria, 17 and 23 were categorized as LNM-posi-
tive rather than negative. Compared to pathologic results, 
cT and CTRW correctly diagnosed 21 and 24 out of these 
32 patients with their accuracies reaching 65.63% (21/32) 
and 75% (24/32), respectively. Furthermore, model-by-
model comparison revealed that DWI models demonstrated 
non-significantly different performances. No evidences of 
significant differences were identified among AUCs of indi-
vidual parameters (all P>0.05, Table S2 in Supplementary 
material). The combined parameter exhibited significantly 
higher performances than any other parameters and models 
as shown in Table 5.

Correlations between significant MRI parameters 
and LNM status

Tumor thickness, cT, MRI-reported-LN status, DKI_K, 
and the combined parameter were significantly and posi-
tively correlated with the LNM status. Inverse correlations 
were identified between FROC_D, IVIM_D*, IVIM_f, 
CTRW_D, DKI_D, Mono_ADC, and the LNM status 
(Table S3, Supplementary material).

No evidences of differences were observed in CTRW_α, 
CTRW_β, FROC_β, FROC_mµ, IVIM_D, SEM_α or 
SEM_DDC between the two groups.

Independent predictors

Univariable regression analysis showed that cT, MRI-
reported-LN, thickness, CTRW_D, DKI_D, DKI_K, 
FROC_D, IVIM_D*, IVIM_f, Mono_ADC were sig-
nificant for predicting LNM status. Multivariable logistic 
regression analysis demonstrated that cT and CTRW_D 
were independent predictors and used to establish a com-
bined parameter (odds ratio = 3.241, P = 0.037, for cT, odds 
ratio = 0.948, P = 0.020, for CTRW_D; Table 4). The Hos-
mer and Lemeshow test showed good consistency between 
the probability of LNM positivity predicted by the com-
bined parameter and the actual incidence of LNM positivity 
(χ = 4.648, P = 0.794).

Diagnostic performance

As shown in Fig. 5, the ROC analysis results revealed the 
combined parameter yielded the highest AUC of 0.930 
(95%CI: 0.831, 0.980), significantly higher than the 
AUCs of cT and CTRW_D (Z = 2.590, P = 0.010 vs. cT; 
Z = 2.149, P = 0.032 vs. CTRW_D). The overall accuracy 
of MRI-reported-LN was 65.52% with its AUC reached 
0.723; compared to surgical pathology, MRI-reported-LN 
correctly diagnosed 14 true LNM-negative and 24 true 

Fig. 4  Box and whisker plots for the comparison of mean values of significant MRI parameters between LNM negative group and LNM positive 
group. (A) Thickness; (B) CTRW_D; (C) DKI_D, (D) DKI_K; (E) FROC_D; (F) IVIM_D*; (G) IVIM_f; (H) IVIM_ADC
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and cT were independent predictors and used to establish 
a combined parameter, which further improved the per-
formance. These DWI models offer new sets of imaging 
markers for depicting tumor characteristics and can serve as 
useful tools for quantitative prediction of LNM. The mono-
exponential diffusion model-derived ADC is useful for dis-
tinguishing LN status in GC [31]. The ADC values in the 

Discussion

This work investigated the potential of six advanced DWI 
models for preoperative prediction of LNM in resectable 
GC patients. ADC, CTRW_D, DKI_D, DKI_K, FROC_D, 
IVIM_D*, and IVIM_f demonstrated clinically acceptable 
performance for LNM prediction. Furthermore, CTRW_D 

Table 3  Comparison of MRI parameters between LNM negative and LNM positive groups
MRI parameters LNM (-)

(n = 16)
LNM (+)
(n = 42)

t/z/χ2 value P value

cT* 1 6 0 - <0.001
2 4 8
3 6 25
4a 2 9

MR reported LN status Negative 14 18 9.336 0.002
Positive 2 24

Thickness (mm) Mean: 18.9 ± 7.3
Range: 11–43

15.39 ± 8.20 20.20 ± 6.49 -2.345 0.023

CTRW_α 0.91 ± 0.10 0.88 ± 0.08 1.458 0.150
CTRW_β 0.60 ± 0.14 0.64 ± 0.11 -1.015 0.315
CTRW_D 2.67 ± 1.29 1.65 ± 0.40 3.122 0.007
DKI_D 3.44 (1.87, 4.2) 1.92(1.68, 2.45) -3.062 0.002
DKI_K 0.44 (0.388, 0.57) 0.52 (0.47, 0.62) -2.296 0.022
FROC_β 0.65 ± 0.13 0.67 ± 0.14 -0.553 0.582
FROC_D 2.82 (1.34, 3.35) 1.36 (1.21, 1.86) 2.836 0.005
FROC_mµ 3.38 ± 0.89 3.43 ± 0.66 -0.221 0.826
IVIM_D 1.01 ± 0.15 0.92 ± 0.15 1.935 0.058
IVIM_D* 0.92 ± 0.35 0.68 ± 0.21 2.546 0.020
IVIM_f 0.41 ± 0.19 0.27 ± 0.72 2.785 0.013
Mono_ADC 2.067 ± 0.96 1.31 ± 0.26 3.096 0.007
SEM_α 0.46 ± 1.07 0.47 ± 1.02 -0.359 0.721
SEM_DDC 2.44 ± 0.72 2.18 ± 0.50 1.573 0.121
Abbreviations LNM = Lymph node metastasis; (-) = Negative; (+) = Positive; ADC = Apparent diffusion coefficient; CTRW = Continuous 
time random walk diffusion-weighted imaging; CTRW_α = Temporal diffusion heterogeneity; CTRW_β = Spatial diffusion heterogeneity; 
CTRW_D = Anomalous diffusion coefficient; DKI = Diffusion kurtosis imaging; DKI_D = Diffusivity; DKI_K = Kurtosis; FORC = Fractional 
order calculus diffusion; FROC_D = Diffusion coefficient; FROC_β = Intravoxel diffusion heterogeneity parameter; FROC_mµ = Spatial param-
eter; IVIM = Intravoxel incoherent motion diffusion-weighted imaging; IVIM_D = True diffusion coefficient; IVIM_D*=Pseudodiffusion 
coefficient; IVIM_ f = Pseudodiffusion fraction; SEM = Stretched exponential model; SEM_α = Water diffusion heterogeneity index; SEM_
DDC = Distributed diffusion coefficient
Note: cT* means the comparison of this characteristics using Fisher’s exact test, no statistic here. Normally distributed data were presented as 
mean ± standard deviation (X± s), and skewed data were formatted as the median (25% quartile, 75% quartile) [M (Q1, Q3)]

Table 4  Univariable and multivariable regression analysis of MRI parameters for LNM prediction
Variables Univariable regression analysis Multivariable regression analysis

OR (95% CI) value P value OR (95% CI) value P value
cT 5.786 (2.166, 15.453) <0.001 3.241 (1.076, 9.761) 0.037
MRI reported LN status 9.333 (1.879, 46.353) 0.006
Thickness 1.123 (1.012, 1.247) 0.029
CTRW_D 0.978 (0.967, 0.999) 0.002 0.948 (0.922, 0.998) 0.020
DKI_D 0.998 (0.998, 0.999) 0.001
DKI_K 1.006 (1.000, 1.012) 0.064
FROC_D 0.998 (0.998, 0.999) 0.002
IVIM_D* 0.997 (0.994, 0.999) 0.008
IVIM_f 0991 (0.984, 0.997) 0.004
Mono_ADC 0.997 (0.995, 0.999) 0.001
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suggestive of higher risk of LNM and advanced stage for 
endometrial carcinoma [33]. DKI_K holds the potential to 
capture microstructural complexity and heterogeneity [26, 
34]. Therefore, DKI_D together with DKI-K can provide 
insights into tumor aggressiveness and heterogeneity, which 
may facilitate preoperative identification of LNM. We 

LNM-positive group were significantly lower than those in 
the LNM-negative group, and the ADC alone demonstrated 
a similar performance to that reported previously (0.767 
vs. 0.788). Shi B et al. reported that DKI_D and DKI_K 
were correlated with the tumor necrosis fraction after TGF-
β1 inhibition in mouse GC models [32]. A lower DKI_D is 

Table 5  Comparison among diagnostic efficacies of MRI parameters in predicting LNM positivity in resectable gastric cancer
Parameters AUC (95% CI) Sensitivity Specificity Cut off

value
Youden
index

PPV
(%, 95% CI)

NPV
(%, 95% CI)

Z value P 
value

cT 0.793 (0.659, 
0.927)

80.95 62.50 > cT2 0.435 85.00
(70.16, 94.29)

55.56
(30.76, 78.47)

4.704 0.001

CTRW_D 0.767 (0.637, 
0.928)

97.62 56.25 ≤ 2.467 0.539 85.41
(72.33, 93.93)

90.01
(55.51, 99.75)

3.876 0.002

CTRW_D + MRI 
reported LN

0.869 (0.755, 
0.94)

61.00 100 >0.837 0.619 100
(86.77, 10)

50
(31.89, 68.11)

7.907 <0.001

DKI model 
(D + K)

0.760 (0.630, 
0.863)

100 56.25 >0.395 0.563 85.71
(72.76, 94.06)

100
(66.38, 100)

3.056 0.002

IVIM model 
(D*+f)

0.729 (0.596, 
0.838)

97.62 56.25 >0.537 0.539 85.41
(72.33, 93.93)

90.01
(55.51, 99.75)

2.490 0.013

Combined 
parameter

0.930 (0.831, 
0.980)

90.48 87.50 >0.663 0.780 95
(83.08, 99.39)

77.79
(52.34, 93.60)

11.477 <0.001

Abbreviations CI = Confidence interval; cT = Clinical stage; PPV = Positive predictive value; NPV = Negative predictive value; 
ADC = Apparent diffusion coefficient; CTRW_D = Anomalous diffusion coefficient; DKI_D = Diffusivity; FROC_D = Diffusion coefficient; 
IVIM_D*=Pseudodiffusion coefficient; IVIM_ f = Pseudodiffusion fraction

Fig. 5  Comparison of perfor-
mances of MRI parameters for 
predicting LNM in gastric cancer 
patients. The combined parameter 
(cT + CTRW_D, the solid purple 
line) presents the highest AUC 
of 0.930
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the standard of care in clinical practice and closely associ-
ated with LNM [12, 19]. We found that cT and CTRW_D 
have overweighted MRI-reported-LN and exhibited added 
value in MRI-reported-LN negative cohort. Besides, com-
bining CTRW_D with MRI-reported-LN exhibited signifi-
cantly better performance compared to MRI-reported-LN 
alone, suggesting quantitative CTRW_D has incremental 
benefit on this issue. Furthermore, the combination of cT 
and CTRW_D demonstrated a more favorable performance, 
underscoring the feasibility and superiority of integrating 
both qualitative and quantitative parameters from a single 
MRI scan for GC patients. Certain limitations should be 
noted in this study. First, the sample size was small, and the 
results were preliminary; therefore, further researches are 
needed. Second, mixed adenocarcinomas were eliminated 
from the analysis since they may cause migration and bias 
in ADC values calculations. Third, the standard scanning 
specification for multi-b value DWI lacks global consensus, 
our results were generated from the sequence with the maxi-
mal b-value at 3000 s/mm2, which may not be applicable to 
other cancers. In conclusion, the proposed six DWI models 
offer new sets of quantitative imaging markers for preopera-
tive prediction of LNM in resectable GC, with CTRW_D 
appearing as the most beneficial marker. The combination 
of CTRW_D and cT demonstrates significant added value 
and further enhances the predictive performance.
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found significantly decreased DKI_D and increased DKI_K 
values in the lesions of LNM-positive group, suggesting the 
higher levels of heterogeneity in these lesions. IVIM_f is 
effective for distinguishing different node stages in GC [19], 
and a prior study has proved that IVIM_f is a useful marker 
for assessing LVI [25]. GC metastasis to lymph nodes is a 
complicated process involving disruption of the lymphatic 
network and neovascularization [35, 36], which may result 
in an increase in the f value in LNM-positive GC lesions. 
Based on the previous evidences, IVIM_D* is not useful 
for characterizing or staging GC [19, 25]. However, we 
found a significant reduction of D* value in the LNM-pos-
itive group. According to the IVIM theory, D* represents 
microcirculation perfusion of tissues [35]. The reduced 
D* value may indicate that GC lesions with positive LNM 
have less perfusion than those without LNM; nevertheless, 
this was a preliminary result that needs further validation. 
CTRW was firstly applied in the brain for characterizing 
both degenerative diseases and gliomas [37, 38] and has 
been utilized for solid tumors such as breast cancer recently 
[39]; nevertheless, no study has ever applied CTRW in the 
stomach. Our preliminary results showed that GC lesions 
with positive LNM had lower CTRW_D values than those 
without LNM. Moreover, CTRW_D exhibited superior per-
formance compared to the other parameters and emerged 
as one of the risk factors of LNM. Lower CTRW_D were 
closely associated with more advanced disease stages [38, 
39]. Tumors with advanced stage are of high cellularity, 
leading to reduced extracellular space and lower CTRW_D 
values [39]. However, in this study, we failed to prove the 
usefulness of the α and β parameters for predicting LNM, 
which were contrary to a previous report [36]. This discrep-
ancy may attribute to the variations in sample size, differ-
ent types of cancers; the choice of b values for sequence 
acquisition may be another possible reason. The FROC has 
been applied to classify the Lauren subtype in GC [27]. The 
derived β, D, and mµ parameters exhibited favorable per-
formance for distinguishing the intestinal-and-mixed sub-
types from the diffuse subtypes. Besides, previous studies 
have proved close and inverse likelihood between D val-
ues and significant prognostic histologic markers of LVI 
and LNM [25, 31]; consistently, negative correlations were 
identified between D values and LNM status in this study. 
β is related to intravoxel diffusion heterogeneity, and mµ 
is linked to the diffusion mean free length and cellularity 
[27]. Theoretically, these factors together reflect tumor cel-
lularity heterogeneity and may vary between patients with 
different LNM status. However, no significant differences 
in β or mµ were observed in this study. The possible rea-
sons may due to the small sample size and b values adopted 
for DWI acquisition. Regarding morphologic MRI features, 
cT overweighed others and were a predictor of LNM. cT is 
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