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Abstract
Objective We developed and validated a clinical-radiomics model for preoperative prediction of the short-term efficacy of 
initial drug-eluting beads transarterial chemoembolization (D-TACE) treatment in patients with hepatocellular carcinoma 
(HCC).
Methods In this retrospective cohort study of 113 patients with intermediate and advanced HCC, 5343 features were 
extracted based on three sequences of the arterial phase (AP), diffusion-weighted imaging, and T2-weighted images based on 
contrast-enhanced magnetic resonance imaging, and minimum redundancy maximum correlation and least absolute shrinkage 
and selection operator (LASSO) regression were applied for feature selection and model construction. Multifactor logistic 
regression was used to build a clinical-imaging model based on clinical factors and a clinical-radiomics model. The area 
under the curve (AUC) and calibration curves were used to assess model performance, and the clinical value of the model 
was analyzed using decision curve analysis. The relationship between the actual and predicted short-term efficacy of the 
combined model and progression-free survival (PFS) was evaluated using Kaplan–Meier survival curves and log-rank tests.
Results A total of 34 radiomics features were selected by LASSO, and the clinical-radiomics model had the best predictive 
performance (AUC = 0.902 and AUC = 0.845 for the training and testing sets, respectively), and the model based on AP 
had the best predictive performance among the four radiomics models (AUC = 0.89 for the training set and AUC = 0.85 for 
the testing set); the multifactorial logistic regression results showed that microsphere type (p = 0.042) and AP Rad-score 
(p = 0.01) were associated with short-term efficacy. In addition, a difference in PFS was observed in patients with HCC with 
different short-term efficacies predicted by the combined model. Moreover, prognosis was better in the objective versus 
non-objective response group.
Conclusions The combined clinical-radiomics model is an effective predictor of the short-term efficacy of initial D-TACE 
in patients with HCC, contributing to clinical and economic benefits for patients.

Keywords Hepatocellular carcinoma · Drug-eluting beads transarterial chemoembolization · MRI · Radiomics · Short-term 
efficacy

Introduction

With mortality rates as high as 8.3%, liver cancer is the fifth 
most common malignant tumor and third leading cause of 
tumor-related deaths worldwide, posing a serious threat to 
public health [1]. Surgical resection and liver transplantation 
are the primary curative treatment options for hepatocellular 

carcinoma (HCC). However, most patients are diagnosed 
in the intermediate to advanced stages, and only approxi-
mately 5%-15% of patients with HCC have the opportunity 
to undergo radical surgery [2]. According to the Barcelona 
Clinic Liver Cancer (BCLC) staging criteria [3], transarterial 
chemoembolization (TACE) is the first-line treatment option 
for patients with intermediate to advanced HCC. In addi-
tion, drug-eluting beads transarterial chemoembolization 
(D-TACE) is an embolization therapy involving drug-eluting 
microspheres containing chemotherapeutic agents, known as 
“drug-eluting microspheres” owing to their long duration of 
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action and low systemic toxicity and side effects. Moreover, 
D-TACE has been widely used in clinical practice.

Related studies have reported that D-TACE has greater 
advantages than conventional transarterial chemoemboliza-
tion (c-TACE) in some HCC groups [4–6], such as patients 
with cirrhosis [6]. Moreover, D-TACE causes less postop-
erative pain compared with c-TACE [7]. However, as the 
cost of D-TACE is higher than that of c-TACE, noninvasive 
methods of efficacy prediction can reduce the financial bur-
den on patients to some extent. In addition, some studies 
have shown that patients who achieve complete response 
(CR) after initial TACE treatment have a favorable long-
term prognosis [8–10]. Therefore, effective monitoring of 
the short-term efficacy of TACE (especially after the initial 
treatment) is partly beneficial for physicians with regard 
to early adjustments to the therapeutic regimen, leading to 
longer survival times for these patients. Among imaging 
examinations, Magnetic Resonance Imaging (MRI) has high 
research value owing to its advantages in multi-parameter, 
multi-directional, and multi-functional imaging. In previ-
ous studies, some imaging signs were associated with the 
biological behavior of HCC, such as the maximum tumor 
diameter or degree of enhancement in the arterial phase [9]. 
Despite attempts by radiologists to standardize the evalua-
tion of macroscopic tumor biological behaviors, the use of 
such qualitative imaging features in tumor characterization 
or efficacy assessment remains subjectively variable, even 
among senior physicians [11]. Recently, MRI-based radi-
omics showed improved predictive performance [12–14]. 
Therefore, our study was conducted to predict the short-term 
efficacy of initial D-TACE treatment in patients with HCC 
by constructing a preoperative multiparametric MRI radiom-
ics model and further explore the relationship between the 
short-term efficacy of initial D-TACE treatment and long-
term prognosis (progression-free survival).

Materials and methods

Research population

This retrospective analysis was approved by the Ethical 
Review Board of our hospital (IRB-2021–414), and the 
requirement for informed consent was waived. Previous 
studies on D-TACE prognosis-related radiomics included 
approximately 50–100 patients [15]; Therefore, a total of 
113 patients with HCC confirmed by pathology or imaging 
examinations who received their initial D-TACE treatment 
between October 2018 and May 2022 at our hospital were 
included after the selection process.

The exclusion criteria were as follows: (1) preoperative 
history of targeted immunotherapy, (2) postoperative loss to 
follow-up, (3) lack of preoperative enhanced MRI or poor 

image quality, and (4) presence of diffuse HCC. The patient 
recruitment process is illustrated in Fig. 1. Finally, 113 
patients were randomized into training  (n = 79) and testing  
(n  = 34) groups.

Evaluation of efficacy

The short-term efficacy and long-term prognosis (PFS) of 
patients after the initial D-TACE treatment were evaluated 
according to the modified Response Evaluation Criteria in 
Solid Tumors (mRECIST). Patients were classified into 
two groups according to the treatment response to the ini-
tial D-TACE treatment. The objective response (OR) group 
included patients who achieved CR or partial response (PR), 
whereas the non-objective response  (nR) group included 
patients with progressive disease (PD) or stable disease 
(SD). Efficacy evaluations were performed by three radiolo-
gists: two radiologists with more than 8 years of experience 
who completed the evaluations independently and another 
with more than 15 years of experience who was responsible 
for the efficacy evaluation in the occurrence of conflicting 
opinions. Figure 2 shows two examples of efficacy evalua-
tions (OR vs. NR group).

MRI protocol

All patients underwent CE-MRI of the upper abdomen 
within 1 month before operation and MRI of the abdomen 
within 4–6 weeks after operation. Before the scan, they 
underwent uniform breathing and breath-holding train-
ing. CE-MRI was performed in our department using two 
devices. DWI was performed using a cross-sectional single-
shot plane echo imaging sequence with b-values of 50 and 
800 s/mm, respectively. Detailed scanning parameters are 
described in Supplementary data, Table S1.

D‑TACE procedure

The embolizing agents included CalliSpheres drug-loaded 
microspheres (Jiangsu Suzhou CalliSpheres Biomedical 
Technology Co., Ltd., China) or DC Beads drug-loaded 
microspheres (Boston Scientific International Medical Trad-
ing Co., Ltd., USA), and the diameter of one microsphere 
was specified as 70– 150, 100–300, or 300–500 um, which 
was selected according to the tumor size and blood sup-
ply. After sedimentation and discharge of the supernatant, 
an appropriate amount of the chemotherapeutic drug was 
loaded and diluted with a contrast agent (volume ratio, 1:1). 
Under fluoroscopy, the embolic agent was slowly injected 
into the blood-supplying artery of the tumor through the 
microcatheter. The endpoint of embolization was complete 
stagnation of blood flow in the tumor trophoblastic vessels 
or contrast agent retention.
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Collection of clinical‑imaging features and follow‑up

Clinical-imaging characteristics were collected by two radi-
ologists with more than 8 years of experience. The collected 
clinical information comprised three aspects: patients' base-
line data, including demographic information and laboratory 
indicators; surgical information; and imaging features. The 
enrolled patients were followed up to assess PFS, mainly by 
clinical and imaging evaluations at the time of patient review 
every 1–3 months. PFS was calculated from the time of the 
initial D-TACE procedure to the time of progression, or if 
no disease progression was observed at the time of the last 
follow-up.

Radiomics feature extraction and analysis

CE-MRI (AP, DWI, and T2WI) results were output in Digi-
tal Imaging and Communications in Medicine (DICOM)
format. Then We use publicly sourced software (3D Slicer 
version 5.1.0, https:// www. slicer. org/) for semi-automatic 
outlining. Two radiologists from the abdominal subspecialty 
group outlined the regions of interest (ROIs). The three 
dimensional ROI included a pseudo-envelope at the outer 
edge, while avoiding extra-tumoral vessels as much as pos-
sible. Intra-observer agreement was assessed by calculating 
the intra-group correlation coefficient (ICC). To calculate 

the intra-observer ICC, MRI results from three sequences 
were randomly selected for 20 patients and outlined twice at 
2-month intervals by an outliner. The intra-observer ICC was 
calculated after extracting the features using ROI segmenta-
tion. The reader was considered to have better consistency 
compared with the other readers when the ICC was > 0.75; 
therefore, the remaining target areas were completed by this 
reader.

Image preprocessing and feature extraction were per-
formed using pyradiomics (version 3.1.0). We use two pre-
processing methods in our study. The first is a linear inter-
polation algorithm to resample the images to a voxel size of 
1 × 1 × 1 mm, and the second is a z-score method to normal-
ize the radiomics features. [16, 17]. Then, 1781 radiomics 
features were extracted from each sequence (detailed data 
are available in the Supplementary Data, Table S2). A total 
of 5343 features were extracted from the three sequences. 
Radiomics feature values were normalized using the z-score 
method. The workflow of the radiomics analysis is shown 
in Fig. 3.

Feature selection and radiomics model construction

We used two methods for feature selection and dimension-
ality reduction for radiomics. First, minimum redundancy 
maximum correlation (mRMR) was used to eliminate 

Fig. 1  Flowchart of study 
enrollment. OR Objective 
response, NR non-Objective 
response

https://www.slicer.org/
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redundant and irrelevant features. Then LASSO was con-
ducted to choose the optimized subset of features to con-
struct the final model. The LASSO includes choosing the 
regular parameter λ, determining the number of the feature. 
The basic principle of LASSO is to introduce the L1 regu-
larization term based on ordinary least squares to achieve 
feature selection and coefficient sparsification of the model 
by minimizing the objective function. The optimized fea-
tures were selected to construct the final model, and the best 
radiomic features were chosen. Subsequently, a radiomics 
model was constructed based on the features selected for 

each sequence using multifactor logistic regression analy-
sis. Rad-scores were calculated using a linear combination 
of selected radiomic features weighted according to their 
respective coefficients.

Clinical‑radiomics modeling and evaluation

We further introduced clinical factors that were highly cor-
related with D-TACE efficacy into the prediction model to 
improve the prediction performance based on Rad-scores. 
First, clinical variables (p values < 0.1 in the univariate 

Fig. 2  Representative pre- and 
post-treatment CE-MRI images 
of for the OR and NR groups of 
patients with HCC conforming 
to the mRECIST. a A 70-year-
old male HCC patient with a 
maximum tumor diameter of 
10.2 cm underwent CE-MRI 
2 days before D-TACE and 
CE-MRI review 35 days after 
treatment. AP, DWI, and T2WI 
images were obtained, and the 
results indicated CR according 
to the mRECIST, with no clear 
enhanced surviving lesions. b 
An 80-year-old female HCC 
patient with a maximum tumor 
diameter of 11.7 cm underwent 
CE-MRI 1 day before D-TACE 
and CE-MRI review 37 days 
after treatment. The results 
indicated SD; the maximum 
diameter of the surviving tumor 
lesion was approximately 
10.6 cm, and the necrosis rate 
was approximately 9%. CE-MRI 
contrast-enhanced magnetic 
resonance imaging; OR objec-
tive response; NR non-objective 
response; AP arterial phase; 
DWI diffusion-weighted imag-
ing; T2WI T2-weighted imaging 

a A             DWI           T2
Pre-opera�on

Post- opera�on

b
Pre- opera�on

Post- opera�on
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analysis and the selected radiomics features were subjected 
to multifactorial logistic regression analysis to identify the 
independent risk factors affecting short-term efficacy (p 
value < 0.05). These independent risk factors were then ana-
lyzed using a multifactorial logistic regression algorithm to 
establish a clinical-radiomics model. Finally, a nomogram 
of clinical-radiomics was created. The area under the curve 
(AUC) was plotted to assess the predictive performance of 
the model. DeLong's test was applied to compare the differ-
ences in AUCs between the models. In addition, we used 
calibration and decision curves to assess the calibration and 
clinical application of the model. Finally, the AUCs were 
calculated, calibration curves were plotted using the formu-
las constructed in the training set, and the model was vali-
dated in the testing set.

Statistical analysis

The two primary endpoints of interest in this study were 
the actual short-term efficacy of the initial D-TACE treat-
ment and PFS. The former clinical-radiomics model was 
developed and assessed using R software (version 4.1.3, 
R Foundation for Statistical Computing, Vienna, Austria). 
Descriptive statistics and assessment of PFS for the different 
short-term efficacies (actual and predicted) were performed 
using SPSS software (version 26.0, IBM Corp., Armonk, 
NY, USA). Normally distributed continuous variables are 
denoted by the mean ± standard deviation (Mean ± SD), and 

those that are not normally distributed are denoted by the 
median  (P25,  P75). Qualitative data were represented as num-
bers  (n) and percentages (%). The t-test or Mann–Whitney 
U test was used to compare quantitative data. Categorical 
variables were analyzed using chi-square or Fisher’s exact 
tests. A rank-sum test was used to analyze the rank data. 
Risk factors with p values < 0.1 in the univariate logistic 
regression analysis were included in the multivariate logistic 
regression model. Survival curves were constructed using 
the Kaplan–Meier method, and group comparisons were 
made using log-rank tests. The performance of our models 
was assessed by the AUCs and its 95% confidence inter-
val (CI). We compared the AUCs of different models using 
Delong's test. p values < 0.05 were considered statistically 
significant.

Results

Clinical‑imaging characteristics and follow‑up 
results

Table 1 summarizes the clinical-imaging characteristics of 
the 113 patients. A total of 74 patients were categorized into 
the OR group and 34 patients into the NR group. The results 
of multivariate logistic regression showed that microsphere 
type was a valid predictor (p  = 0.042, OR = 0.224, 95% CI 
0.053–0.948).

Fig. 3  Analytical workflow of radiomics in our study. a Tumors 
are indicated by semi-automatic drawings of lines around the entire 
tumor contour in AP, DWI, and T2WI sequences, and three dimen-
sional segmentations were created. b We used two methods of fea-
ture selection, mRMR and LASSO to select the features. Correlation 
coefficients were also calculated. c Radiomics models were built 

using logistic regression algorithms, and a nomogram was estab-
lished, evaluated by calibration curve and decision curve analysis. AP 
arterial phase; DWI diffusion-weighted imaging; T2WI T2-weighted 
imaging; mRMR minimum redundancy maximum correlation; 
LASSO least absolute shrinkage and selection operator 
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Table 1  Baseline clinical 
characteristics of patients with 
HCC in the training and testing 
datasets

ALP alkaline phosphatase, GGT  γ-glutamyl transpeptidase, AST aspartate aminotransferase, ALT alanine 
transaminase, AFP α-fetoprotein, BCLC Barcelona clinic liver cancer
*Indicates the p value < 0.05

Variables Training set  (n  = 74) Testing set  (n  = 39) p  value

Gender  (n ,%)
Male 64(81.0) 29(85.3) 0.584
Age Mean ± SD 58 ± 13 59 ± 12 0.776
History of disease  (n ,%)
Hepatitis B 61(77.2) 27(79.4) 0.796
Diabetes 10(12.7) 3(8.8) 0.791
Preoperative antiviral treatment  (n ,%) 17(21.5) 10(29.4) 0.367
Liver function index M(P25,  P75)
ALP(U/L) 135(103,197) 138(108,184) 0.963
GGT(U/L) 149(84,255) 145(82,234) 0.853
AST(U/L) 53(36,83) 51(38,83) 0.950
ALT(U/L) 36(24,72) 43(29,56) 0.391
Prealbumin(U/L) Mean ± SD 169 ± 75 183 ± 76 0.355
AFP (ng/ml)  (P25,  P75) 279(12,6335) 1582(99,27,469) 0.045
Child–pugh (n ,%) 0.780
A 74(93.7) 33(97.1)
B 5(6.3) 1(2.9)
BCLC (n ,%) 0.128
A 16(20.3) 2(5.9)
B 19(24.1) 9(26.5)
C 44(55.7) 23(67.6)
Drug-loaded drugs (n ,%) 0.605
Epirubicin 51(64.6) 21(61.8)
Idarubicin 15(19.0) 9(26.5)
Irinotecan 13(16.4) 4(11.7)
Drug loading capacity(mg)  (P25,  P75) 50(30,60) 50(10,60) 0.436
Microsphere Type (n ,%) 0.608
CalliSpheres 39(49.4) 15(44.1)
DCB 40(50.6) 19(55.9)
Microsphere size(μm) (n ,%) 0.416
70–150 2(2.5) 0(0.0)
100–300 24(30.4) 7(20.6)
300–500 53(67.1) 27(79.4)
Maximum tumor diameter (cm) Mean ± SD 8.7 ± 3.7 9.0 ± 3.8 0.717
Tumor/liver volume ratio
Mean ± SD

0.207 ± 0.166 0.265 ± 0.193 0.106

Clear tumor margins (n ,%) 57(72.2) 22(64.7) 0.429
Degree of early tumor enhancement (n ,%) 0.646
Mild inhomogeneity 13(16.5) 5(14.7)
Obviously inhomogeneity 57(72.2) 24(70.6)
Obviously homogeneity 9(11.4) 5(14.7)
Significant edge enhancement (n ,%) 34(43) 21(61.8) 0.068
Intra-tumoral lipid (n ,%) 9(11.4) 0(0.0) 0.094
Tumor with capsule (n ,%) 63(79.9) 30(88.2) 0.278
Intra-arterial tumor (n ,%) 63(79.7) 27(79.4) 0.968
With portal thrombosis (n ,%) 27(34.2) 20(58.8) 0.015
Satellite focal (n,%) 43(54.4) 18(52.9) 0.884
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More than half of the patients in the training (71%) and 
testing (53%) sets had OR in the efficacy evaluation of the 
initial D-TACE treatment, with a median time from ini-
tial the D-TACE procedure to final follow-up of approxi-
mately 9.5 (95% CI 6.6–12.4) months. The Kaplan–Meier 
curves of the actual and predicted short-term efficacies and 
PFS times for the two groups are shown in Fig. 4a, b. The 
median survival times in the actual OR and NR groups 
were 8.5 (95% CI 4.8–12.2) and 4.5 (95% CI 0.0–9.0) 
months, respectively, and the difference was statistically 
significant (p  = 0.027). A statistically significant differ-
ence was also observed in median survival times between 
the groups of patients that the best model predicted in the 
OR vs. NR analysis (p  = 0.011). Patients were divided 
into four groups (as shown in Fig. 4c) according to the 
Kaplan–Meier curve for efficacy based on the mRECIST. 
The median PFS times were 13.1 (95% CI 6.6–19.6), 8.0 
(95% CI 6.7–9.3), 11 (95% CI 3.8–18.2), and 1.5 (95% 
CI 1.1–1.9) months in the CR, PR, SD, and PD groups, 
respectively, with a statistically significant difference 
(p  < 0.001). This finding indicates that OR versus NR 

status after the initial D-TACE treatment was associated 
with a better long-term prognosis, with the longest PFS 
observed in the CR group.

Feature selection and radiomics modeling processes

After ICC analysis, no statistically significant differences 
were observed in the two outlining results for observer A 
(p  = 0.85); therefore, the final outlining assignment was 
completed by observer A. In total, 5343 features (1781 
features per sequence) were extracted from the AP, DWI, 
and T2WI sequences. Redundant features were eliminated 
sequentially using the mRMR method, with 20 features 
retained per sequence. Subsequently, 10 AP, 7 DWI, and 9 
T2WI, combined with 8 triple-sequence, radiomics features 
were screened by LASSO and five-fold cross-validation, 
for a total of 34 radiomics features (Detailed information is 
available in Supplementary Data, Fig. S1). The Rad-score 
was calculated for each patient, and the formula is described 
in the Supplementary Data, Table S3.

Fig. 4  Kaplan–Meier curve for HCC survival. a Actual response status and b predicted response status by the combined model of two groups. c 
Actual response status of four groups



2394 Abdominal Radiology (2024) 49:2387–2400

Clinical‑radiomics model construction 
and evaluation

Univariate analysis showed that three clinical (microsphere 
size, microsphere type, and drug load type) and two imaging 
(maximum tumor diameter and tumor-to-liver volume ratio) 
characteristics were statistically significantly different (Sup-
plementary Data, Table S4). Multifactorial analysis revealed 
that microsphere type (odds ratio = 0.224, CI = 0.053–0.948, 
p  = 0.04) was an independent risk factor for predicting effi-
cacy. Therefore, we used microsphere types to construct the 
clinical-radiomics models.

We built a total of six predictive models: four radiomics 
models, a clinical-imaging model, and a clinical-radiomics 
model. Among these radiomics models, the best perfor-
mance was observed in the AP phase, with AUCs of 0.89 
(95% CI 0.81–0.96) and 0.85 (95% CI 0.69–1.00) in the 
training and testing sets, respectively (Table 2). The ROC 
curves for the radiomics models are plotted in Fig. S2 (Sup-
plementary Data). The model combining clinical factors 
(microsphere type) and radiomics models (AP) performed 
the best among all models, with AUCs of 0.902 (95% CI 
0.832–0.959) and 0.845 (95% CI 0.708–0.944) in the train-
ing and testing sets, respectively. Moreover, the addition of 
the Rad-score to the clinical-imaging model significantly 
improved the predictive efficiency of the training set (AUC, 
0.717–0.902; p  = 0.004), suggesting that the combined 
model maximizes the predictive value of efficacy. In the 
DeLong test (Supplementary Data, Table S5) for both the 
clinical-imaging and combined models comprised each of 
the four radiomics models, the combined model had the 
best performance (AP, p  = 0.002; DWI, p < 0.001; T2WI, 
p  = 0.005; triple-sequence, p  = 0.002). However, the 
DeLong test for the radiomics and combined models did not 
show a statistically significant difference between the two 
groups in terms of predictive performance (AP, p  = 0.32; 
DWI, p  = 0.84; T2WI, p  = 0.25; triple-sequence, p  = 0.58). 
Furthermore, ROC curves showed that radiomics curves 
based on a single sequence or three sequences frequently 
overlapped with those of the combined model, with much 

greater clinical efficacy than that of a single clinical-imaging 
model (Fig. 5).

Establishment and evaluation of nomogram

The nomogram was constructed based on the aforemen-
tioned predictive model, which effectively combined Rad-
Scores and the selected clinical predictors (Fig. 6a). The 
calibration curves showed good calibration in the training 
set, which was slightly worse in the testing set (Fig. 6b, c). 
The Hosmer-Lemesow test showed no statistically signifi-
cant difference in either set (p  = 0.235 < 0.05), indicating 
good agreement between the nomogram predictions and 
actual observations.

Clinical‑radiomics model and nomogram for clinical 
application

Decision curves illustrate how well the radiomics model, the 
clinical-imaging model, and the combined model of clini-
cal utility perform. Moreover, the addition of the radiomics 
model resulted in significantly higher clinical efficacy in the 
combined model, with the combined model achieving the 
best clinical efficacy among all models.

Discussion

TACE plays an irreplaceable role in transformation therapy 
and is a nonsurgical alternative for patients with moderate 
to advanced HCC. However, owing to the high heterogene-
ity of HCC = c, the clinical response to TACE varies widely 
among patients with HCC. In addition, D-TACE is more 
expensive than c-TACE. Therefore, if the short-term efficacy 
of D-TACE can be predicted preoperatively, the treatment 
plan can be adjusted according to the patient’s specific con-
dition. This can simultaneously improve the prognosis of the 
patients, reduce the economic burden, and avoid the wastage 
of medical resources.

Table 2  The performance of 
different models in the training 
and test sets for treatment 
response prediction

AUC  area under the curve, ACC  accuracy, SEN sensitivity, SPE specificity
*Indicates the p value < 0.05

Models TR non-TR

AUC ACC SEN SPE AUC ACC SEN SPE

AP 0.89 0.83 0.85 0.78 0.85 0.82 0.86 0.72
DWI 0.85 0.78 0.73 0.85 0.83 0.76 0.77 0.73
T2WI 0.84 0.83 0.85 0.79 0.81 0.82 0.91 0.64
Mp-MRI 0.87 0.83 0.83 0.82 0.84 0.70 0.59 0.91
Clinic 0.72 0.63 0.56 0.78 0.64 0.62 0.68 0.50
Combined 0.90 0.81 0.75 0.93 0.85 0.79 0.82 0.75
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D-TACE is an interventional approach that differs from 
c-TACE. To the best of our knowledge, most studies have 
applied radiomics to predict the efficacy of c-TACE [13, 
19, 20] or a combination of the two TACE approaches [12, 
21] rather than D-TACE, resulting in fewer studies apply-
ing radiomics to predict D-TACE efficacy alone and even 
fewer studies based on CE-MRI sequences. Tipaldi et al. 

[15] predicted the short-term efficacy of D-TACE based on 
preoperative CT texture features in 50 patients with HCC, 
with an optimal texture feature AUC of 0.733. Ultimately, 
the combined clinical-radiomics model performed the best 
in our study, which is in agreement with the results of a pre-
vious study [19]. However, its predictive performance was 
lower than that in our study, possibly owing to the following 

Fig. 5  ROC curves of the combined model based on different sequences in the training set. AP. b DWI. c T2WI. d Triple-sequence. AP arterial 
phase; DWI diffusion-weighted imaging; T2WI T2-weighted imaging 
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reasons. First, the features extracted in our study included 
first-, second-, and higher-order features, and were there-
fore more varied and comprehensive. Second, the soft-tissue 
contrast in the MRI sequences was better than that in the 
CT images, which showed the details of the lesions in a 
subtle manner. A previous study demonstrated that MRI out-
performed CT for predicting the presence of microvascular 
invasion in patients with HCC, with a maximal diameter 
of 2–5 cm [22]; however, radiomics studies comparing the 
advantages of CT and MRI for predicting the efficacy of 
D-TACE are lacking.

We used two different MRI scanners with the same field 
strength (3.0 T) in our study, and the radiomics results were 
unaffected. First, the MRI data were subjected to image nor-
malization, gray level standardization, and image alignment 
before modeling. Second, we used two different MRI scan-
ners of the same field strength (3.0 T) controlled the differ-
ences between parameters to some extent. This phenomenon 

also better approximates a clinical practice setting, as it is 
impossible to guarantee that all patients will be imaged using 
the same scanning equipment.

In our study, a model based on three preoperative CE-
MRI sequences and clinical-imaging features was developed 
and validated to predict the short-term efficacy of D-TACE. 
The model successfully combined the radiomics Rad-scores 
with clinical -imaging features to predict short-term efficacy, 
with patients categorized into OR and NR groups. Our study 
cohort consisted of 113 patients with HCC, and 79 (70%) 
patients actually achieved OR, suggesting that the majority 
of patients with HCC had favorable D-TACE efficacy. Most 
of the study participants were men with hepatitis B, BCLC 
stage B or C, similar to previous studies [23] and in line 
with the epidemiological characteristics of HCC [24], clini-
cal practice, and therapeutic strategies for BCLC stage [3].

Our study included two endpoints. First, to evaluate 
the short-term efficacy of the initial D-TACE treatment in 

Fig. 6  Nomogram and calibration curves of proposed model. a Nomogram of combined model integrating Rad-score and significant clinical 
variables. b Calibration of the combined model in the training set. c Calibration of the combined model in the testing set
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patients with HCC, four radiomics models were established 
using three CE-MRI sequences, which were also com-
bined with the relevant clinical-imaging factors to predict 
the short-term efficacy of the initial D-TACE treatment in 
patients with HCC (mainly in the intermediate to advanced 
stages). Finally, a total of six models were constructed. 
Among these models, clinical-imaging features combined 
with a model based on AP radiomics demonstrated the 
best predictive efficacy. This may be because the AP-based 
radiomics model performed the best among the radiomics 
models, showing better accuracy, sensitivity, and specific-
ity. The addition of other sequences in the combined model 
did not significantly improve the predictive performance 
(p  = 0.435). We hypothesized that the AP is more indica-
tive of lesion heterogeneity. Obviously, tumor heterogeneity 
can be generated by variations in cell density, neovascu-
larization, and the extracellular matrix [25]. Thus, the AP 
was the best performer among the four radiomics models 
in our study. Notably, the best AUC value was not obtained 
for the radiomics model consisting of the three sequences 
together, with AUC values of 0.87 and 0.84 for the train-
ing and testing sets, respectively. This is similar to the find-
ings of Liu et al. [14], with the highest predictive efficacy 
reported for the augmented delayed-phase radiomics model 
(AUC = 0.907), which was superior to that of the T2WI, AP, 
portal phase, and delayed-phase multi-parameter radiomics 
models consisting of four sequences (AUC = 0.875). In the 
present study, this may be related to multiparametric feature 
redundancy and different image resolutions (layer thickness 
in the AP was different from that in T2WI and DWI in the 
present study). The radiomics features in our study for the 
predictive model included seven texture-based features and 
three intensity-based features in the first-order features, and 
shape-based features were not incorporated (The features 
and their definitions in the model are shown in the Sup-
plementary Data S2 and Fig S1). Kurtosis, 10 Percentile, 
and Maximum are intensity-based features that are capable 
to study the histogram properties of tumor intensity. Grey 
Level Co-occurrence Matrix (GLCM), Gray Level Run 
Length Matrix (GLRLM), Gray Level Size Zone Matrix 
(GLSZM), Gray Level Dependence Matrix (GLDM) are all 
texture-based features that have the advantage of comple-
menting the spatial relationships of neighboring pixels[26]. 
And these are not available with shape or intensity-based 
features. Moreover, texture-based features can reflect the het-
erogeneity of tumors[26, 27]. This is a valuable reminder 
for determining the differences in the efficacy of D-TACE 
between individuals with different HCCs.

These results suggest to radiologists that the homogeneity 
of tumor intensity and the distribution of enhancement in the 
tumor in patients with HCC have the potential to help clini-
cians predict, to a certain extent, the efficacy of D-TACE. 
Simultaneously, radiomics also demonstrates the advantage 

of more subtle biological features of tumors that cannot be 
distinguished by the radiologist's naked eye.

In addition, shape-based features did not appear to reflect 
excellent predictive efficacy in our study, which is consist-
ent with the absence of morphological information such as 
tumor volume in the clinical-imaging portion of the model. 
This might be explained by the fact that our study popula-
tion was dominated by patients with massive HCC, with 
little variability in morphology between individual tumors. 
It thereby leads to no significant correlation between mor-
phological type of information and D-TACE efficacy.

Among the clinical-imaging characteristics, only micro-
sphere type was used to construct the combined model. The 
effects of microsphere size and drug-carrying concentration 
on D-TACE efficacy have been reported in clinical studies 
[28–30], whereas microsphere and drug-carrying types have 
been reported less frequently. Regarding drug-carrying 
types, drugs have toxic strengths. Idarubicin, for example, 
was the most cytotoxic of the 11 anticancer drugs tested 
against the three HCC cell lines [31]. In addition, the release 
rates vary among different drugs, which affects the degree of 
drug penetration into the tumor tissue and its distribution in 
the liver tissue [32]. Few studies have explored the effects of 
microsphere types on D-TACE efficacy. From the perspec-
tive of microsphere construction, different chemical struc-
tures of microspheres have different drug-carrying capaci-
ties and drug release rates [33]. In addition, the mechanical 
properties of the microspheres (such as compressibility and 
deformability) may affect their distribution density in the 
arteries, embolization effect, and suitability for catheteriza-
tion [34]. Finally, microsphere type proved to be a clinical 
factor associated with the short-term efficacy of D-TACE in 
our study, whereas the drug-carrying type and microsphere 
size were excluded from the multifactorial logistic regres-
sion. We hypothesized that this may be due to the wide vari-
ety of microsphere sizes and drug-carrying types used in our 
relatively small cohort, which resulted in unbalanced data.

However, our clinical-imaging model showed low pre-
dictive performance in the training and testing sets, pos-
sibly because the clinical factors and macroscopic imaging 
features cannot reflect tumor heterogeneity better than the 
combined clinical-radiomics model. However, when the 
Rad-score was added, it outperformed the single clinical-
imaging model. We hypothesized that this phenomenon is 
related to the sample size [35]. In our research, AP-based 
radiomics combined with microsphere types form a clinical-
radiomics model with the best predictive performance. From 
one side, as mentioned above, radiomics can provide high-
dimensional biological information about tumor heterogene-
ity, which is intrinsic information that determines the vari-
able individual efficacy of D-TACE. As for the other side, 
microsphere types are selectable during D-TACE treatment, 
which is extrinsic information that determines the efficacy 
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of patients with HCC. Thus, the combination of the both can 
provide the best predictive effect.

The secondary endpoint was PFS after initial D-TACE 
treatment in patients with HCC. Kaplan–Meier and log-rank 
tests showed that patients whose actual short-term efficacy 
after initial D-TACE was classified as OR had a better 
long-term prognosis compared with patients classified as 
NR (p  = 0.03). The group of patients attributed to the best 
prediction model with an outcome of OR also had a better 
long-term prognosis than that in patients with predicted NR 
(p  = 0.01). This validates the effect of the model established 
in this study and provides supporting evidence for the clini-
cal significance of predicting the short-term efficacy of ini-
tial D-TACE treatment. Moreover, the CR group had the best 
long-term prognosis (p < 0.001). The time to progression 
differed significantly between the CR and PD groups, with 
the longest PFS after the initial D-TACE observed in the CR 
group. The Kaplan–Meier curves indicated that the survival 
curves for the PR and SD groups overlapped, and the time 
to progression was longer in the SD versus PR group with 
the accumulation of follow-up time, which may have been 
caused by the unbalanced distribution of the number of cases 
in each group and the highly censored values used in this 
study. Therefore, this should be explored in a larger prospec-
tive study. Related studies have been conducted on this topic. 
For instance, Kim et al. investigated the relationship between 
patients who achieved CR after initial TACE treatment and 
patients who achieved CR after multiple TACE procedures 
and their respective overall survival (OS) rates among 314 
patients with HCC, the results showed that an initial CR was 
the strongest predictor of a favorable prognosis [36]. How-
ever, both studies focused on analyzing OS after c-TACE; 
therefore, our study is innovative in that we evaluated the 
relationship between long-term prognosis and the short-term 
efficacy of D-TACE.

Our study has some limitations. First, this was a single-
center, retrospective study with a small sample size. In addi-
tion, selection bias was unavoidable during the case-screen-
ing process. A larger sample size is required to validate our 
results. In addition, cases from multiple centers are required 
for external validation, which should be considered in future 
studies. Second, not all included patients had pathological 
results; therefore, a risk of bias existed. We also intend to 
include HCC cases with different pathological results for 
a more advanced stratification in future studies. Third, our 
second study endpoint was PFS, although the gold standard 
for long-term patient prognosis is OS, which we hope to 
include in subsequent studies.

Furthermore, with the results of our study, we identify 
directions that we can continue to explore in the future. 
We have only utilized one single imaging modality, but 
other imaging methods such as ultrasound, CT and even 
positron emission tomography (PET) can provide a more 

comprehensive information about the biological behavior 
of the tumor. In addition, if genomics at the molecular level 
is combined with radiomics at the imaging level, this mul-
timodal data may provide more comprehensive prognostic 
information. These deserve to be explored further in the 
future.

In conclusion, we showed that MRI-based radiomics fea-
tures can predict the short-term efficacy of initial D-TACE 
treatment in patients with HCC and played a leading role in 
the combined clinical-radiomics model.
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